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1 Analysis of the Low Rank Approximation

We examine the number of singular values that are needed to capture a fraction θ of energy
of Ut. If r is that number then the Singular Value Decomposition LΣLT solves the following
problem

min ‖U − LΣLT ‖F such that rank(LΣLT ) = r, (1)

where ‖ · ‖F is the Frobenius norm and we have dropped the subscripts for simplicity. Suppose
that each Bt is a d-dimensional gaussian vector with iid N (0, 1) entries and that each D̃−1

t Et =
αId with 0 < a < 1. Then U is a random matrix with [U ]ij ∼ N (0, α2(i−1)). Let Ul be the
matrix that consists of the first l rows of U and define k as the minimum number of rows
required to capture a θ fraction of the energy,

k = arg min{l : E‖Ul‖2F ≥ θE‖U‖2F }. (2)

We claim that with high probability k ≥ r. To compute k we have

E‖Ul‖2F = d
1− α2l

1− α2
⇒

E‖Ul‖2F ≥ θE‖U‖2F ⇔ (1− α2l) ≥ θ(1− α2t)⇒

k =

⌈
log(1− θ(1− α2t))

2 log(α)

⌉
,

(3)

where d·e is the ceil function. Note that k is independent of d. Therefore, we expect our low
rank approximation to give substantial computational gains if

d�
⌈

log(1− θ(1− α2t))

2 log(α)

⌉
. (4)

We can also compute a bound on the deviation of the effective rank of U from k + c for
some positive integer c, using large deviations theory. A weaker version of this is computing
the deviation of ‖Uk‖2F from E(‖Uk‖2F ) by estimating the probability

P(‖Uk+c‖2F ≤ E(‖Uk‖2F )). (5)

This is the probability that more than k+ c rows are required to capture the θ fraction of the
expected energy. Therefore this constitutes a bound on the probability that the effective rank
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of U will be greater than k + c. ‖Uk+c‖2F can be considered as the sum of k + c i.i.d. random
variables Qi, with

‖Uk+c‖2F =

k+c∑
i=1

α2(i−1)Qi, (6)

where each Qi is a chi-squared distribution with d degrees of freedom. Then from Cramer’s
theorem (Dembo and Zeitouni, 1993) we have that

P(‖Uk+c‖2F ≤ E(‖Uk‖2F )) ≤ exp(−dκ(E(‖Uk‖2F ))), (7)

with
κ(E(‖Uk‖2F )) := sup

t

(
E(t‖Uk‖2F )− log(E(et‖Uk+c‖2F ))

)
. (8)

By using the moment generating function for a chi-squared random variable (which is defined
on the interval (−∞, 0.5) we have

κ(E(‖Uk‖2F )) := sup
t<0.5

(
tE(‖Uk‖2F ) +

1

2

k+c∑
i=1

log(1− 2tα2(i−1))

)
︸ ︷︷ ︸

f(t)

. (9)

The maximizing t cannot be found in closed form. However, it can be shown that f(t) is
concave and that f ′(0) < 0. As a result κ(‖Ul‖2F ) > f(0) > 0. Therefore, the probability of
a fixed deviation from the expected number of required rows k decays exponentially with the
dimension d. Moreover, for a fixed d, numerical simulations show that the probability falls
sharply with the order of the deviation. The exact rate will be pursued elsewhere.

In a similar way, we can also compute a bound on the slightly more relevant probability.
Assuming T →∞

P(‖Uk+c‖2F ≤ θ‖U‖2F ) = P
(
‖Uk+c‖2F ≤

θ

1− θ
‖U\(k+c)‖2F

)
= P

(
‖Uk+c‖2F ≤

θ

1− θ
α2(k+c)‖V ‖2F

)
,

(10)
where U\l is the matrix U without its first l rows and V is an independent copy of U . Following

the same reasoning as before, and using that α2k ≈ 1− θ

P(‖Uk+c‖2F ≤ θ‖U‖2F ) ≤ exp

−d
2

sup

−α
−2c

2θ <t<
1
2

(
k+c∑
i=1

log(1− 2tα2(i−1)) +

∞∑
i=1

log(1 + 2tθα2cα2(i−1))

)
(11)

It can again be shown that the supremum is greater than zero for all c > 0, and that it also
increases with c, which establishes that the probability of the effective rank being greater than
the bound of (4) falls exponentially with the dimension d and sharply with the order of the
deviation c.

Remark 1.1. The bound of (4) is in practice rather loose. A more detailed analysis shows
that with the inclusion of the “noise term” (F−1

t + UtD̃
−1
t UTt )−1/2, the effective rank drops,

and (4) appears in the limiting situation where the measurement noise is infinite. Moreover,
our analysis does not account for the recursive nature of the low rank approximations. Using
these facts tighter bounds can be derived. A detailed analysis is presented in (Pnevmatikakis
et al., 2012).
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2 Proof of H̃ being positive definite

We can write the forward-backward recursion of the Block-Thomas algorithm in matrix-vector
form. The backward recursion

sT = qT ,

st = qt − Γtst+1, t = T − 1, . . . , 1
(12)

can be written as
s1

s2
...

sT−1

sT

 = −


0 Γ1 0 . . . 0
0 0 Γ2 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 ΓT−1

0 0 . . . 0 0


︸ ︷︷ ︸

Γ


s1

s2
...

sT−1

sT

+


q1

q2
...

qT−1

qT

 . (13)

Similarly, the forward recursion

q1 = −M−1
1 ∇1,

qt = −M−1
t (∇t + Et−1qt−1), t = 2, . . . , T

(14)

can be written in matrix-vector form as


q1

q2

...
qT−1

qT

 = −


0 0 . . . 0 0

M−1
2 E1 0 . . . 0 0
...

. . .
. . .

...
...

0 . . . M−1
T−1ET−2 0 0

0 . . . 0 M−1
T ET−1 0


︸ ︷︷ ︸

E


q1

q2

...
qT−1

qT

−


M−1
1 0 . . . 0 0
0 M−1

2 . . . 0 0
...

...
. . .

...
...

0 0 . . . M−1
T−1 0

0 0 . . . 0 M−1
T


︸ ︷︷ ︸

M−1


∇1

∇2

...
∇T−1

∇T


(15)

Combining (13) and (15) we have

s = −(I + Γ)−1(I + E)−1M−1∇, (16)

where Γ, E,M are matrices defined in (13) and (15). Since s = −H−1∇ it follows that the
Hessian is equal to

H = M(I + E)(I + Γ). (17)

In the case of the LRBT algorithm, if we define M̃−1
t = D̃−1

t − LtΣtL
T
t and Γ̃t = M̃−1

t ETt ,
we have that

q̃t = −M̃−1
t (∇t + Et−1q̃t−1)

s̃t = q̃t − Γ̃ts̃t+1.
(18)

Therefore, an equivalent representation holds in the sense that

s̃ = −H̃−1∇, with H̃ = M̃(I + Ẽ)(I + Γ̃), (19)
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where the block matrices M̃, Ẽ, Γ̃ are defined in the same way as their exact counterparts
M,E,Γ. We can rewrite H̃ as

H̃ = M̃(I + Ẽ)M̃−1M̃(I + Γ̃) (20)

A straight calculation shows that

M̃(I + Γ̃) = (M̃(I + E))T =


M̃1 ET1 0 . . . 0

0 M̃2 ET2 . . . 0
...

...
. . .

. . .
...

0 0 . . . M̃T−1 ETT−1

0 0 . . . 0 M̃t

 , (21)

and the approximate Hessian can be written as

H̃ =


M̃1 ET

1 0 . . . 0

0 M̃2 ET
2 . . . 0

...
...

. . .
. . .

...

0 0 . . . M̃T−1 ET
T−1

0 0 . . . 0 M̃t



T 
M̃−1

1 0 0 . . . 0

0 M̃−1
2 0 . . . 0

...
...

. . .
. . .

...

0 0 . . . M̃−1
T−1

0 0 . . . 0 M̃−1
t




M̃1 ET

1 0 . . . 0

0 M̃2 ET
2 . . . 0

...
...

. . .
. . .

...

0 0 . . . M̃T−1 ET
T−1

0 0 . . . 0 M̃t

 ,

(22)

or

H̃ =


M̃1 ET1 0 . . . 0

E1 M̃2 + E1M̃
−1
1 ET1 ET2 . . . 0

...
. . .

. . .
...

...

0 0 . . . M̃T−1 + ET−2M̃
−1
T−2E

T
T−1 ETT−1

0 0 . . . ET−1 M̃T + ET−1M̃
−1
T−1ET−1

 .
(23)

From (22) it follows that H̃ is positive definite (PD), if the matrices M̃t are also PD.

Lemma 2.1. The matrices D̃t, t = 1, . . . , T are PD.

Proof. In the case where A and V commute and A is stable, the matrix D̃t is equal to

D̃t = V −1(I − (ATA)t)−1(I − (ATA)t+1),

which is PD, by stability of A. The result holds also in the case where A and V do not
commute, although the formulas are more complicated.

Lemma 2.2. The matrices M̃t, t = 1, . . . , T are PD for any choice of the threshold θ.

Proof. We introduce the matrices M̂t, defined as follows:

M̂1 = M1

M̂t = Dt +BT
t W

−1
t Bt − Et−1M̃

−1
t−1E

T
t−1.

(24)

These matrices are the matrices obtained from the exact BT recursion Mt = Dt+BT
t W

−1
t Bt−

Et−1M
−1
t−1E

T
t−1, applied to the approximate matrices M̃−1

t−1. By using the relations

M̃−1
t = D̃−1

t − LtΣtL
T
t

D̃t = Dt − Et−1D̃
−1
t−1E

T
t−1,

(25)
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we can rewrite M̂t as

M̂t = D̃t +BT
t W

−1
t Bt + Et−1Lt−1Σt−1L

T
t−1E

T
t−1 = D̃t +OtQtO

T
t . (26)

Using (26) we see that M̂t is the sum of a PD matrix (D̃t), and two semipositive definite
(SPD) matrices (Σt is always PD by definition). Therefore, M̂−1

t is also PD and equals

M̂−1
t = D̃−1

t − D̃
−1
t Ot(Q

−1
t +OTt D̃

−1
t Ot)

−1OTt D̃
−1
t︸ ︷︷ ︸

Gt

. (27)

Now M̃−1
t is obtained by the low rank approximation of Gt. We can write the singular value

decomposition of Gt as

Gt =
[
Lt Rt

] [ Σt 0
0 St

] [
LTt
RTt

]
, (28)

and have that
M̃−1
t − M̂

−1
t = RtStR

T
t (29)

Therefore M̃−1
t − M̂

−1
t is SPD. Consequently M̃t is the sum a PD and a SPD matrix and thus

is PD.

A detailed proof of Theorem 3.4 will be presented in (Pnevmatikakis et al., 2012).
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