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Abstract

In this paper we propose new nonparamet-
ric estimators for a family of conditional mu-
tual information and divergences. Our esti-
mators are easy to compute; they only use
simple k nearest neighbor based statistics.
We prove that the proposed conditional in-
formation and divergence estimators are con-
sistent under certain conditions, and demon-
strate their consistency and applicability by
numerical experiments on simulated and on
real data as well.

1 Introduction

Conditional dependencies play a central role in ma-
chine learning and applied statistics. There are many
problems where it is crucial for us to know how the
relationship of two random variables changes if we ob-
serve other random variables. Correlated random vari-
ables might become independent when we observe a
third random variable and the opposite situation is
also possible when independent variables become de-
pendent after observing other random variables.

Conditional mutual information (MI) can be used to
capture these kind of dependencies. Although this is a
fundamental problem in statistics and machine learn-
ing, interestingly, very little in known about how to
estimate these quantities efficiently. The goal of this
paper is to provide provably consistent estimators for
a family of conditional mutual information and diver-
gences. This family is large; it includes the conditional
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Rényi-α, Tsallis-α, Kullback-Leibler (KL), Hellinger,
Bhattacharyya, Euclidean divergences and the corre-
sponding mutual information as special cases. We also
demonstrate the consistency and the applicability of
the proposed estimators by numerical experiments on
real as well as on simulated data sets.

The derived estimators have several potential appli-
cations. In many scientific areas (e.g., epidemiology,
psychology, pharmacoinformatics, econometrics) it is
crucial to discover causal relationships, to detect con-
founding variables, and not to infer causation from ap-
parent correlations [Pearl, 1998, Montgomery, 2005].
We will demonstrate the applicability of our method
on medical data in Section 6. In our daily life we
can also easily encounter examples when people infer
causation from observing correlations. Many times,
however, there is a hidden factor that is responsible
for this correlation. There is nonzero correlation be-
tween the reading skills of children and their shoe size.
Here the underlying common factor is obviously the
age. We can find many similar examples in ancient
legends and folk stories too. According to a northern
European legend, the stork is responsible for deliv-
ering babies to parents. Indeed, one can show that
highly statistically significant correlation exists be-
tween stork populations and human birth rates across
Europe [Matthews, 2000]. Conditional dependence es-
timators can help us identify the underlying hidden
factors (confounder variables) that are responsible for
these spurious relationships. Note, however, that not
every variable that renders two others conditionally
independent is called a confounder; conditional inde-
pendence is only a necessary condition [Spirtes et al.,
2001].

Conditional dependencies play a central role in
Bayesian network learning as well [Zhang et al., 2011,
Koller and Friedman, 2009]. It is well-known that
Bayesian nets satisfy the local Markov property, that
is, each variable is conditionally independent of its
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non-descendants given its parent variables. In the
structure learning problem our goal is to find an acyclic
graph that is compatible with the observed data. If
in a given graph satisfying the local Markov property
for certain variables we find that the estimated condi-
tional mutual information is significantly larger than
zero, then this graph is not compatible with the ob-
served data and we need to find another acyclic graph.

An indirect way to obtain the desired conditional in-
formation and divergence estimates would be to use a
näıve “plug-in” estimation scheme: first, apply a con-
sistent density estimator for the underlying densities,
and then plug them into the desired formula. The un-
known densities, however, are nuisance parameters in
the case of divergence estimation, and we would prefer
to avoid estimating them. Furthermore, density esti-
mators usually have tunable parameters, and we may
need expensive cross validation to achieve good per-
formance. Density estimation is among the most dif-
ficult problems in statistics, and hence in many cases
direct estimators, which do not apply density estima-
tion, can achieve better performance than the “plug-
in” methods. The most well-known example is the
mean functional, which can be simply estimated with
the empirical average, and usually we do not use so-
phisticated density estimators for this problem. For
more complex functionals such as entropy [Leonenko
et al., 2008], mutual information [Pál et al., 2010], and
certain divergences [Wang et al., 2009b, Nguyen et al.,
2010], empirically it was also observed that direct es-
timators can perform better than the “plug-in” ones.
It is of great importance to know which functionals
of densities can be estimated consistently without us-
ing density estimators. In this paper we show that a
large family of conditional mutual information and di-
vergences belongs to this family, and empirically also
demonstrate that the proposed estimators can perform
better than the näıve plug-in estimators. One might
also try to use parametric approaches (e.g. mixture of
Gaussians) to estimate the densities, but if the under-
lying density does not belong to this parametric family,
then this approach leads to biased estimators, and the
estimation will be inconsistent.

Although the goal of partial correlation and condi-
tional information is similar—to describe how the de-
pendence of random variables changes when observing
other variables— the conditional information is often
more informative. Partial correlation measures only
“linear” association and can be zero even if there is
conditional dependence between the random variables.
On the contrary, the conditional information is zero iff
the random variables are conditionally independent.

In machine learning, the most famous divergence
and MI measures between probability distributions

are the KL divergence and the Shannon information.
Nonetheless, they are just the α→ 1 limit cases of the
more general Rényi-α and Tsallis-α families. For each
α, these divergences behave differently, and therefore
in different applications different α values (not neces-
sarily α = 1) might be more appropriate. For example,
the Hellinger distance, which corresponds to α = 1/2,
satisfies the triangle inequality and is symmetric. The
KL divergence is not symmetric and does not satisfy
the triangle inequality. The Euclidean distance is al-
ways finite between distributions, while the KL diver-
gence can be infinite. Empirically it was also observed
that the convergence rates of different α-estimators de-
pend on α and on the densities as well [Póczos and
Schneider, 2011]. Therefore, even though the KL di-
vergence and Shannon information are the most popu-
lar quantities, in certain applications other divergence
and information terms can perform better and achieve
faster convergence rates. Since there is no clear win-
ner among the several (conditional) divergences and
MI measures, we believe that it is important to have
efficient estimators for each of them.

The paper is organized as follows. Section 2 briefly
summarizes some related work. Section 3 defines the
set-up of the problem and the quantities we want to
estimate. In Section 4 we provide our estimators. The
most important theoretical results about the consis-
tency of the estimators are stated in Section 5. Sec-
tion 5.1 contains a brief sketch of the proofs; the de-
tails are in the supplementary material [Póczos and
Schneider, 2012]. Section 6 provides the results of our
numerical experiments. We finish the paper with a
short discussion and draw conclusions.

Notation: Unless otherwise stated, each vector in this
paper will be a column vector. The dimension of x,
y, z will be denoted by dx, dy, and dz, respectively.
[x; y] will denote the dx + dy dimensional column vec-
tor, whose first dx coordinates correspond to x and the
rest to y. The dimension of this vector will be denoted
by dxy. |Σ| will denote the absolute value of the de-
terminant of Σ ∈ Rd×d. Superscript T stands for the
transposition. We use the Xn →p X and Xn →d X
notations for the convergence of random variables in
probability and in distribution, respectively. Fn →w F
will denote the weak convergence of distribution func-
tions. V(M) stands for the volume of setM. The size
of the index set J is denoted by |J |. L1(M) denotes
the set of Lebesgue measurable functions having finite
integrals over M.

2 Related work

There is an increasing literature on the estimation of
information theoretic quantities for continuous vari-
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ables. Our work borrows ideas from Leonenko et al.
[2008] and Goria et al. [2005], who considered Shan-
non and Rényi-α entropy estimation. Using Euclidean
functionals [Steele, 1997, Yukich, 1998], Hero and
Michel [1999] derived a strongly consistent estimator
for the Rényi entropy. Póczos et al. [2010], Pál et al.
[2010] combined these ideas with copula methods and
proposed methods for Rényi mutual information esti-
mation.

Wang et al. [2009b], Pérez-Cruz [2008] provided an es-
timator for the kl-divergence, and Póczos and Schnei-
der [2011] proposed estimators for Rényi and Tsallis
divergences. Hero et al. [2002a,b] also investigated
the Rényi divergence estimation problem but assumed
that one of the two density functions is known. Gupta
and Srivastava [2010] developed algorithms for esti-
mating the Shannon entropy and the kl divergence for
certain parametric families, and Nguyen et al. [2009,
2010] developed methods for estimating f -divergences
and likelihood ratio. Recently, Sricharan et al. [2010]
proposed kth nearest neighbor based methods for es-
timating non-linear functionals of density, but in con-
trast to our approach, they were interested in the case
where k increases with the sample size. Further in-
formation and useful reviews of several different di-
vergences can be found, e.g., in Cichocki et al. [2009],
and Wang et al. [2009a]. Other interesting nonpara-
metric dependence measures include the kernel mutual
information [Gretton et al., 2003], the Schweizer-Wolf
measure [Schweizer and Wolff, 1981], and the distance
based correlation [Székely et al., 2007].

All of the above mentioned quantities only consider
the non-conditional problems, and we know very little
about how to estimate the conditional versions of these
quantities. Recently, Fukumizu et al. [2008] proposed
a new method for estimating conditional dependence
based on reproducing kernel Hilbert spaces (rkhs).
There also exist methods for conditional independence
tests (see e.g., Bouezmarni et al. [2009], Su and White
[2008], Zhang et al. [2011]). However, these methods
cannot be used for estimating conditional divergences
or mutual information.

3 Conditional Mutual Information
and Conditional Divergences

Definition 1 (Divergences). Let p, q be Rd ⊇M→ R
density functions, and α ∈ R \ {1}. The Rényi-α,
Tsallis-α, Kullback–Leibler, Bhattacharyya, squared
Hellinger, and squared Euclidean divergences are de-
fined respectively as follows.

DR
α (p‖q) .

=
1

α− 1
log

∫
M
pα(x)q1−α(x)dx,

DT
α (p‖q) .

=
1

α− 1

(∫
M
pα(x)q1−α(x)dx− 1

)
,

DKL(p‖q) .
=

∫
M
p(x) log

p(x)

q(x)
dx,

DB(p‖q) .
= − log

∫
M
p

1/2(x)q
1/2(x)dx,

DH(p‖q) .
= 1−

∫
M
p

1/2(x)q
1/2(x)dx,

DE(p‖q) .
=

∫
M
p2(x) + q2(x)− 2p(x)q(x)dx.

These quantities are nonnegative, and they are zero iff
p = q almost surely. These expressions can be used to
measure the “distance” between two distributions. As
a special case, when p = pX,Y is the joint density of
random variables (X,Y ), and q = pXpY is the product
of the marginal densities, then these divergences can
be used to measure the mutual information.

Definition 2 (Mutual information). Let pX,Y be the
joint density of random variables X,Y with marginal
densities pX and pY , respectively. The Rényi-α and
Shannon mutual information are defined respectively
as follows:

IRα (X,Y )

.
=

1

α− 1
log

∫∫
pαX,Y (x, y)(pX(x)pY (y))1−αdxdy,

IS(X,Y )
.
=

∫∫
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
dxdy.

The Tsallis-α, Bhattacharyya, Hellinger, and Eu-
clidean MI can be defined similarly.

These quantities are nonnegative, and they are zeros
iff X and Y are independent from each other. In what
follows we will define the conditional versions of diver-
gences and mutual information.

Definition 3 (Conditional Rényi-α divergence). Let
X,Y, Z be random variables, X ∈ Rdx , Y ∈ Rdy , dx =
dy, Z ∈ Rdz . Denote the densities of Z by p0(Z),
and let p1(x|z), p2(y|z) be the conditional densities of
X given Z, and Y given Z, respectively. Let α > 0,
α 6= 1. We define the conditional Rényi-α divergence
as

DR
α (p1‖p2; p0)

.
=

1

α− 1
logQ1,

.
=

1

α− 1
log

∫
p0(z)

∫
pα1 (v|z)p1−α

2 (v|z)dvdz,

where p(v, z)
.
= p0(z)p1(v|z), q(v, z)

.
= p0(z)p2(v|z),

and Q1
.
= E(V,Z)∼p

[
q1−α(V,Z)
p1−α(V,Z)

]
.

Lemma 4. DR
α (p1‖p2; p0) ≥ 0, and it is zero iff

pα1 (v|z)p0(z) = pα2 (v|z)p0(z) for almost all v, z.
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For a proof see the supplementary material.

Another definition could be the following expression:

DR
α (p1‖p2; p0)

.
=

1

α− 1

∫
p0(z) log

∫
pα1 (v|z)p1−α

2 (v|z)dvdz,

but in this paper we do not consider this problem.

The conditional Kullback–Leibler divergence is defined
as follows:

Definition 5. Conditional Kullback–Leibler diver-
gence

DKL(p1‖p2; p0)
.
=

∫
p0(z)

∫
p1(v|z) log

p1(v|z)
p2(v|z)

dvdz

= E(V,Z)∼p

[
log

p(V,Z)

q(V,Z)

]
.
= Q2.

Similarly, one can define the conditional Tsallis-α,
Bhattacharyya, Hellinger, and Euclidean divergences
too.

These conditional divergences measure how far the
p1(·|z), p2(·|z) conditional densities are from each
other on average w.r.t. the p0(z) distribution.

Having defined these quantities, we introduce the con-
ditional mutual information as the divergence between
the conditional joint densities and the product of the
conditional marginal densities:

Definition 6. Conditional Rényi mutual information

IRα (X,Y |Z)
.
=

1

α− 1
logQ3,

where

Q3
.
=

∫∫∫ pZ(z)pαX,Y |Z(x, y|z)
(pX|Z(x|z)pY |Z(y|z))α−1

dxdydz

= E(X,Y,Z)∼pX,Y,Z

[
p1−α
X,Z (X,Z)p1−α

Y,Z (Y,Z)

p1−α
X,Y,Z(X,Y, Z)p1−α

Z (Z)

]
.

The conditional mutual information measures how
far the pX,Y |Z=z(·, ·|z) and the pX|Z=z(·|z)pY |Z=z(·|z)
densities are from each other on average w.r.t. the
pZ(z) measure. One can similarly define the condi-
tional Tsallis-α, Bhattacharyya, Hellinger, and Eu-
clidean information. The conditional Shannon infor-
mation is defined as follows:

IS(X,Y |Z)

=

∫∫
pX,Y,Z(x, y, z) log

pX,Y,Z(x, y, z)

pX,Z(x, z)pY,Z(y, z)
dxdy

= H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z),

where H stands for the Shannon entropy. In turn, this
problem reduces to the task of entropy estimation, for
which there are existing tools [Leonenko et al., 2008].
Note however, that this decomposition is not possible
for the other conditional divergences or mutual infor-
mation.

It is well-known that IRα (X,Y ) → IS(X,Y ), and
DR
α (p1‖p2) → DKL(p1‖p2) as α → 1. The following

theorem states that this also holds for the conditional
versions of these quantities.

Theorem 7 (The α → 1 limit case). When
α→ 1, then IRα (X,Y |Z) → IS(X,Y |Z), and
DR
α (p1‖p2; p0)→ DKL(p1‖p2; p0).

Similar theorems hold for the (conditional) Tsallis in-
formation and divergences as well. For a proof see the
supplementary material.

4 The Estimation Problem and the
Estimators

Now we are ready to formally define our estimation
problems. Let (X,Y, Z) ∼ pX,Y,Z random variables,
X ∈ Rdx , Y ∈ Rdy , Z ∈ RdZ . Let us haveN i.i.d. sam-
ples from the pX,Y,Z distribution. They are denoted
by {(Xn;Yn;Zn)}Nn=1, where (Xn;Yn;Zn) ∈ Rdxyz ,
dxyz = dx + dy + dz. Our goal is to estimate the con-
ditional Rényi-α, Tsallis-α, Kullback–Leibler, Bhat-
tacharyya, squared Hellinger, and squared Euclidean
divergences and information. We will only show de-
tailed calculations for DR

α (p1‖p2; p0), DKL(p1‖p2; p0),
and IRα (X,Y |Z). Estimators for the other quantities
can be derived similarly.

We provide L2 consistent estimators for Q1, Q2, and
Q3 using the {Xn;Yn;Zn}Nn=1 sample. They immedi-
ately lead to consistent estimators for DKL(p1‖p2; p3),
IRα (X,Y |Z) and DR

α (p1‖p2; p3).

The estimation of Q1. Let J1, J2 be two disjunct
index sets such that J1 ∪ J2 = {1, 2, . . . , N}, and
limN→∞ |Ji| = ∞, i = 1, 2. Let ρyz,J (v) be the Eu-
clidean distance of v ∈ Rdyz to its kth nearest neighbor
in the {Yj ;Zj}j∈J sample set. Similarly, let ρxz,J (v)
be the Euclidean distance of v ∈ Rdxz to its kth nearest
neighbor in the {Xj ;Zj}j∈J sample set. The proposed
estimator of Q1 is given as follows:

Q̂1 =
1

N

N∑
n=1

|J1 \ n|(1−α)

|J2 \ n|(1−α)

ρ
dxz(1−α)
xz,J1\n (Xn;Zn)

ρ
dyz(1−α)

yz,J2\n (Xn;Zn)
B,

where B = Γ2(k)
Γ(k−α+1)Γ(k+α−1) .

The estimation of Q2. Let J = {1, 2, . . . , N} be an
index set, and let ρyz,J (v) and ρxz,J (v) be defined as
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above. The estimator of Q2 is given as:

Q̂2 =
1

N

N∑
n=1

dyz log
ρyz,J\n(Xn;Zn)

ρxz,J\n(Xn;Zn)
.

The estimation of Q3. Let Ji, (i = 1, . . . , 4) be

disjunct index sets such that
⋃4
i=1 Ji = {1, 2, . . . , N},

and limN→∞ |Ji| = ∞, (i = 1, . . . , 4). Let ρyz,J2
(v)

and ρxz,J3
(v) be defined as above, and let ρxyz,J1

(v)
denote the Euclidean distance of v ∈ Rdxyz to its kth
nearest neighbor in the {Xj ;Yj ;Zj}j∈J1 sample set.
Similarly, let ρz,J4(v) be the Euclidean distance of
v ∈ Rdz to its kth nearest neighbor in the {Zj}j∈J4

sample set. Let cxyz, cxy, cyz, cz denote the volume of
a dxyz, dxy, dyz, dz dimensional unit balls, respectively

(i.e., cd = π
d
2 /Γ(d2 + 1)). Q3 can be estimated by the

following expression:

Q̂3 =
1

N

N∑
n=1

(cxyz|J1 \ n|)(1−α) ρ
dxyz(1−α)

xyz,J1\n (Xn;Yn;Zn)

(cxz|J2 \ n|)(1−α) ρ
dxz(1−α)
xz,J2\n (Xn;Zn)

×
(cz|J4 \ n|)(1−α) ρ

dz(1−α)
z,J4\n (Zn)

(cyz|J3 \ n|)(1−α) ρ
dyz(1−α)

yz,J3\n (Yn;Zn)
B2. (1)

5 Consistency Results

Due to the lack of space, we prove theoretical results
only for the most complex estimator, Q̂3. Using the
same technique, similar consistency theorems can also
be proven for Q̂1 and Q̂2. For the details, see the sup-
plementary material. In Section 6 and in the supple-
mentary material we will also illustrate the consistency
of Q̂1, Q̂2, and Q̂3 via numerical experiments.

Let pX,Y,Z be bounded away from zero, bounded
above, and uniformly continuous density function on
M = supp(pX,Y,Z) domain. Let M be a finite union
of bounded convex sets. We have the following main
theorems.

Theorem 8 (Asymptotic unbiasedness of Q̂3). Let

k > max(1 − α, α − 1). Then limN→∞ E
[
Q̂3

]
= Q3,

i.e., the estimator is asymptotically unbiased.

Theorem 9 (L2 consistency of estimator Q̂3). If k >

2 max(1−α, α−1), then limN→∞ E
[
(Q̂3 −Q3)2

]
= 0,

i.e., the estimator is L2 consistent.

5.1 Proof of Consistency

We will exploit some properties of k-NN based den-
sity estimators. k-NN based density estimators use
only the distances between the observations and their
kth nearest neighbors. Let X1:n

.
= (X1, . . . , Xn) be

an i.i.d. sample from a distribution with density p.

Let B(x,R) denote a closed ball around x ∈ Rd with
radius R, and let V(B(x,R)) = cdR

d be its volume,
where cd stands for the volume of a d-dimensional unit
ball. Let ρ(x) denote the Euclidean distance of the kth
nearest neighbor of x in the sample X1:n. Now, accord-
ing to Loftsgaarden and Quesenberry [1965], the k-NN
based density estimator of p at x is given as follows:
p̂k(x) = k/(ncdρ

d(x)). They also showed that if k(n)
denotes the number of neighbors applied at sample
size n, limn→∞ k(n) = ∞, and limn→∞ n/k(n) =∞,
then p̂k(n)(x) →p p(x) for almost all x. Moreover, If
limn→∞ k(n)/ log(n) = ∞, and limn→∞ n/k(n) =∞,
then limn→∞ supx |p̂k(n)(x)− p(x)| = 0 almost surely.
Note that these estimators are consistent only when
k(n)→∞. In our proposed divergence estimators we
will use these density estimators. However, we will
keep k fixed, and will still be able to prove their con-
sistency.

The k-nn estimation of 1/p(x) is simply ncdρ
d(x)/k.

One can prove that the distribution of ncdρ
d(x) con-

verges to an Erlang distribution with mean k/p(x),
and variance k/p2(x). In turn, if we divide the
ncdρ

d(x) term by k, then asymptotically it has mean
1/p(x) and variance 1/(kp2(x)). It implies that indeed
k should converge to infinity in order to get a consis-
tent estimator, otherwise the variance will not disap-
pear. On the other hand, k cannot grow too fast: if
say k = n, then the estimator would be simply cdρ

d(x),
which is a useless estimator since it is asymptotically
zero when x ∈ supp(p).

Luckily, we do not need to apply consistent density
estimators. Eq. (1) has a special form:

Q̂3 =
1

N

N∑
n=1

hγ1(Xn, Yn, Zn)h−γ2 (Xn, Zn) (2)

× h−γ3 (Yn, Zn)hγ4(Zn),

where γ
.
= (1 − α), and h1(x0, y0, z0) =

cxyz|J1 \ n|ρ
dxyz
xyz,J1

(x0, y0, z0), h2(x0, z0) = cxz|J2 \
n|ρdxzxz,J2

(x0, z0), h3(y0, z0) = cyz|J3 \ n|ρ
dyz
yz,J3

(y0, z0),

h4(z0) = cz|J4 \ n|ρdzz,J4
(z0). For the sake of brevity,

let v1 = (x0, y0, z0), v2 = (x0, z0), v3 = (y0, z0),
v4 = z0. Using the Lebesgue lemma and the proper-
ties of Lebesgue points [Leonenko et al., 2008], we can
prove that the distribution function of hi(vi) converges
weakly to the distribution function of an Erlang distri-
bution with mean k/p(vi) and variance k/p2(vi). Fur-
thermore, the random variables {hi(n, γ)}4i=1 are con-
ditionally independent for a given (Xn;Yn;Zn) (this
is the reason why we split the index sets J into four
disjunct sets). In turn, “in the limit” (2) is simply
the empirical average of the product of the γth (and
−γth) powers of independent Erlang distributed vari-
ables. These moments can be calculated analytically.
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For a fixed k, the k-nn density estimator is not con-
sistent since its variance does not vanish. In our case,
however, this variance will disappear thanks to the em-
pirical average in (2) and the law of large numbers.

While the underlying ideas of this proof are simple,
there are a couple of serious gaps in it. Most impor-
tantly, from the Lebesgue lemma we can guarantee
only the weak convergence of hi(vi) to the Erlang dis-
tribution. From this weak convergence we cannot im-
ply that the moments of the random variables converge
too. To handle this issue, we will need stronger tools
such as the concept of asymptotically uniformly in-
tegrable random variables [van der Wart, 2007], and
we need the uniform generalization of the Lebesgue
lemma. As a result, we will need to put some extra
conditions on the density pX,Y,Z . The technical details
can be found in the supplementary material.

6 Numerical Experiments

In this section we demonstrate the consistency and the
applicability of the proposed estimators by numerical
experiments.

In the first experiment we generated samples with
Iα(X,Y ) > 0 and Iα(X,Y |Z) = 0 properties. Here,
we model the situation when two random variables are
dependent, but there is a third random variable that
is responsible for this dependence. For this purpose,
we considered the Xn = An + Zn, Yn = Bn + Zn
random variables, where An, Bn, and Zn were inde-
pendent random variables with 1-dimensional normal
distributions having zero means and randomly chosen
covariances. Fig. 1(a) and Fig. 1(c) demonstrate the

convergence of Q̂3 and ÎRα
.
= log(Q̂3)/(α−1) as a func-

tion of the sample size. We chose k=1, and α = 0.7 in
these experiments. The error bars show the standard
deviation calculated from 25 independent runs. The
red lines correspond to the true Q3 and IRα values.

To show that the estimators can estimate mutual in-
formation in the general case too (i.e., I(X,Y ) > 0,
I(X,Y, Z) > 0, and I(X,Y |Z) > 0), we repeated the
previous experiment, but this time (X;Y ;Z) was gen-
erated from a general 3-dimensional normal distribu-
tion with zero means and randomly selected covariance
matrix (Σ = CCT , where Ci,j ∼ N (0, 1)). Fig. 1(b)

and Fig. 1(d) demonstrate the convergence of Q̂3 and

ÎRα as a function of the sample size. In the supple-

mentary material we demonstrate that the Q̂1 and Q̂2

estimators are consistent as well.

In the following experiment we show on image data
that the mutual information can either be larger or
smaller than the conditional mutual information. In
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Figure 1: Estimated vs. true conditional mutual
information as a function of sample size. (a), (c):
Iα(X,Y |Z) = 0, (b), (d): Iα(X,Y |Z) > 0. The er-
ror bars show the standard deviation calculated from
25 independent runs. The red lines correspond to the
true Q3 and IRα values. We used k = 1 nearest neigh-
bor.

other words, extra knowledge can either increase or de-
crease the mutual information. We chose a gray-scale
image (Fig. 2(c)) of size 75 × 100 and considered its
pixel values (Z ∈ [0, 255]) as if they were samples from
a distribution. We also constructed two noisy versions
of Z: we set X = Z + A (Fig. 2(a)) and Y = Z + B
(Fig. 2(b)), where A and B were independent random
noise variables with uniform U [−5, 5] distributions. By
construction, IRα (X,Y ) > 0, and IRα (X,Y |Z) = 0,
that is, the observation of Z eliminates the mutual
information between X and Y . This is also con-
firmed by the estimated IRα (X,Y ) and IRα (X,Y |Z) val-
ues (Fig. 2(d)). Here we used α = 0.75, and tried
k = 2, 5, 10, 30 nearest neighbors.

The following experiment demonstrates that the op-
posite situation can also occur. Similarly to the previ-
ous case, we chose two noisy images (Fig. 2(e) and
Fig. 2(f)). We considered their pixel values as if
they were i.i.d. samples from two random variables
X and Y , and then constructed their noisy sum:
Z = X + Y + A, where A played the role of noise
and it had uniform U [−5, 5] distribution. Fig. 2(h)
shows that IRα (X,Y ) ≈ 0 (i.e. the two original images
were almost independent), but IRα (X,Y |Z) > 0.

The next experiment demonstrates that the proposed
estimator might be useful to detect confounder vari-
ables in medical data too. Note, however, that conver-
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Figure 2: Demonstration that conditioning to a third variable (Z) can either increase or decrease the mutual
information between X and Y . (a), and (b): Noisy versions of the picture in (c). (g): Noisy sum of pictures in
(e) and (f). (d) and (h): Estimated IRα (X,Y ) and IRα (X,Y |Z) values for k = 2, 5, 10, 30.
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Figure 3: (a): The medical data set. (b): There is dependence between X and Y . (c): Estimated IRα (X,Y ) and
IRα (X,Y |Z) values for k = 2, 3, 4, 5, 10. Negative and zero values indicate independence.

gence rates of the estimators are not known yet. We
used the medical data published in Edwards [2000]
(Section 3.1.4.). The data were taken from 35 pa-
tients and consist of three variables: digoxin clear-
ance (X), urine flow (Y ), and creatinine clearance (Z)
(Fig. 3(a)). From medical knowledge we know that X
should be independent of Y given Z. It was presented
in Fukumizu et al. [2008] that there is a strong linear
correlation between X and Y (Fig. 3(b)), and a par-
tial correlation based test was not able to show the
conditional independence of X and Y given Z. Below
we demonstrate that our method is able to detect the
conditional independence of the variables. Since the
dataset consists of only 35 points, we applied the fol-
lowing bootstrap method: We repeated each (X,Y, Z)
point of the dataset 300 times. Then we added a
small, uniformly distributed U [−ε, ε] perturbation to
each of these 7 000 data points, where ε was set to 5

percent of the mean values of the variables X, Y , and
Z. Fig. 3(c) shows that the Rényi information estima-
tor was able to detect the large dependence between
variables X and Y , and the conditional information
estimator shows that this dependence vanishes when
we observe variable Z. We set α to 0.5, and we exper-
imented with k = 2, 3, 4, 5, 10. For all of these param-
eters the estimated IRα (X,Y ) values were larger than
zero, while the estimated IRα (X,Y |Z) values were all
negative indicating conditional independence.

One might wonder whether the proposed estimators
are better than the näıve plug-in based estimators.
To answer this question, we implemented a plug-in
type conditional information estimator. It uses the
kernel density estimator of Gray and Moore [2003] im-
plemented by Ihler [2003]. For the kernel bandwidth
selection, we used the Scott’s factor Scott [1992]. In
this example we set α = 0.8, and (X;Y ;Z) was gener-
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ated from a general 3-dimensional normal distribution
with zero means and randomly selected covariance ma-
trix. Fig 6 shows the estimation errors of these KDE
methods using Gauss and Laplace kernels, and we also
present the estimation errors of our “direct” method.
In this experiment our method achieved smaller errors
than its KDE based competitors. KDE methods tend
to be sensitive to their parameter and bandwidth set-
tings. Our method has only one parameter k; we did
not tune it, we simply set it to k = 2.
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Figure 4: Comparison between our method (Direct)
and KDE based plug-in estimators using Gauss and
Laplace kernels. We show the estimation errors as a
function of sample size. Error bars are calculated from
25 independent runs.

In Theorems 8-9 we have claimed that our estimator is
consistent for any fixed and large enough k. The con-
vergence rate and finite sample performance, however,
depends on k. We conjecture that the best k value
depends on the actual distributions. Specifically, for
normal distributions with large I(X,Y |Z) conditional
dependence it seems that setting k = 1 gives the high-
est convergence rate (Fig. 5(a)). However, when the
dependence is small, then larger k values lead to better
performances (Fig. 6). The figures show the estimation
errors as a function of sample size for several k values.
We also compare the estimators with k =

√
N , which

corresponds to a plug-in type estimator with consis-
tent k-nearest neighbor based density estimator. In
Fig. 5(a) this estimator has the largest error for large
sample size and the second largest for small sample
size.

7 Discussion and Conclusion

We proposed new nonparametric estimators for a fam-
ily of conditional divergences and mutual information.
We theoretically proved the consistency of these esti-
mators, and demonstrated their efficiency by numer-
ical experiments on images, synthetic, and medical
data. To the best of our knowledge, these are the first
consistent conditional divergence and mutual informa-
tion estimators that can avoid the need for density es-
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Figure 5: We show the estimation errors as a function
of sample size for different k ∈ {1, 2, 5, 10, 30,

√
N}

values. Error bars are calculated from 25 inde-
pendent runs. (a): Normal distribution with large
IRα (X,Y |Z) ≈ 2.8 value (b): Normal distribution with
IRα (X,Y |Z) = 0.

timation. We have also shown empirically that the
estimators can perform better than the näıve plug-in
density estimator based variants.

There are several open questions left waiting for an-
swers. Currently we do not know the convergence rates
of the estimators, and how they depend on the param-
eters k, α, the densities, and the dimensions. One
challenging problem here is that there are no known
convergence rates so far for the much easier uncondi-
tional entropy and divergence estimation special cases
either [Leonenko et al., 2008, Wang et al., 2009b]. In
turn, in order to derive a tight convergence rate for
our case, one should solve those open problems first.
Our numerical results indicate that the parameter k
which gives the fastest convergence rate depends on
the distributions. Note however, that the estimator is
convergent for every (large enough) fixed k, and k does
not need to converge to infinity, which is a requirement
for k-NN based density estimators. In practice we got
good results even when k was set to small numbers,
e.g. k = 2. We also found that our estimator per-
formed better than the naive, “plug-in” algorithms,
which estimate the densities first either with KDE or
k-NN based density estimators.

The conditions of our consistency theorems could also
be extended. We also note that although our proof
techniques require the Ji index sets to be disjunct, in
practice we found that even when the index sets are
totally overlapping (Ji = Jj), the estimators are still
consistent, suggesting that asymptotically the correla-
tions between the limiting Erlang distributions disap-
pear. This observation leads to a 4-fold improvement
in sample efficiency. In the future we are going to in-
vestigate these questions, and we also plan to develop
new conditional independence tests based on the pro-
posed estimators.
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A Appendix–Supplementary Material

A.1 Convergence to the Erlang Distribution

In this experiment we generated N = 40 000 3-dimensional points uniformly on the unit cube and calculated the
corresponding {h1(Xn, Yn, Zn)}Nn=1 random variables. Figure 6 shows the normalized histogram of the variables
and the density of the Erlang(k,1) distribution. The results demonstrate that h1(Xn, Yn, Zn)}Nn=1 converges to
the Erlang distribution.
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Figure 6: Convergence to the Erlang distribution.

A.2 Consistency of Q̂1 and Q̂2

Here we demonstrate that Q̂1 and Q̂2 can be used for conditional divergence estimation. In this experiment
[X;Y ;Z] were generated from a 5-dimensional normal distribution with zero means and randomly selected
covariance matrices such that X and Y were forced to be independent, and we used dx = dy = 2, dz = 1
dimensions. Fig. 7 shows how the divergence estimators converge to their true values as we increase the sample
size. k was set to 1. As in the previous examples, the error bars are calculated from 25 independent experiments.
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Figure 7: Estimated vs. true Q1 and Q2 as a function of sample size. dx = dy = 2, dz = 1, k = 1. The error
bars are calculated from 25 independent experiments. The red lines show the true Q1 and Q2 values.

For closed form expressions of Qi, I
R
α and ITα , see Appendix C.

A.3 Lebesgue Lemma and Lebesgue Points

Lemma 10 (Lebesgue (1910)). If g ∈ L1(Rd), then for any sequence of open balls B(x,Rn) with radius Rn → 0,
and for almost all x ∈ Rd (so-called Lebesgue points)

lim
n→∞

∫
B(x,Rn)

g(t) dt

V(B(x,Rn))
= g(x). (3)
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This implies that if Rd ⊃ M is a Lebesgue measurable set, and g ∈ L1(M), then for any sequence of Rn → 0,
and for any δ > 0, and for almost all x ∈M, there exists an n0(x, δ) ∈ Z+ such that if n > n0(x, δ), then

g(x)− δ <

∫
B(x,Rn)

g(t) dt

V(B(x,Rn))
< g(x) + δ. (4)

Later we will need the generalization of this property; namely, we want it to be held uniformly over x ∈M.

When the following property holds uniformly over x ∈ M we say that the function g is uniformly Lebesgue
approximable.

Definition 11 (Uniformly Lebesgue approximable function). Let g ∈ L1(M). Function g is uniformly Lebesgue
approximable on M, if for any Rn → 0 series and δ > 0, there exists n = n0(δ) ∈ Z+ (independent of x!) such
that if n > n0, then for almost all x ∈M

g(x)− δ <

∫
B(x,Rn)∩M g(t) dt

V(B(x,Rn) ∩M)
< g(x) + δ. (5)

This property is a uniform variant of Eq. (4). The following lemma gives an example for uniformly Lebesgue
approximable functions. For a proof, see the supplementary material.

Lemma 12. If g is uniformly continuous on M, then it is uniformly Lebesgue approximable on M.

Proof. If g is uniformly continuous onM then for all δ > 0 there exists Rδ > 0 such that if x, y ∈M, ‖x−y‖ < Rδ,
then |g(x)− g(y)| < δ. Thus, g(x)− δ < g(B(x,Rδ) ∩M) < g(x) + δ, and furthermore if Rn < Rδ, then

(g(x)− δ)V(B(x,Rn) ∩M) <

∫
B(x,Rn)∩M

g(t) dt < (g(x) + δ)V(B(x,Rn) ∩M).

A.4 Moments

To be able to prove our main theorems, we will need a couple of lemmas about the moments of random variables.
This section collects these tools. As we proceed we will frequently use the following lemma:

Lemma 13 (Moments of the Erlang distribution). Let fx,k(u)
.
= 1

Γ(k)λ
k(x)uk−1 exp(−λ(x)u) be the density of

the Erlang distribution with parameters λ(x) > 0 and k ∈ Z+. Let γ ∈ R such that γ + k > 0. Then the γth

moments of this Erlang distribution can be calculated as
∫∞

0
uγfx,k(u) du = λ(x)−γ Γ(k+γ)

Γ(k) .

By the Portmanteau lemma [van der Wart, 2007] we know that the weak convergence of Xn →d X implies
that E[g(Xn)] → E[g(X)] for every continuous bounded function g. However, generally it is not true that if
Xn →d X, then E[Xγ

n ] → E[Xγ ]. For this property to be held, the series of {Xn}∞n=1 random variables should
be asymptotically uniformly integrable too. The following lemma provides a sufficient condition for this.

Lemma 14 (Limit of moments, [van der Wart, 2007]). Let Xn →d X, 0 ≤ Xn, X, and γ ∈ R. If there exists an

ε > 0 such that lim sup
n→∞

E
[
X
γ(1+ε)
n

]
< ∞, then the series {Xn}∞n=1 is asymptotically uniformly integrable, and

limn→∞ E [Xγ
n ] = E [Xγ ].

A.5 Useful Tools for the Proofs of Theorems 8–9

Lemma 15 (Reverse triangle inequality). If 0 ≤ a, b, and 0 ≤ α ≤ 1, then |aα − bα| ≤ |a− b|α.

Lemma 16 (Minkowski inequality). If 0 ≤ a, b, and 0 ≤ ω ≤ 1, then (a+ b)ω ≤ aω + bω.

Lemma 17. Let γ > 0, F : R→ [0, 1] distribution function. Then∫ ∞
a

uγF (du) = aγ(1− F (a)) +

∫ ∞
a

γuγ−1(1− F (u))du, (6)
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In the a = 0 case: ∫ ∞
0

uγF (du) = γ

∫ ∞
0

uγ−1(1− F (u))du, (7)

in the sense that the integral of either side exists and finite iff the integral on the other side exists and finite, too.

Proof. The proof can be found in Feller [1965].

Lemma 18. Let γ > 0, F : R→ [0, 1] distribution function. Then∫ ∞
a

u−γF (du) = −a−γF (a) + γ

∫ ∞
a

u−γ−1F (u)du.

In the a = 0 case: ∫ ∞
0

u−γF (du) = γ

∫ ∞
0

u−γ−1F (u)du. (8)

Proof. The proof can be found in [Leonenko et al., 2008].

We will also need the 2-dimensional generalizations of Lemmas 17–18. They can be proven in the same way.

Lemma 19. If γ > 0, then∫ ∞
0

∫ ∞
0

u−γv−γF (du,dv) = γ2

∫ ∞
0

∫ ∞
0

u−γ−1v−γ−1F (u, v) dudv.

Lemma 20. Let F (u, v)
.
= FU,V (u, v) be a 2-dimensional distribution function with f(u, v)

.
= fU,V (u, v) density,

and FU (u) = FU,V (u,∞), FV (v) = FU,V (∞, v) marginal distribution functions. For γ > 0 and λ ∈ R arbitrary,
the following equation holds:∫ b

a

uγf(u, v)du =

[
bγ
(
∂F (b, v)

∂v
− λ
)]

+

[
aγ
(
λ− ∂F (a, v)

∂v

)]
+

∫ b

a

γuγ−1

(
λ− ∂F (a, v)

∂v

)
du.

Hence, when we study the b→∞ limit case, then λ
.
= λ(v) = ∂F (∞,v)

∂v = fV (v) will be a useful choice:∫ ∞
0

uγf(u, v)du =

∫ ∞
0

γuγ−1

(
fV (v)− ∂F (a, v)

∂v

)
du. (9)

Lemma 21. Let γ > 0, and let F (u, v)
.
= FU,V (u, v) be a 2-dimensional distribution function with f(u, v)

.
=

fU,V (u, v) density, and FU (u), FV (v) marginal distributions. The following equation holds:∫ ∞
0

∫ ∞
0

uγvγF (du,dv) =

∫ ∞
0

∫ ∞
0

γ2uγ−1vγ−1[1− FU (u)− FV (v) + F (u, v)]dudv.

B Proofs

For the sake of brevity, we introduce a couple of shorthand notations. Let v1 = [x0; y0; z0], v2 = [x0; z0],
v3 = [y0; z0], v4 = z0, and similarly introduce the following random variables: V1 = [X;Y ;Z], V2 = [X;Z],
V3 = [Y ;Z], V4 = Z. Mi (i=1,. . . ,4) will denote the restriction of M to the domains of variables [X;Y ;Z],
[X;Z], [Y ;Z], and Z, respectively. Let c1 = cxyz, c2 = cxz, c3 = cyz, c4 = cz, d1 = dxyz, d2 = dxz, d3 = dyz,
d4 = dz.

From now on let 0 < p < pX,Y,Z < p̄ be bounded away from zero, bounded by above, and uniformly continuous
density function on M = supp(pX,Y,Z) domain. Let M be a finite union of bounded convex sets. From this
condition it follows that almost all points ofMi are in its interior, andMi has the following additional property:

inf
0<δ<1

inf
vi∈Mi

V
(
B(vi, δ

)
∩Mi)

V
(
B(vi, δ)

) .
= rMi > 0.
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Proof of Lemma 4

Proof. Let p, q be two densities. It is easy to see that

0 < α < 1 ⇒ 0 ≤
∫
pα(v)q1−α(v)dv ≤ 1

α = 1 ⇒
∫
pα(v)q1−α(v)dv = 1

1 < α ⇒
∫
pα(v)q1−α(v)dv ≥ 1.

Proof of Theorem 7

We will prove that limα→1D
R
α (p1‖p2; p0)→ DKL(p1‖p2; p0). The other cases are similar.

Proof. Let p(v, z)
.
= p0(z)p1(v|z) and q(v, z)

.
= p0(z)p2(v|z). Using L’Hospital rule and assuming that the

integral, the limit, and the differential operators can be switched:

lim
α→1

DR
α (p1‖p2; p0)

= lim
α→1

1

α− 1
log

∫
pα(v, z)q1−α(v, z)dvdz

= lim
α→1

∂
∂α log

∫
pα(v, z)q1−α(v, z)dvdz

∂
∂α (α− 1)

; [L’Hospital rule]

= lim
α→1

∂

∂α
log

∫
pα(v, z)q1−α(v, z)dvdz

= lim
α→1

1∫
pα(v, z)q1−α(v, z)dvdz

∂

∂α

∫
pα(v, z)q1−α(v, z)dvdz

= lim
α→1

∂

∂α

∫
pα(v, z)q1−α(v, z)dvdz

= lim
α→1

∫
∂

∂α
pα(v, z)q1−α(v, z)dvdz; [

∂

∂α

∫
=

∫
∂

∂α
]

= lim
α→1

∫
pα(v, z) log(pα(v, z))q1−α(v, z)− pα(v, z)q1−α(v, z) log(q(v, z))dvdz

=

∫
p(v, z) log(p(v, z))− p(v, z) log(q(v, z))dvdz; [lim

∫
=

∫
lim]

= DKL(p1‖p2; p0).

B.1 Asymptotic Unbiasedness, Proof of Theorem 8

We want to prove that limN→∞ E[Q̂3] = Q3. Let (X0, Y0, Z0) ∼ PX,Y,Z be independently generated from the
sample {(Xn;Yn;Zn)}Nn=1. When N →∞, then |Ji| → ∞.

lim
N→∞

E[Q̂3]

B2

= lim
N→∞

E

 1

N

N∑
n=1

(cxyz|J1 \ n|)(1−α) ρ
dxyz(1−α)

xyz,J1\n (Xn;Yn;Zn)(cz|J4 \ n|)(1−α) ρ
dz(1−α)
z,J4\n (Zn)

(cxz|J2 \ n|)(1−α) ρ
dxz(1−α)
xz,J2\n (Xn;Zn)(cyz|J3 \ n|)(1−α) ρ

dyz(1−α)

yz,J3\n (Yn;Zn)


= lim
N→∞

1

N

N∑
n=1

E

 (cxyz|J1 \ n|)(1−α) ρ
dxyz(1−α)

xyz,J1\n (Xn;Yn;Zn)(cz|J4 \ n|)(1−α) ρ
dz(1−α)
z,J4\n (Zn)

(cxz|J2 \ n|)(1−α) ρ
dxz(1−α)
xz,J2\n (Xn;Zn)(cyz|J3 \ n|)(1−α) ρ

dyz(1−α)

yz,J3\n (Yn;Zn)

 .
That is, we need to prove that

lim
N→∞

E[Q̂3]

B2
= (10)
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= lim
N→∞

1

N

N∑
n=1

E

E
 (cxyz|J1 \ n|)(1−α) ρdxyz(1−α)xyz,J1\n (Xn;Yn;Zn)

(cxz|J2 \ n|)(1−α) ρdxz(1−α)xz,J2\n (Xn;Zn)
(11)

×
(cz|J4 \ n|)(1−α) ρdz(1−α)z,J4\n (Zn)

(cyz|J3 \ n|)(1−α) ρdyz(1−α)yz,J3\n (Yn;Zn)

 ∣∣∣∣Xn, Yn, Zn


= lim
N→∞

E

[
E

[
(cxyz|J1|)(1−α) ρdxyz(1−α)xyz,J1

(X0;Y0;Z0)

(cxz|J2|)(1−α) ρdxz(1−α)xz,J2
(X0;Z0)

(cz|J4|)(1−α) ρdz(1−α)z,J4
(Z0)

(cyz|J3|)(1−α) ρdyz(1−α)yz,J3
(Y0;Z0)

∣∣∣∣X0, Y0, Z0

]]
(12)

= lim
N→∞

E
[
f|J1|,γ(X0, Y0, Z0)f|J2|,−γ(X0, Z0)f|J3|,−γ(Y0, Z0)f|J4|,γ(Z0)

]
,

where γ
.
= (1− α), and

f|J1|,γ(x0, y0, z0) = E
[
cγxyz|J1|γρ

γdxyz
xyz,J1

(x0; y0; z0)
]
,

f|J2|,−γ(x0, z0) = E
[
c−γxz |J2|−γρ−γdxzxz,J2

(x0; z0)
]
,

f|J3|,−γ(y0, z0) = E
[
c−γyz |J3|−γρ

−γdyz
yz,J3

(y0; z0)
]
,

f|J4|,γ(z0) = E
[
cγz |J4|γργdzz,J4

(z0)
]
.

To arrive at (12), we need to separate cases based on n ∈ Ji or not. Asymptotically it does not affect our
theorems because |Ji \ n| ∈ {|Ji|, |Ji| − 1}.

Our goal is to switch the limit and the expectation operators. To this end, we will upper bound the term below
by a finite quantity:

4∏
i=1

f|Ji|(vi) = f|J1|,γ(x0, y0, z0)f|J2|,−γ(x0, z0)f|J3|,−γ(y0, z0)f|J4|,γ(z0),

and then the Lebesgue dominated convergence theorem can be applied.

Introduce the following distribution functions: F|Ji|,vi(u) = Pr
(
ci|Ji|ρdii,Ji(vi) < u

)
, (i = 1, . . . , 4), that is,

F|J1|,[x0;y0;z0](u) = Pr
(
cxyz|J1|ρ

dxyz
xyz,J1

(x0; y0; z0) < u
)
,

F|J2|,[x0;z0](u) = Pr
(
cxz|J2|ρdxzxz,J2

(x0; z0) < u
)
,

F|J3|,[y0;z0](u) = Pr
(
cyz|J3|ρ

dyz
yz,J3

(y0; z0) < u
)
,

F|J4|,z0(u) = Pr
(
cz|J4|ρdzz,J4

(z0) < u
)
.

These distributions can be rewritten in the following forms.

Lemma 22.

F|Ji|,vi(u) = 1−
k−1∑
j=0

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j , (13)

where P|Ji|,u,vi
.
=
∫
Mi∩B(vi,Ri(u,|Ji|)) pVi(v) dv, and Ri(u, |Ji|)

.
= (u/(ci|Ji|))1/di .

In other words,

F|J1|,[x0;y0;z0](u) = 1−
k−1∑
j=0

(
|J1|
j

)
(P|J1|,u,[x0;y0;z0])

j(1− P|J1|,u,[x0;y0;z0])
|J1|−j , (14)

F|J2|,[x0;z0](u) = 1−
k−1∑
j=0

(
|J2|
j

)
(P|J2|,u,[x0;z0])

j(1− P|J2|,u,[x0;z0])
|J2|−j ,
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F|J3|,[y0;z0](u) = 1−
k−1∑
j=0

(
|J3|
j

)
(P|J3|,u,[y0;z0])

j(1− P|J3|,u,[y0;z0])
|J3|−j ,

F|J4|,z0(u) = 1−
k−1∑
j=0

(
|J4|
j

)
(P|J4|,u,z0)j(1− P|J4|,u,z0)|J4|−j .

Proof. Calculate these distributions in a “closed” form.

F|Ji|,vi(u) = Pr
(
ci|Ji|ρdii,Ji(vi) < u

)
(15)

= Pr
(
ρi,Ji(vi) < (u/(ci|Ji|))1/di

)
= Pr (ρi,Ji(vi) < Ri(u, |Ji|))
= Pr(k elements or more in Ji ∈ B(vi, Ri(u, |Ji|)) ∩Mi)

=

|Ji|∑
j=k

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j

= 1−
k−1∑
j=0

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j .

Investigate now the limits of these distribution functions [Leonenko et al., 2008].

Lemma 23. For almost all vi ∈Mi, we have that F|Ji|,vi →w Fvi , (as |Ji| → ∞). Here,

Fvi(u) = 1− exp(−λu)

k−1∑
j=0

(λu)j

j!
; λ = pVi(vi),

is the cdf of the Erlang distribution with rate parameter λ and shape parameter k. In other words,

F|J1|,[x0;y0;z0] →w F[x0;y0;z0]

F|J2|,[x0;z0] →w F[x0;z0]

F|J3|,[y0;z0] →w F[y0;z0]

F|J4|,[z0] →w Fz0 ,

where

F[x0;y0;z0](u) = 1− exp(−λu)

k−1∑
j=0

(λu)j

j!
; λ = pX,Y,Z(x0, y0, z0),

F[x0;z0](u) = 1− exp(−λu)

k−1∑
j=0

(λu)j

j!
; λ = pX,Z(x0, z0),

F[y0;z0](u) = 1− exp(−λu)

k−1∑
j=0

(λu)j

j!
; λ = pY,Z(y0, z0),

Fz0(u) = 1− exp(−λu)
k−1∑
j=0

(λu)j

j!
; λ = pZ(z0).

Introduce the following random variables: ξ|Ji|,vi ∼ F|Ji|,vi , ξvi ∼ Fvi , that is,

ξ|J1|,[x0;y0;z0] ∼ F|J1|,[x0;y0;z0], ξ[x0;y0;z0] ∼ F[x0;y0;z0],
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ξ|J2|,[x0;z0] ∼ F|J2|,[x0;z0], ξ[x0;z0] ∼ F[x0;z0],

ξ|J3|,[y0;z0] ∼ F|J3|,[y0;z0], ξ[y0;z0] ∼ F[y0;z0],

ξ|J4|,z0 ∼ F|J4|,z0 , ξz0 ∼ Fz0 .

Lemma 24. Let γ ∈ R be arbitrary. Then for almost all vi ∈ Mi we have that ξγ|Ji|,vi →d ξγvi , that is,

ξγ|J1|,[x0;y0;z0] →d ξ
γ
[x0;y0;z0], ξ

γ
|J2|,[x0;z0] →d ξ

γ
[x0;z0], ξ

γ
|J3|,[y0;z0] →d ξ

γ
[y0;z0], ξ

γ
|J4|,z0 →d ξ

γ
z0 .

Proof. We already know from Lemma 23 that F|Ji|,vi(·) →w Fvi(·) as |Ji| → ∞, for almost all vi ∈ Mi. It
follows by definition from this that ξ|Ji|,vi →d ξvi ( for almost all vi ∈Mi). Since the (·)γ function is continuous
on (0,∞), thus by the continuous mapping theorem [van der Wart, 2007] the lemma follows.

Theorem 25. Let −k < γ. For almost all vi ∈Mi the following statement holds:

lim
|Ji|→∞

f|Ji|(vi) = (pVi(vi))
−γ Γ(k + γ)

Γ(k)
.

In other words,

lim
|J1|→∞

f|J1|,γ(x0, y0, z0) = (pX,Y,Z(x0, y0, z0))−γ
Γ(k + γ)

Γ(k)
.

lim
|J2|→∞

f|J2|,−γ(x0, z0) = (pX,Z(x0, z0))γ
Γ(k − γ)

Γ(k)
.

lim
|J3|→∞

f|J3|,−γ(y0, z0) = (pY,Z(x0, y0, z0))γ
Γ(k − γ)

Γ(k)
.

lim
|J4|→∞

f|J4|,γ(z0) = (pZ(z0))−γ
Γ(k + γ)

Γ(k)
.

Proof of Theorem 25. We already know from Lemma 24 that ξγ|Ji|,vi →d ξ
γ
vi , for almost all vi ∈ Mi. If from

this it follows that E[ξγ|Ji|,vi ]→ E[ξγvi ], then

lim
|Ji|→∞

f|Ji|,γ(vi) = lim
|Ji|→∞

E
[
cγi |Ji|

γργdii,J1
(vi)

]
= lim
|Ji|→∞

E
[
ξγ|Ji|,vi

]
= E

[
limd

|Ji|→∞ξ
γ
|Ji|,vi

]
= E

[
ξγvi
]

=

∫ ∞
0

uγgvi(u) du = (pVi(vi))
−γ Γ(k + γ)

Γ(k)
,

assuming k+γ > 0 and using Lemma 13. Here gvi denotes the density of an Erlang distribution with parameters
λ = pVi(vi).

All that remained is to prove that if ξγ|Ji|,vi →d ξ
γ
vi , then E[ξγ|Ji|,vi ] → E[ξγvi ]. We are going to prove this in

Theorem 27. To see this, it is enough to show (according to Lemma 14) that for some ε > 0, and c(vi) < ∞ it

holds that lim sup|Ji|→∞ E[ξ
γ(1+ε)
|Ji|,vi ] < c(vi). We do not need explicitly to calculate E[ξ

γ(1+ε)
|Ji|,vi ], we just have to

upper bound it with a finite quantity.

Other properties of F|Ji|,vi

In what follows we will need a couple of more properties of the F|J1|,[x0;y0;z0], F|J2|,[x0;z0], F|J3|,[y0;z0], F|J4|,z0
distribution functions. In the next theorem we summarize them.

Theorem 26 (Other properties of F|Ji|,vi distribution functions). F|Ji|,vi has the following properties:

1. Let γ > 0, ∞ > p̄ > pVi > p > δ > 0, δ1 > 0, and ω ∈ (0, 1]. Then there exists N0(ω, γ, pVi , δ, δ1) ∈ Z+

threshold number and L(ω, γ, pVi , δ, δ1) function such that when |Ji| > N0, then for almost all vi ∈Mi∫ ∞
0

(1− F|Ji|,vi(u))ωuγ−1du ≤ L(ω, γ, pVi , δ, δ1) <∞. (16)
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Here

L(ω, γ, pVi , δ, δ1)
.
= max

vi

[
δ1 + δ1

∫
Mi

‖vi − v‖γpVi(v)dv + r−γMi
H(vi, pVi , δ, ω)

]
(17)

H(vi,pVi , δ, ω) (18)

=

k−1∑
j=0

(
1

j!

)ω
Γ(γ + jω)

(
pVi(vi) + δ

pVi(vi)− δ

)jω
(pVi(vi)− δ)−γ((1− δ)ω)−γ−jω.

For the ω = 1 special case we have that

f|J1|,γ([x0; y0; z0])
.
=

∞∫
0

uγF|J1|,[x0;y0;z0](du) = γ

∞∫
0

uγ−1(1− F|J1|,[x0;y0;z0])du

≤ γL(1, γ, pX,Y,Z , δ, δ1) <∞. (19)

Similarly,

f|J2|,γ([x0; z0]) ≤ γL(1, γ, pX,Z , δ, δ1) <∞.
f|J3|,γ([y0; z0]) ≤ γL(1, γ, pY,Z , δ, δ1) <∞.

f|J4|,γ(z0) ≤ γL(1, γ, pZ , δ, δ1) <∞.

2. If 0 ≤ u ≤ β, then

F|Ji|,vi(u) ≤ ukp̄k exp(p̄β). (20)

3. If γ < 0 < β, and ω ∈ (0, 1], then ∫ ∞
β

uγ−1(F|Ji|,vi(u))ωdu ≤ −β
γ

γ
. (21)

4. Let −k < γ < 0 < β, ω ∈ (0, 1], and kω + γ > 0, then∫ β

0

uγ−1(F|Ji|,vi(u))ωdu ≤ p̄kω exp(p̄βω)
βkω+γ

kω + γ

.
= L̃(β, ω). (22)

Using this and (21) with β = 1 and ω = 1, we have that

f|J1|,γ([x0; y0; z0])
.
=

∞∫
0

uγF|J1|,[x0;y0;z0](du) = −γ
∞∫

0

uγ−1F|J1|,[x0;y0;z0](u)du

≤ −γ
[
L̃(1, 1)− 1

γ

]
< ∞. (23)

f|J2|,γ([x0; z0]) ≤ −γ
[
L̃(1, 1)− 1

γ

]
< ∞.

f|J3|,γ([y0; z0]) ≤ −γ
[
L̃(1, 1)− 1

γ

]
< ∞.

f|J4|,γ(z0) ≤ −γ
[
L̃(1, 1)− 1

γ

]
< ∞.

5. If 0 < γ < k, then

lim
β→0

1

βγ
F|Ji|,vi(β) = 0. (24)
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Theorem 27. Let −k < γ. For almost all vi ∈Mi, we have that ξγ|Ji|,vi →d ξ
γ
vi .

Proof. (i) Let γ > 0. We need to prove that there exists ε > 0 such that lim sup|Ji|→∞ E[ξ
γ(1+ε)
|Ji|,vi ] <∞. This can

be rewritten as

lim sup
|Ji|→∞

∫ ∞
0

γuγ(1+ε)−1(1− F|Ji|,vi(u))du < ∞.

This, however, follows directly from (19). (19) holds for any γ, and thus for γ(1 + ε), too, with any ε > 0.

(ii) Let −k < γ < 0. We need to prove that there exists ε > 0 such that lim sup|Ji|→∞ E[ξ
γ(1+ε)
|Ji|,vi ] <∞. This can

be rewritten as

lim sup
|Ji|→∞

∫ ∞
0

(−γ)uγ(1+ε)−1F|Ji|,vi(u)du < ∞.

This follows from (23), by choosing an appropriate ε > 0 such that γ(1 + ε) < 0, and k + γ(1 + ε) > 0.

Now, we are ready to put the pieces together and prove our main theorems on the asymptotic unbiasedness of
the estimator Q̂3. We want to prove that

Q3

B2
= lim
N→∞

E
[
f|J1|,γ(X0, Y0, Z0)f|J2|,−γ(X0, Z0)f|J3|,−γ(Y0, Z0)f|J4|,γ(Z0)

]
,

If we could move the limit inside the expectation, then using Theorem 25 we could continue the derivation as
follows.

lim
N→∞

E[X0;Y0;Z0]∼pX,Y,Z
[
f|J1|,γ(X0, Y0, Z0)f|J2|,−γ(X0, Z0)f|J3|,−γ(Y0, Z0)f|J4|,γ(Z0)

]
= E[X0;Y0;Z0]∼pX,Y,Z

[
lim
N→∞

E
[
cγxyz|J1|γρ

γdxyz
xyz,J1

(X0;Y0;Z0)
∣∣∣X0, Y0, Z0

]
×E

[
cγz |J4|γργdzz,J4

(Z0)
∣∣∣Z0

]
E

[
1

cγxz|J2|γργdxzxz,J2
(X0;Z0)

∣∣∣X0, Z0

]

E

[
1

cγyz|J3|γρ
γdyz
yz,J3

(Y0;Z0)

∣∣∣Y0, Z0

]]

= E[X;Y ;Z]∼pX,Y,Z

[
(pX,Y,Z(X,Y, Z))(α−1)(pZ(Z))(α−1)

(pX,Z(X,Z))(α−1)(pY,Z(Y,Z))(α−1)

]
1

B2
=
Q3

B2
.

This would complete the proof of asymptotic unbiasedness. In the next section we will discuss conditions under
which the outer limit can be moved inside the expectation above.

Switching Limit and Expectation

Our goal is to prove that

lim
N→∞

∫
M
pX,Y,Z(x, y, z)f|J1|,γ(x, y, z)f|J2|,−γ(x, z)f|J3|,−γ(y, z)f|J4|,γ(z)dxdydz (25)

=

∫
M

lim
N→∞

pX,Y,Z(x, y, z)f|J1|,γ(x, y, z)f|J2|,−γ(x, z)f|J3|,−γ(y, z)f|J4|,γ(z)dxdydz.

We investigate the 0 < γ < k and the −k < γ < 0 cases in two separate lemmas.
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Lemma 28. Let 0 < γ
.
= 1 − α < k. Let δ1 > 0, and 0 < δ < p. Then there exists a N0(γ, pX,Y,Z , δ, δ1) > 0

threshold number such that if N > N0, then for almost all [x; y; z] ∈M

f|J1|,γ(x, y, z)f|J2|,−γ(x, z)f|J3|,−γ(y, z)f|J4|,γ(z)

≤ γ4L(1, γ, pX,Y,Z , δ, δ1)L(1, γ, pZ , δ, δ1)

[
L̃(1, 1) +

1

γ

]2

.

Proof. The lemma follows from (19) and (23).

Similarly, for the −k < γ
.
= 1− α < 0 case we have the following lemma.

Lemma 29. Let −k < γ
.
= 1 − α < 0. Let δ1 > 0, and 0 < δ < p. Then there exists a N0(γ, pX,Y,Z , δ, δ1) > 0

threshold number such that if N > N0, then for almost all [x; y; z] ∈M

f|J1|,γ(x, y, z)f|J2|,−γ(x, z)f|J3|,−γ(y, z)f|J4|,γ(z)

≤ L(1,−γ, pX,Z , δ, δ1)L(1,−γ, pY,Z , δ, δ1)

[
L̃(1, 1)− 1

γ

]2

.

B.2 Technical Details in the Proof of Asymptotic Unbiasedness

Proof of Lemma 23

Proof. Let u be fixed, and let Ri(u, |Ji|)
.
= (u/(ci|Ji|))(1/d). According to (4), we know that for all δ > 0

and almost all vi ∈ Mi there exists N0(vi, δ, u) ∈ Z+ such that if |Ji| > N0, then B(vi, Ri(u, |Ji|)) = Mi ∩
B(vi, Ri(u, |Ji|)) (since almost all points are inner points in Mi, lim

|Ji|→∞
Ri(u, |Ji|) = 0), and

pVi(vi)− δ <

∫
B(vi,Ri(u,|Ji|)) pVi(t) dt

V(B(vi, Ri(u, |Ji|)))
< pVi(vi) + δ,

pVi(vi)− δ <

∫
B(x,Ri(u,|Ji|)) pVi(t) dt

u/|Ji|
< pVi(vi) + δ.

Introduce the following shorthands: s̄
.
= (pVi(vi) + δ), s

.
= (pVi(vi)− δ). Now, if |Ji| > N0(vi, δ, u), then

F|Ji|,vi(u)
.
= 1−

k−1∑
j=0

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j

≥ 1−
k−1∑
j=0

(
|Ji|
j

)(
us̄

|Ji|

)j (
1− us

|Ji|

)|Ji|−j

= 1−
k−1∑
j=0

(|Ji|)!
j!(|Ji| − j)!

(
us̄

|Ji|

)j (
1− us

|Ji|

)|Ji|−j

= 1−
k−1∑
j=0

1

j!

(|Ji|)!
(|Ji| − j)!(|Ji|)j︸ ︷︷ ︸

→1

(us̄)
j

(
1− us

|Ji|

)|Ji|−j
︸ ︷︷ ︸

→exp(−us)

.

Thus for all δ > 0, and for almost all vi ∈Mi

lim inf
|Ji|→∞

F|Ji|,vi(u) ≥ 1−
k−1∑
j=0

1

j!
(u[pVi(vi) + δ])

j
exp(−u[pVi(vi)− δ]),

and hence by choosing δ → 0 we can see that

lim inf
|Ji|→∞

F|Ji|,vi(u) ≥ 1−
k−1∑
j=0

1

j!
(uλ)

j
exp(−uλ)

.
= Fvi(u),
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where λ
.
= pVi(vi). Using similar arguments we can also prove that for almost all vi ∈Mi

lim sup
|Ji|→∞

F|Ji|,vi(u) ≤ 1−
k−1∑
j=0

1

j!
(uλ)

j
exp(−uλ)

.
= Fvi(u).

This completes the proof of the lemma.

Proof of Theorem 26

Proof of (16) in Theorem 26. First we will prove that there exists N0(ω, γ, pVi , δ, δ1) independent of vi such that
for all |Ji| > N0 and for almost all vi it holds that

∫ √|Ji|
0

(1− F|Ji|,vi(u))ωuγ−1du (26)

≤
k−1∑
j=0

(
1

j!

)ω
(r(vi))

−γ
Γ(γ + jω)

(
pVi(vi) + δ

pVi(vi)− δ

)jω
(pVi(vi)− δ)−γ((1− δ)ω)−γ−jω

≤ H(vi, pVi , δ, ω)r−γMi
.

Then we will see that for |Ji| > N0 it also holds that∫ ∞
√
|Ji|

(1− F|Ji|,vi(u))ωuγ−1du ≤ (k|Ji|k)ω
[
|Ji|γ

γ
+

∫
‖vi − v‖γp(v)dv

]

× exp

[
−((|Ji| − k)ω − 1)(pVi(vi)− δ)

r(vi)√
|Ji|

]

≤ δ1 + δ1

∫
‖vi − v‖γp(v)dv. (27)

We assumed that 0 < pVi(vi) − δ for all vi ∈ Mi, and that pVi is uniformly Lebesgue approximable (see

definition 11), i.e. for all δ > 0 there exists N0(δ) such that if Ñ > N0(δ), then for almost all vi ∈Mi we have
that

pVi(vi)− δ <

∫
Mi∩B

(
vi,c
− 1
d

i Ñ−
1
2d

) pVi(t) dt

V
(
Mi ∩ B

(
vi, c

− 1
d

i Ñ−
1
2d

)) < pVi(vi) + δ.

pVi(vi)− δ <

∫
Mi∩B

(
vi,c
− 1
d

i Ñ−
1
2d

) pVi(t) dt

Ñ−
1
2 r(vi)

< pVi(vi) + δ, (28)

where

r(vi)
.
=
V
(
Mi ∩ B

(
vi, c

− 1
d

i Ñ−
1
2d

))
V
(
B
(
vi, c

− 1
d

i Ñ−
1
2d

)) ∈ [rMi , 1].

Usually r(vi) = 1 in Mi, however, close to the boundary of Mi its value can be less. Nonetheless, according to
our conditions it is always at least as large as rMi

> 0. By definition, P|Ji|,u,vi =
∫
Mi∩B(vi,Ri(u,|Ji|)) pVi(v) dv.

Let |Ji| > N0(δ), and 0 < u < |Ji|
1
2 . If we define Ñ

.
=
(
|Ji|
u

)2

, then Ñ =
(
|Ji|
u

)2

> |Ji| > N0(δ), and thus from

(28) we have that

0 < pVi(vi)− δ <

∫
M∩B

(
vi,c
− 1
d

i Ñ−
1
2d

) p(t) dt

Ñ−
1
2 r(vi)

=
P|Ji|,u,vi
u
|Ji|r(vi)

< pVi(vi) + δ. (29)
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Assume also that N0(δ) is so large that (|Ji| − k)/|Ji| > 1− δ when |Ji| > N0. Hence, when |Ji| > N0, then

∫ √|Ji|
0

(1− F|Ji|,vi(u))ωuγ−1du

=

∫ √|Ji|
0

uγ−1

k−1∑
j=0

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j

ω

du

by applying Lemma 22. For brevity, introduce the following notations:

s̄
.
= (pVi(vi) + δ)r(vi),

s
.
= (pVi(vi)− δ)r(vi).

Now using (29), we can continue the inequality as follows

√
|Ji|∫

0

(1− F|Ji|,vi(u))ωuγ−1du ≤

√
|Ji|∫

0

uγ−1

k−1∑
j=0

(
|Ji|
j

)
s̄juj

|Ji|j

[
1− su

|Ji|

]|Ji|−jω

du

≤

√
|Ji|∫

0

uγ−1

k−1∑
j=0

(
|Ji|
j

)
s̄juj

|Ji|j
exp

[
−(|Ji| − j)

su

|Ji|

]ω

du

≤
k−1∑
j=0

(
1

j!

)ω
s̄jω

∫ √|Ji|
0

uγ+jω−1 exp

[
−|Ji| − j
|Ji|

ωsu

]
︸ ︷︷ ︸

≤exp[−ω(1−δ)su] if |Ji| > N1(δ)

du

≤
k−1∑
j=0

(
1

j!

)ω
s̄jω

∫ ∞
0

uγ+jω−1exp (−ω(1− δ)su)du

≤
k−1∑
j=0

(
1

j!

)ω
s̄jω [(1− δ)ωs]−(γ+jω)

Γ(γ + jω)

= (r(vi))
−γ

H(vi, pVi , δ, ω).

In the proof we also used Lemma 16 and the facts that [(1 − x)n ≤ exp(−xn)] and
∫∞

0
uβ−1 exp(−λu)du =

λ−βΓ(β). The proof of (26) is finished.

Let us see now the proof of Eq. (27). In this case we have to upper bound

∫ ∞
√
|Ji|

(1− F|Ji|,vi(u))ωuγ−1du =

∫ ∞
√
|Ji|

uγ−1

k−1∑
j=0

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j

ω du.

Let A ⊆ Rd be an arbitrary measurable set, and introduce the I(A) =
∫
A pVi(v)dv notations. We start with an

easy observation.

Lemma 30. If u ≥
√
|Ji|, ω ∈ (0, 1], and |Ji| is at least as large that ω(|Ji| − k)− 1 > 0 holds, then

(1− P|Ji|,u,vi)
ω(|Ji|−k)−1 =

[
1− I

(
Mi ∩ B(vi, Ri(u, |Ji|))

)]ω(|Ji|−k)−1

=
[
1− I

(
Mi ∩ B

(
vi, u

1
d (ci|Ji|)−

1
d

) )]ω(|Ji|−k)−1

≤
[
1− I

(
Mi ∩ B

(
vi, c

− 1
d

i |Ji|
− 1

2d

))]ω(|Ji|−k)−1

, (30)

= [1− I(M̃i)]
ω(|Ji|−k)−1, (31)
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where we introduced the M̃i
.
= Mi ∩ B

(
vi, c

− 1
d

i J
− 1

2d
i

)
shorthands. We cannot use this time the previous

approach, since u can diverge to ∞. However, we can at least lower bound P|Ji|,u,vi . Let δ > 0,
√
|Ji| ≤ u, and

pVi be uniformly Lebesgue approximable with the corresponding N0(δ) threshold number, which is independent
of vi, and let |Ji| > N0. Then for almost all vi ∈Mi we have that

(pVi(vi)− δ) ≤
I
(
Mi ∩ B

(
vi,
(
c
− 1
d

i |Ji|−
1
2d

)))
V
(
Mi ∩ B

(
vi,
(
c
− 1
d

i |Ji|−
1
2d

)))
=

I
(
Mi ∩ B

(
vi,
(
c
− 1
d

i |Ji|−
1
2d

)))
V
(
B
(
vi,
(
c
− 1
d

i |Ji|−
1
2d

)))
r(vi)

.

Thus,

(pVi(vi)− δ)
r(vi)√
|Ji|

≤ I

M∩B
vi,( 1

ci
√
|Ji|

)1/d


≤ I

(
M∩B

(
vi,

(
u

ci|Ji|

)1/d
))

.
= P|Ji|,u,vi . (32)

In turn, for almost all vi ∈ Mi, when 0 < δ < pVi(vi), and |Ji| > N0, ω(|Ji| − k)− 1 > 0, then (thanks to

P|Ji|,u,vi ≤ 1, and
( |Ji|

j

)
≤ |Ji|k), it holds that

∫ ∞
√
|Ji|

uγ−1

k−1∑
j=0

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j

ω du ≤

≤
∫ ∞
√
|Ji|

uγ−1
[
k|Ji|k(1− P|Ji|,u,vi)

|Ji|−k
]ω

du

=
(
k|Ji|k

)ω ∫ ∞
√
|Ji|

uγ−1(1− P|Ji|,u,vi)
(|Ji|−k)ω−1(1− P|Ji|,u,vi)du

≤
(
k|Ji|k

)ω ∫ ∞
√
|Ji|

uγ−1
(

1− I(M̃)
)(|Ji|−k)ω−1

(1− P|Ji|,u,vi)du [by (30)]

≤
(
k|Ji|k

)ω (
1− I(M̃)

)(|Ji|−k)ω−1
∞∫

√
|Ji|

uγ−1(1− P|Ji|,u,vi)du

≤
(
k|Ji|k

)ω
exp

[
−((|Ji| − k)ω − 1)s√

|Ji|

]
×

∞∫
√
|Ji|

uγ−1(1− P|Ji|,u,vi)du. (33)

We have to upper bound its last term,
∫∞√
|Ji| u

γ−1(1−P|Ji|,u,vi)du, as well. We want to prove that asymptotically∫∞√
|Ji| u

γ−1(1− P|Ji|,u,vi)du < q(|Ji|), where q(|Ji|) is an appropriate polynomial. The following lemma will

show that ∫ ∞
√
|Ji|

uγ−1(1− P|Ji|,u,vi)du <
|Ji|γ

γ
+

∫
‖vi − v‖γpVi(v) dv

for almost all vi ∈Mi. To finish the proof, let N0 be so large that when |Ji| > N0, then

(
k|Ji|k

)ω
exp

[
−
(

(|Ji| − k)ω − 1
)
(pVi(vi)− δ)

r(vi))√
|Ji|

]
< min

(
δ1,

δ1
|Ji|γ/γ

)
.

Since 0 < rMi
(vi), and pVi is bounded away from zero, there exists this N0 threshold number, and this is

independent from vi.
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Lemma 31. If γ > 0 and
∫
‖vi − v‖γpVi(v) dv <∞ for almost all vi ∈Mi, then∫ ∞

√
|Ji|

uγ−1(1− P|Ji|,u,vi)du ≤
|Ji|γ

γ
+

∫
‖vi − v‖γpVi(v) dv.

for almost all vi ∈M.

Proof. By using the du = |Ji|dt, u = t|Ji| integral transformation, it is easy to see that∫ ∞
√
|Ji|

uγ−1(1− P|Ji|,u,vi)du = (34)

=

∫ ∞
√
|Ji|

uγ−1

(
1− I

(
Mi ∩ B

(
vi,

(
u

ci|Ji|

)1/d
)))

du

= |Ji|γ−1

∫ ∞
1√
|Ji|

tγ−1
(

1− I
(
Mi ∩ B(vi, c

− 1
d

i t
1
d )
))
|Ji|dt

= |Ji|γ
∫ 1

1√
|Ji|

tγ−1
(

1− I
(
Mi ∩ B(vi, c

− 1
d

i t
1
d )
))

dt (35)

+ |Ji|γ
∫ ∞

1

tγ−1
(

1− I
(
Mi ∩ B(vi, c

− 1
d

i t
1
d )
))

dt. (36)

We upper bound (35) first:

|Ji|γ
∫ 1

1√
|Ji|

tγ−1

(
1−

∫
Mi∩B(vi,c

− 1
d

i t
1
d )

pVi(v) dv

)
︸ ︷︷ ︸

≤1

dt ≤ |Ji|γ
∫ 1

1√
|Ji|

tγ−1dt

≤ |Ji|γ
[
tγ

γ

]1

1√
|Ji|

= |Ji|γ
[

1

γ
− |Ji|

−γ/2

γ

]

=
|Ji|γ

γ
− |Ji|

γ/2

γ
≤ |Ji|

γ

γ
.

Now, we upper bound (36). Thanks to (14) and using k = 1, we have that

F1,vi(t) = 1− (1− P1,t,vi)
1 = P1,t,vi =

∫
M∩B(vi,c

− 1
d

i t
1
d )

pVi(v) dv, (37)

and thus

γ

∫ ∞
1

tγ−1

(
1−

∫
M∩B(vi,c

− 1
d

i t1/d)

pVi(v) dv

)
dt =

= γ

∫ ∞
1

tγ−1 (1− F1,vi(t)) dt; [using (37)]

=

∫ ∞
1

tγ dF1,vi(t)− (1− F1,vi(1)); [using (6)]

≤
∫ ∞

0

tγ dF1,vi(t)− (1− F1,vi(1))

= E [‖vi − Vi‖γ ]− (1− F1,vi(1)); [by the def. of F|Ji|,vi ]

= −(1− F1,vi(1)) +

∫
Mi

‖vi − v‖γpVi(v) dv

≤
∫
Mi

‖vi − v‖γpVi(v) dv <∞; [by assumption].
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F1,vi ∈ [0, 1], ∀vi, since this is a cdf. The
∫
‖vi − v‖γpVi(v) dv < ∞ for almost all vi ∈ Mi follows from our

assumptions. This finishes the proof of Lemma 31.

Proof of (20) in Theorem 26. Note that if for all v ∈Mi pVi(v) ≤ p̄, then∫
M∩B

(
vi,
(

u
ci|Ji|

) 1
d

) pVi(t) dt
.
= P|Ji|,u,vi ≤

p̄u

|Ji|
, ∀vi ∈Mi,∀u > 0. (38)

In turn,

F|Ji|,vi(u)

uk
=

1

uk

|Ji|∑
j=k

(
|Ji|
j

)
(P|Ji|,u,vi)

j(1− P|Ji|,u,vi)
|Ji|−j ; [thanks to (14)]

≤ 1

uk

|Ji|∑
j=k

(
|Ji|
j

)(
p̄u

|Ji|

)j

≤
|Ji|∑
j=k

1

j!
p̄juj−k;

[
since

(
|Ji|
j

)
1

(|Ji|)j
≤ 1

j!

]

≤ p̄k
|Ji|∑
j=k

1

(j − k)!
p̄j−kβj−k; by assumption u < β

≤ p̄k exp(p̄β).

Proof of (21) in Theorem 26. Use the facts F|Ji|,vi ≤ 1 and γ < 0. Thus,∫ ∞
β

uγ−1
(
F|Ji|,vi(u)

)ω
du ≤

∫ ∞
β

uγ−1 =

[
uγ

γ

]∞
β

=
−βγ

γ
.

Proof of (22) in Theorem 26. According to (20), if u ≤ β, then∫ β

0

uγ−1
(
F|Ji|,vi(u)

)ω
du ≤

∫ β

0

uγ−1
(
ukp̄k exp(p̄β)

)ω
du

= p̄kω exp(p̄βω)

∫ β

0

uγ+kω−1du = p̄kω exp(p̄βω)
βγ+kω

γ + kω
,

assuming γ + kω > 0.

B.3 Asymptotic Variance, Proof of Theorem 9

For the sake of brevity, let Q̂3 =
∑N
n=1 τ(n), where

τ(n) = B2
(cxyz|J1 \ n|)(1−α) ρ

dxyz(1−α)

xyz,J1\n (Xn;Yn;Zn)

(cxz|J2 \ n|)(1−α) ρ
dxz(1−α)
xz,J2\n (Xn;Zn)

(cz|J4 \ n|)(1−α) ρ
dz(1−α)
z,J4\n (Zn)

(cyz|J3 \ n|)(1−α) ρ
dyz(1−α)

yz,J3\n (Yn;Zn)
.

E[(Q̂3 −Q3)2] = E

( 1

N

N∑
n=1

τ(n)−Q3

)2
 = E

( 1

N

N∑
n=1

(τ(n)−Q3)

)2
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=
1

N2
E

 N∑
i 6=j

(τ(i)−Q3) (τ(j)−Q3)

+
1

N2

N∑
i=1

E
[
(τ(i)−Q3)

2
]
. (39)

To see that the second term vanishes, it is enough to prove that for all i, lim supN→∞ E
[
(τ(i)−Q3)

2
]
<∞.

lim sup
N→∞

E
[
(τ(i)−Q3)2

]
= lim sup

N→∞

(
Q2

3 + E
[
τ2(i)

]
− 2Q3E [τ(i)]

)
= lim sup

N→∞
E
[
τ2(i)

]
−Q2

3,

since we already know that the estimator is asymptotically unbiased (i.e., E [τ(i)] → Q3). In turn, to see that
the second term of (39) vanishes, all what remained is to prove that the following lemma is true.

Lemma 32.

lim sup
N→∞

E[Xi;Yi;Zi]∼pX,Y,Z
{
E
[
τ2(i)

∣∣Xi, Yi, Zi
]}
<∞.

Proof. We can use the same techniques that we used for proving the asymptotic unbiasedness of the estimator.
We just have to replace γ = 1−α with γ̃ = 2(1−α), and thus the corresponding “new α” is α̃ = 1− 2(1−α) =
2α− 1.

The next step is to prove that the first term of (39) also vanishes.

lim
N→∞

1

N2
E

 N∑
i 6=j

(τ(i)−Q3) (τ(j)−Q3)

 = lim
N→∞

1

N2

N∑
i 6=j

E [(τ(i)−Q3) (τ(j)−Q3)]

= lim
N→∞

1

N2

N∑
i 6=j

E
[
τ(i)τ(j)−Q2

3

]
,

where we used again that the estimator is asymptotically unbiased. In what follows we will prove that for each
i, j it holds that limN→∞ E [τ(i)τ(j)] = Q2

3. Again, we should separate cases according to which J1, . . . ,J4 index
sets contain the i, j indices. For simplicity, let as assume that they are in the same set (say in J1 ⊇ {1, 2}), but
all the other cases can be handled similarly, only the set sizes will be somewhat different. Asymptotically this
difference does not affect the results.

For brevity, let

h1(x0, y0, z0) = cxyz|J1 \ n|ρ
dxyz
xyz,J1

(x0, y0, z0),

h2(x0, z0) = cxz|J2 \ n|ρdxzxz,J2
(x0, z0),

h3(y0, z0) = cyz|J3 \ n|ρ
dyz
yz,J3

(y0, z0),

h4(z0) = cz|J4 \ n|ρdzz,J4
(z0).

Using these notations we want to prove that

Q2
3

B4
= lim
N→∞

E
[
hγ1(X1, Y1, Z1)hγ1(X2, Y2, Z2)× h−γ2 (X1, Z1)h−γ2 (X2, Z2)

×h−γ3 (Y1, Z1)h−γ3 (Y2, Z2)× hγ4(Z1)hγ4(Z2)
]

= lim
N→∞

EX1,Y1,Z1,X2,Y2,Z2

{
E [hγ1(X1, Y1, Z1)hγ1(X2, Y2, Z2)|X1, Y1, Z1, X2, Y2, Z2]

× E
[
h−γ2 (X1, Z1)h−γ2 (X2, Z2)|X1, Z1, X2, Z2

]
× E

[
h−γ3 (Y1, Z1)h−γ3 (Y2, Z2)|Y1, Z1, Y2, Z2

]
× E [hγ4(Z1)hγ4(Z2)|Z1, Z2]

}
= lim
N→∞

EX1,Y1,Z1,X2,Y2,Z2

{
E
[
g|J1|,γ(X1, Y1, Z1, X2, Y2, Z2)|X1, Y1, Z1, X2, Y2, Z2

]
× E

[
g|J2|,−γ(X1, Z1, X2, Z2)|X1, Z1, X2, Z2

]
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× E
[
g|J3|,−γ(Y1, Z1, Y2, Z2)|Y1, Z1, Y2, Z2

]
× E

[
g|J4|,γ(Z1, Z2)|Z1, Z2

] }
,

where g|Ji|,γ(vi, ṽi)
.
= hγi (vi)h

γ
i (ṽi). Using very similar arguments to what we used for proving asymptotic

unbiasedness, we can prove that following quantities are bounded too.

g|J1|,γ([x1; y1; z1], [x2; y2; z2]) ≤ K1 <∞
g|J2|,γ([x1; z1], [x2; z2]) ≤ K2 <∞
g|J3|,γ([y1; z1], [y2; z2]) ≤ K3 <∞

g|J4|,γ(z1, z2) ≤ K4 <∞

After this step, the Lebesgue dominated convergence finishes the proof of Theorem 9.

The only difference compared to the the previous case, where we proved asymptotic unbiasedness, is that now
we need to start our analysis from the following 2-dimensional distribution functions:

F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2)
.
= Pr

(
cxyz|J1|ρ

dxyz
xyz,J1

(x1; y1; z1) < u1 ∧ cxyz|J1|ρ
dxyz
xyz,J1

([x2; y2; z2]) < u2

)
F|J2|,[x1;z1],[x2;z2](u1, u2)

.
= Pr

(
cxz|J2|ρdxzxz,J2

(x1; z1) < u1 ∧ cxz|J2|ρdxzxz,J2
([x2; z2]) < u2

)
F|J3|,[y1;z1],[y2;z2](u1, u2)

.
= Pr

(
cyz|J3|ρ

dyz
yz,J3

(y1; z1) < u1 ∧ cyz|J3|ρ
dyz
yz,J3

([y2; z2]) < u2

)
F|J2|,z1,z2(u1, u2)

.
= Pr

(
cz|J4|ρdzz,J4

(z1) < u1 ∧ cz|J4|ρdzz,J4
(z2) < u2

)
.

We will need the generalization of Lemma 22. For F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2), it is given below.

Lemma 33 (Generalization of Lemma 22). For brevity let

S|J1|,j,l
.
= (P|J1|,u1,[x1;y1;z1])

j(P|J1|,u2,[x2;y2;z2])
l(1− P|J1|,u1,[x1;y1;z1] − P|J1|,u2,[x2;y2;z2])

|J1|−2−j−l.

If max(R1(u1, |J1|), R1(u2, |J1|)) ≤ ‖[x1; y1; z1]− [x2; y2; z2]‖, then

F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2) =

|J1|−2∑
j=k

|J1|−2−j∑
l=k

(
|J1| − 2

j

)(
|J1| − 2− j

l

)
S|J1|,j,l. (40)

It is easy to see that there exists N0([x1; y1; z1], [x2; y2; z2], u1, u2) ∈ Z+ such a big number that for all N > N0 we
have that B([x1; y1; z1], R1(u1, |J1|)) ∩ B([x2; y2; z2], R1(u2, |J1|)) = ∅, and thus Lemma 33 holds. The following
lemma claims that in this case F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2) can be rewritten.

Lemma 34. If (40) holds, then

F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2) =

F|J1|−1,[x1;y1;z1](u1) + F|J1|−1,[x2;y2;z2](u2)− 1 +

k−1∑
j=0

k−1∑
l=0

(
|J1| − 2

j

)(
|J1| − 2− j

l

)
S|J1|,j,l.

Lemma 35 (Generalization of Lemma 23). When [x1; y1; z1] 6= [x2; y2; z2], then

lim
|J1|→∞

F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2) = F[x1;y1;z1](u1)F[x2;y2;z2](u2).

The remaining calculations are analogous to those that we used for proving asymptotic unbiasedness. Using
these lemmas, we can generalize Theorem 26 to the F|J1|,[x1;y1;z1],[x2;y2;z2](u1, u2) distribution function, and then
we can upper bound the g|Ji|,γ terms with finite quantities.
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C Q1, Q2, and Q3 for Normal distributions

Introduce the w = [v; z] shorthands.

Lemma 36. Let p(v, z) = p(w)
.
= Nw(0,Σp), q(v, z) = q(w)

.
= Nw(0,Σq). Then

Q1 =

(
|Σ−1

p |α/2|Σ−1
q |(1−α)/2

|αΣ−1
p + (1− α)Σ−1

q |1/2

)
.

Proof. Let

p(w)
.
= Nw(0,Σp) = |2πΣp|−1/2 exp(−1

2
wTΣ−1

p w),

q(w)
.
= Nw(0,Σq) = |2πΣq|−1/2 exp(−1

2
wTΣ−1

q w).

Observe that ∫
exp(−1

2
wTΣ−1w)dw = |2πΣ|1/2 =

1

|(2π)−1Σ−1|1/2
,

and therefore∫
pα(w)qβ(w)dw = |2πΣp|−α/2|2πΣq|−β/2

∫
exp(−α

2
wTΣ−1

p w) exp(−β
2
wTΣ−1

q w)dw

= |(2π)−1Σ−1
p |α/2 |(2π)−1Σ−1

q |β/2
∫

exp

(
−1

2
wT (αΣ−1

p + βΣ−1
q )w

)
dw

=
|(2π)−1Σ−1

p |α/2 |(2π)−1Σ−1
q |β/2

|(2π)−1(αΣ−1
p + βΣ−1

q )|1/2
.

Lemma 37. Let p(v, z) = p(w)
.
= Nw(0,Σp), q(v, z) = q(w)

.
= Nw(0,Σq). Then

Q2 =
1

2
log

(
|Σq|
|Σp|

)
+

1

2
tr[Σ−1

p Σq]−
d

2
.

Proof. Q2 = Ew∼p[log p(w)− log q(w)], and

Ew∼p[log q(w)] = Ew∼p
[
−1

2
log |2πΣq| −

1

2
tr[Σ−1

q wwT ]

]
.

Ew∼p[log p(w)] = Ew∼p
[
−1

2
log |2πΣp| −

1

2
tr[Σ−1

p wwT ]

]
= −1

2
log |2πΣp| −

1

2
tr[Id].

Lemma 38.

Q3 =
|Σxz|−(1−α)/2|Σyz|−(1−α)/2

|Σxyz|α/2|Σz|(α−1)/2
|M |−1/2,

where
M = αΣ−1

xyz + (α− 1)Σ̃−1
z + (1− α)Σ̃−1

xz + (1− α)Σ̃−1
yz .

Here Σ̃−1
xz ∈ Rdxyz×dxyz denotes the inverse covariance matrix, where we put zeros into those entries that corre-

spond to y, and we used the elements of Σ−1
xz for the other entries. Σ̃−1

yz and Σ̃−1
z defined similarly.
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Proof.

Q3 =

∫∫∫
pαX,Y,Z(x, y, z)pα−1

Z (z)

pα−1
X,Z (x, z)pα−1

Y,Z (y, z))
dxdydz.

Let

pαxyz(x, y, z)
.
= |2πΣxyz|−α/2 exp

(
−α

2
[x; y; z]TΣ−1

xyz[x; y; z]
)
,

pα−1
z (z)

.
= |2πΣz|−(α−1)/2 exp

(
−α− 1

2
zTΣ−1

z z

)
,

p1−α
xz (x, z)

.
= |2πΣxz|−(1−α)/2 exp

(
−1− α

2
[x; z]TΣ−1

xz [x; z]

)
,

p1−α
yz (y, z)

.
= |2πΣyz|−(1−α)/2 exp

(
−1− α

2
[y; z]TΣ−1

yz [y; z]

)
.

Now,

Q3 =
|2πΣxz|−(1−α)/2|2πΣyz|−(1−α)/2

|2πΣxyz|α/2|2πΣz|(α−1)/2

∫∫∫
exp

(
−1

2
[x; y; z]TM [x; y; z]

)
=
|2πΣxz|−(1−α)/2|2πΣyz|−(1−α)/2

|2πΣxyz|α/2|2πΣz|(α−1)/2
|2πM−1|1/2

=
|Σxz|−(1−α)/2|Σyz|−(1−α)/2

|Σxyz|α/2|Σz|(α−1)/2
|M |−1/2.

Lemma 39. Let X = A + Z, Y = B + Z, where A ∼ N (0,ΣA), B ∼ N (0,ΣB), Z ∼ N (0,ΣZ) independent
normal distributions. Then I(X,Y ) > 0, and I(X,Y |Z) = 0.

Lemma 40. Let A,X, Y be independent normal distributions, and let Z = X + Y +A. Then I(X,Y ) = 0, and
I(X,Y |Z) > 0.

Proof.

Σ[Z;X;Y ] = E
[
[X + Y +A;X;Y ][X + Y +A;X;Y ]T

]
=

ΣX + ΣY + ΣA ΣX ΣY
ΣX ΣX 0
ΣY 0 ΣY

 .

H(X,Y, Z) = log |ΣAΣXΣY |
H(Z) = log |(ΣX + ΣY + ΣA)|

H(Z,X) = log |ΣY ΣX + ΣAΣX |
H(Z, Y ) = log |ΣXΣY + ΣAΣY |.

Therefore,

I(X,Y |Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z)

= log |(ΣXΣY + ΣAΣY )(ΣY ΣX + ΣAΣX)| − log |ΣAΣXΣY (ΣX + ΣY + ΣA)|
> 0.


