
A Differentially Private Stochastic Gradient Descent Algorithm for
Multiparty Classification

Arun Rajkumar and Shivani Agarwal
Department of Computer Science and Automation

Indian Institute of Science, Bangalore 560012, India
{arun r, shivani}@csa.iisc.ernet.in

Abstract

We consider the problem of developing privacy-
preserving machine learning algorithms in a dis-
tributed multiparty setting. Here different parties
own different parts of a data set, and the goal is
to learn a classifier from the entire data set with-
out any party revealing any information about the
individual data points it owns. Pathak et al [7]
recently proposed a solution to this problem in
which each party learns a local classifier from
its own data, and a third party then aggregates
these classifiers in a privacy-preserving manner
using a cryptographic scheme. The generaliza-
tion performance of their algorithm is sensitive
to the number of parties and the relative frac-
tions of data owned by the different parties. In
this paper, we describe a new differentially pri-
vate algorithm for the multiparty setting that uses
a stochastic gradient descent based procedure
to directly optimize the overall multiparty ob-
jective rather than combining classifiers learned
from optimizing local objectives. The algorithm
achieves a slightly weaker form of differential
privacy than that of [7], but provides improved
generalization guarantees that do not depend on
the number of parties or the relative sizes of the
individual data sets. Experimental results corrob-
orate our theoretical findings.

1 Introduction

The traditional paradigm in machine learning has been that
one is given a data set, and the goal is to learn a predictive
model (such as a classifier) from this data set. Increasingly,
however, one finds that data is distributed among multiple

Appearing in Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2012, La Palma,
Canary Islands. Volume XX of JMLR: W&CP XX. Copyright
2012 by the authors.

parties: financial data is distributed across multiple banks
and credit agencies; medical records are distributed across
multiple hospitals and health care institutions and so on.
In such a setting, it becomes important to design algo-
rithms that can learn a model from the overall (combined)
data, while preserving the privacy of individual parties’
data points. Differential privacy is a strong notion of pri-
vacy that first arose in the cryptography community [1, 2];
briefly, it ensures that the output of an algorithm operating
on a data set does not allow any individual data point to
be identified. There has been some interest recently in de-
signing differentially private machine learning algorithms,
with private versions of algorithms such as logistic regres-
sion and support vector machines being proposed [3, 4, 5].
These algorithms mostly focus on the single-party setting,
where a single party owns the data, but due to its sensitive
nature, it is important that any model that is learned from
the data and released publicly does not reveal any infor-
mation about individual data points. Recently, Pathak et
al [7] considered learning a differentially private classifier
in the multiparty setting, where in addition to not releasing
information about individual data points to the public, one
cannot share information about individual points among the
different parties. The solution proposed by Pathak et al in-
volves each party learning a local classifier on its own data,
and then sharing this classifier in a privacy-preserving man-
ner (through a cryptographic scheme) with a third party that
constructs a differentially private aggregate classifier.

In this paper, we propose a different solution to the multi-
party problem. Our algorithm is based on a stochastic gra-
dient descent procedure, and amounts to performing Gaus-
sian objective perturbation on the overall multiparty objec-
tive. The algorithm achieves a slightly weaker form of dif-
ferential privacy than that of [7], but is more robust to the
number of parties and the relative fractions of data owned
by the different parties, which is reflected in the sample
complexity and excess error bounds we obtain. We also
contrast our method with that of [7] via experimental sim-
ulations and point out situations where our method outper-
forms the current state of the art for this problem.

933



A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification

Organization of the paper. We review some background
material in Section 2, including the definition of differential
privacy, current methods for achieving differential privacy
in machine learning, the multiparty setting, and the algo-
rithm of [7]. We describe our algorithm in Section 3. This
is followed by privacy analysis in Section 4, generalization
analysis in Section 5, and experimental results in Section 6.

2 Preliminaries and Background

2.1 Differential Privacy
Differential privacy [1] is a notion of privacy that guaran-
tees that the presence or absence of any specific entry in a
data set will not affect the output of an algorithm by much:

Definition. A randomized algorithm A is ε-differentially
private if for all data sets D,D′ that differ in a single el-
ement and all ω ∈ Ω, where Ω is the output space of A:1

Pr[A(D) = ω]

Pr[A(D′) = ω]
≤ eε .

The probability is over the randomization in the algorithm.

2.2 Differential Privacy in Machine Learning
Consider the standard problem of binary classification in
machine learning, where one is given a data set D =
{(x1, y1), . . . , (xN , yN )} consisting of N example input
points xi from some space X with class labels yi ∈ {±1},
assumed to be drawn iid from some fixed but unknown dis-
tribution Q over X × {±1}, and the goal is to learn from
D a classifier h : X→{±1} that performs well on future
examples from Q. A number of authors have recently con-
sidered the design of differentially private algorithms for
classification [3, 4, 5]. These works consider vector-valued
data X ⊆ Rd, and focus mainly on algorithms that learn
from D a linear classifier of the form h(x) = sign(w>x),
represented by a weight vector w ∈ Rd.

A popular class of algorithms for learning a linear classifier
is that of regularized empirical risk minimization (ERM)
algorithms, which minimize an objective of the form

J(w) =
1

N

N∑

i=1

φ(yiw
>xi) +

λ

2
‖w‖22 , (1)

where ‖w‖22 is the regularizing term, λ > 0 is a regulariza-
tion constant, and φ is a margin-based loss function (such
as the logistic loss ln(1 + exp (−yiw>xi)) which leads to
logistic regression, or the hinge loss max(0, 1−(yiw

>xi))
which leads to support vector machines). A regularized
ERM algorithm by itself is clearly deterministic; two meth-
ods have been proposed to introduce randomization in such
an algorithm so as to achieve differential privacy: output
perturbation and objective perturbation.

1Here Pr denotes probability mass for discrete output spaces
and probability density for continuous output spaces.

Output perturbation. This is based on a general method
described in [1], in which one adds noise to the output of
an underlying deterministic algorithm. The form of noise
added depends on the sensitivity of the underlying algo-
rithm, which measures the maximum change in the output
of the algorithm when a single element in the input data set
is changed [1, 4]:

Definition. Consider a vector-valued function g : ZN →
Rd, where Z is any arbitrary set. The L2 sensitivity of g is
defined as

S(g) = max
i

max
z1,...,zN ,z′i

‖g(z1, . . . , zi, . . . , zN )−

g(z1, . . . , z
′
i, . . . , zN )‖2 .

In the above equation g can be viewed as a (determinis-
tic) algorithm that computes a statistic of the data set D =
{z1, . . . , zN}. Given such an algorithm that has sensitivity
S(g) ≤ C and a desired privacy parameter ε, the output
perturbation method returns g(D) + η, where η ∈ Rd is a
noise vector generated randomly according to the density

µ(η) ∝ exp (−β‖η‖2) , (2)

where β = ε
C . It can be shown that the above output

perturbed version of the algorithm g provides ε-differential
privacy [1, 4]. It can also be shown that several regularized
ERM algorithms, when viewed as taking as input a data set
D ∈ (Rd × {−1, 1})N and producing as output a weight
vector g(D) = wD that minimizes the objective in Eq. (1),
have bounded sensitivity, and therefore output perturbation
can be applied to these algorithms; this includes for exam-
ple logistic regression, which (assuming all data points lie
in a unit ball) has L2 sensitivity at most 2

λN [4, 5].

Objective perturbation. In this method [4], instead of ran-
domly perturbing the output classifier, one perturbs the ob-
jective minimized by the algorithm. Specifically, the objec-
tive perturbed version of regularized ERM minimizes

J̃(w) =
1

N

N∑

i=1

φ(yiw
>xi) +

λ

2
‖w‖22 +

1

N
η>w , (3)

where η is again a vector drawn according to a density of
the form in Eq. (2) (but with a different parameter β). It can
be shown that under certain assumptions on the form of the
loss φ and the regularization term and with the right choice
of the parameter β in the above density, one can prove ε-
differential privacy for objective perturbation as well [4].

2.3 Multiparty Classification
Consider now binary classification in a multiparty setting:
the training data set D = {(x1, y1), . . . , (xN , yN )} is now
distributed among K parties P1, P2, . . . , PK , so that the
kth party Pk possesses a subset of the data Dk ⊆ D; it
is assumed that the indices of data points in D that are as-
signed to any two distinct parties Pk, Pl (k 6= l) are disjoint

934



Arun Rajkumar and Shivani Agarwal

(i.e. that {D1, . . . , DK} forms a partition of D). The goal
as before is to learn a classifier h : X→{±1} from the
complete data set D. However, each party wishes not to
disclose any information about any of the individual data
points it owns. The challenge therefore lies in learning a
classifier that preserves the privacy of each party.

2.4 Related Work
The multiparty classification problem was considered re-
cently by Pathak et al [7]. The solution they propose in-
volves a third party which gathers information from the in-
dividual parties and computes a private classifier. Specifi-
cally, each party Pk computes a local classifier wk ∈ Rd
by minimizing the local regularized ERM objective on its
own data set Dk = {(xk1 , yk1 ), . . . , (xkNk , y

k
Nk

)}:
Jk(w) =

1

Nk

Nk∑

j=1

φ(ykjw
>xkj ) +

λ

2
‖w‖22 . (4)

The third party aims to aggregate the local classifiers wk

through averaging and release an output perturbed version
of the average:

wpriv =
1

K

K∑

k=1

wk + η , (5)

where η is an appropriate noise vector, e.g, with density
as in Eq. (2), with appropriate β.2 A straightforward im-
plementation of this idea is problematic since directly shar-
ing wk runs the risk of the third party potentially being
able to identify some of the individual data points in Dk

from which wk was learned; to overcome this difficulty,
Pathak et al propose a cryptographic scheme based on ad-
ditively homomorphic encryption, which allows the third
party to securely compute the above aggregate classifier
without getting direct access to any of the individual clas-
sifiers wk. Pathak et al also provide theoretical analysis
comparing the above classifier wpriv with the minimizer
w∗ of the overall multiparty regularized ERM objective
J(w) (Eq. (1)); in particular, they obtain a high probabil-
ity bound (over D ∼ QN and the noise vector η) on the
excess φ-error of wpriv over that of w∗ (i.e. on the differ-
ence between the expected φ-loss of wpriv and that of w∗,
E(x,y)∼Q[φ(yw>privx)]−E(x,y)∼Q[φ(yw∗>x)]).

While the algorithm of Pathak et al [7] is simple concep-
tually, it is not clear why averaging local regularized ERM
classifiers learned by the individual parties is the right way
to approximate the overall regularized ERM classifier; in-
deed, the excess error bounds of Pathak et al over the
minimizer w∗ of the overall multiparty objective become
looser as the number of parties K increases or the size of
the smallest data set minkNk decreases. In what follows,

2The work of Pathak et al [7] actually uses a noise vec-
tor η drawn from a multivariate Laplace density µ(η) ∝
exp(−β‖η‖1) for appropriate β; however the density described
above also achieves ε-differential privacy.

we propose a privacy-preserving algorithm that directly at-
tempts to approximate the minimizer w∗ of the overall mul-
tiparty regularized ERM objective J(w) (Eq. (1)). The al-
gorithm is based on a stochastic gradient descent proce-
dure; in fact, as we will see, the algorithm can equivalently
be viewed as performing objective perturbation on the mul-
tiparty objective, although with a different type of noise
than that used in the (single-party) objective perturbation
algorithm of [4]. Due to the different noise, we are able to
guarantee only a slightly weaker form of (ε, δ)-differential
privacy (this will be defined later); however the excess er-
ror bounds that we prove over w∗ are independent of the
number of parties involved and the size of the smallest data
set, and in this sense are superior to the bounds of [7].

3 A New Algorithm for Differentially
Private Multiparty Classification

3.1 Basic Idea

Let us begin by considering a third party which wants
to minimize the overall multiparty objective J(w) (see
Eq. (1)) by running a gradient descent algorithm. We will
assume that the loss function φ is convex and differentiable,
which will ensure that gradients exist and that the mini-
mizer of the objective is unique. To run such an algorithm,
all that the third party needs is the gradient information at
any given wt. The gradient of J(w) at wt is given by

∇J(wt) =
1

N

N∑

i=1

φ′(yiw
>
t xi)(yixi) + λwt , (6)

which can equivalently be written as

∇J(wt) =
1

N

K∑

k=1

Nk∑

j=1

φ′(ykjw
>
t x

k
j )(ykj x

k
j ) + λwt . (7)

Clearly, the gradient of J(w) at any wt can be computed
from pieces of information from the K different parties. In
particular, if party Pk provides the gradient

∇Gk(wt) =

Nk∑

j=1

φ′(ykjw
>
t x

k
j )(ykj x

k
j ) (8)

of the local cumulative loss Gk(w) =
∑Nk
j=1 φ(ykjw

>xkj ),
then the third party can compute ∇J(wt) by combining
these as follows:

∇J(wt) =
1

N

K∑

k=1

∇Gk(wt) + λwt . (9)

This method is sufficient to ensure that the third party, by
running a gradient descent procedure with appropriately
chosen wt, converges to the minimizer of J(w). However,
so far, we have not taken any privacy considerations into
account.

935



A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification

3.2 Privacy Considerations: Attempt 1

In sharing the gradients ∇Gk(wt) as above, which are
computed from the local data set Dk, a party Pk runs the
risk of potentially compromising the privacy of its individ-
ual data points. To preserve the privacy of its data, each
party can consider providing a differentially private ver-
sion of these gradients. Specifically, if we view each party
as running an algorithm that given Dk as input computes
∇Gk(wt) as output (at some specified wt), we can obtain
a differentially private version via output perturbation. In
particular, note that the algorithm computing the gradient
has bounded sensitivity:

Proposition 3.1. If the loss function φ is L-Lipschitz and
all data points lie in a unit ball, then the L2 sensitivity of
the algorithm that computes ∇Gk(wt) from Dk is at most
2L.

The proof is provided in the appendix. Thus, when re-
quested for gradient information at wt, party Pk can return
the following:

∇Ĝk(wt) = ∇Gk(wt) + ρkt , (10)

where ρkt ∈ Rd is an appropriate noise vector, e.g. with
density as in Eq. (2), with appropriate β. In particular, for
the gradient evaluation at wt to achieve ε-differential pri-
vacy, one can take β = ε

2L .

Privacy breach. Unfortunately, the above is not sufficient
to guarantee ε-differential privacy of the procedure as a
whole. To see this, note that each of the parties has added
a zero mean, finite variance noise to the output that it sends
to the third party. The third party now normalizes the sum
of these outputs by N and adds λwt to it:

∇Ĵ(wt) =
1

N

K∑

k=1

∇Ĝk(wt) + λwt . (11)

One can view the third party as having now computed
a noisy version of the gradient of J(w) at wt, where
the noise added is a (finite) sum of zero mean, finite
(co)variance random vectors, and is therefore a zero mean,
finite (co)variance random vector itself:

∇Ĵ(wt) = ∇J(wt) +
1

N

K∑

k=1

ρkt . (12)

It is well known in the stochastic approximation literature
[8] that if only noisy versions of the gradients of a function
are available, then as long as the noise is a zero mean, fi-
nite (co)variance random vector, by choosing suitable step
sizes, one can converge to the minimizer of the function
almost surely. This remarkable property then implies that
the third party can converge to the true minimizer w∗ of
the overall objective J(w), which can potentially allow it
to recover information about some of the individual data
points in D. Similarly, by performing gradient descent on

the noisy gradients of only the kth party Pk, the third party
can also converge to the minimizer of party Pk’s objective
Jk(w), thereby allowing it to potentially recover informa-
tion specifically about the data points in Dk.

So what went wrong even after we perturbed the gradi-
ents at each iteration? The problem is that while each
perturbed gradient ∇Ĝk(wt) is ε-differentially private,
after providing T such gradients, say at w1, . . . ,wT ,
any party Pk is assured of only (Tε)-differential pri-
vacy. To see this, note that after T iterations, the (per-
turbed) output computed from Dk actually consists of
(∇Ĝk(w1), . . . ,∇Ĝk(wT )) ∈ (Rd)T . Therefore, if D′k
differs from Dk in a single element and ∇Ĝ′k(wt) denotes
the (perturbed) gradient at wt computed from D′k, then by
independence of the perturbations at different iterations, we
have

Pr[(∇Ĝk(w1), . . . ,∇Ĝk(wT )) = (ω1, . . . ,ωT )]

Pr[(∇Ĝ′k(w1), . . . ,∇Ĝ′k(wT )) = (ω1, . . . ,ωT )]

=
Pr[∇Ĝk(w1) = ω1]

Pr[∇Ĝ′k(w1) = ω1]
. . .

Pr[∇Ĝk(wT ) = ωT ]

Pr[∇Ĝ′k(wT ) = ωT ]

≤ (eε)T = eTε . (13)

Thus after a large number of iterations T , the privacy guar-
antee of the above approach is effectively meaningless.

One possible solution to the above problem is to vary ε
on each iteration, i.e. to require the (perturbed) gradient at
wt to be εt-differentially private, where

∑∞
t=1 εt ≤ ε (e.g.

one can take εt = ε
2t ). This will clearly ensure that each

party is guaranteed ε-differential privacy overall, even af-
ter an arbitrarily large number of iterations T . However, as
εt becomes smaller, the noise ρkt (which is now sampled
from the density in Eq. (2) with βt = εt

2L ) has larger and
larger (co)variance. Consequently, after a sufficiently large
number of iterations, the perturbed gradients will no longer
have much relation to the original gradients – in fact they
will be highly random – and therefore the weight vector
learned by the gradient descent procedure on these highly
noisy gradients will also have a high degree of randomness,
with relatively little dependence on the actual data D. This
means that the classifier learned by such an approach is un-
likely to have good generalization performance.

Below we propose an alternative solution that will allow
us to preserve the privacy of individual parties’ data points
while also providing good generalization guarantees.

3.3 Privacy Considerations: Attempt 2

We saw above that perturbing the individual parties’ gradi-
ents according to Eq. (10) allows the gradient descent pro-
cedure to converge to the exact minimizer w∗ of the overall
multiparty objective J(w), thereby compromising privacy.
Instead, we would like the procedure to learn a weight vec-
tor that is close enough to w∗ to yield good generaliza-

936



Arun Rajkumar and Shivani Agarwal

tion performance, but that is sufficiently random to provide
good privacy guarantees. To this end, we consider adding
another noise vector ηk, which is sampled only once by
each party Pk, to each gradient:

∇Ĝk(wt) = ∇Gk(wt) + ρkt + ηk , (14)

where ρkt ∈ Rd is sampled from the density in Eq. (2) with
β = ε

2L as before; the distribution of ηk will be described
shortly.

Now, even if the third party runs a gradient descent pro-
cedure infinitely with the noisy gradients from each party
given as above, it can only get rid of the effect of the ρkt ’s,
whereas the effect of the fixed noise ηk remains constant.
In particular, the third party now has noisy gradients of the
form

∇Ĵ(wt) =
1

N

K∑

k=1

∇Ĝk(wt) + λwt (15)

= ∇J(wt) +
1

N

K∑

k=1

ηk +
1

N

K∑

k=1

ρkt , (16)

and therefore can converge only to the minimizer of

J̃(w) = J(w) +

(
1

N

K∑

k=1

ηk

)>
w . (17)

Note that ρkt ’s do not feature in the above objective as they
can be viewed as noise vectors which corrupt gradient eval-
uations of the above objective (the corrupting noise must be
sampled independently on each iteration for its effect to be
removed, which is why ηk still appears in the objective).
Also observe that the above objective is just a perturbed
version of the overall multiparty objective J(w). Similarly,
if the third party attempts to run gradient descent using only
party Pk’s noisy gradients, it can now converge to the min-
imizer of only J̃k(w) = Jk(w) + 1

Nk
ηk
>
w.

We will show below that with an appropriate choice of
noise vectors ηk one can obtain both privacy and gener-
alization guarantees for the above procedure. Before this
we answer a few questions that remain.

Are ρkt ’s Still Necessary?
A natural question is: what role do the ρkt ’s now play in
the above procedure? Since their effect will in any case be
eliminated by the gradient descent procedure, is it still nec-
essary to include them? To answer this question, consider
the case where the kth party Pk does not add the ρkt noise
vectors. Thus when requested for a gradient at wt, party Pk
simply returns

∇Ĝk(wt) = ∇Gk(wt) + ηk . (18)

Now consider the difference of gradient evaluations by
party Pk at consecutive iterations t and t+ 1:

∇Ĝk(wt)−∇Ĝk(wt+1) = ∇Gk(wt)−∇Gk(wt+1) (19)

As can be seen, the effect of the noise ηk has been elim-
inated. The third party could potentially now use the dif-
ference between these true gradients to obtain information
about the data points in Dk from which these gradients
are computed, thereby compromising the privacy of Pk.
Adding the ρkt vectors that get sampled during every it-
eration ensures that such a privacy leakage is prevented.

Distribution of ηk: This distribution from which ηk vec-
tors are sampled will be critical in proving the privacy of
the classifier that the third party computes. Recall from
above that the algorithm proposed can be viewed as min-
imizing a perturbed form of J(w), the perturbation be-
ing given by η>w where η = 1

N

∑K
k=1 η

k. We know
from [4] that such an objective perturbation will preserve ε-
differential privacy if η has density of the form in Eq. (2),
with appropriate β. However we cannot apply this result
directly to our setting since it is not clear how to choose the
independent ηk such that the resulting (normalized) sum η
is distributed as Eq. (2). Instead, we will consider taking
each ηk to be a multivariate Gaussian with zero mean and
diagonal covariance matrix with diagonal entries σ∗2

K . The
sum

∑K
k=1 η

k is then again a multivariate Gaussian with
zero mean and diagonal covariance matrix, with diagonal
entries given by σ∗2. In the next section, we show that by
choosing an appropriate value for σ∗, we can guarantee a
slightly weaker form of (ε, δ)-differential privacy. The fi-
nal algorithm, consisting of the third party’s functionality
together with the individual parties’ functionality, is shown
in Algorithm 1.

Algorithm 1 PSGD (Private Stochastic Gradient Descent:
Third Party’s Functionality)
Input:

1. Handles (Pk)Kk=1

2. Constants: ε, δ,Max iterations, λ, N , c (upper bound
on φ′′(z) ∀z)

3. {zt} such that
∞∑

t=1

zt =∞ and
∞∑

t=1

z2
t <∞

Output: Differentially private classifier wpsgd

[∆, ε̃] = computeSlack(ε,λ,N ,c)
Initialize w0

t← 0
while t < Max iterations do

for k = 1 to K do
∇Gk(wt) = Pk(wt, ε̃, δ)

end for
∇J(wt)← 1

N

∑K
k=1∇Gk(wt) + (λ+ ∆)wt

wt+1 ← wt − zt∇J(wt)
end while
wpsgd ← wt
return wpsgd

937



A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification

Procedure 2 computeSlack
Input: ε, λ, N , c
Output: ∆, ε̃
ε̃ = ε− 2 log(1 + c

Nλ )
if ε̃ > 0 then

∆ = 0
else

∆ = c
N(exp ( ε4 )−1) − λ

ε̃ = ε
2

end if
return [∆, ε̃]

Procedure 3 Pk (Individual Party Pk’s Functionality)
Input:

1. Data set Dk = (xkj , ykj )Nkj=1 corresponding to party Pk
2. Current iterate of classifier wt
3. Constants: ε̃, δ, L (Lipschitz constant for φ)
4. Noise vector ηk sampled from a multivariate Gaus-
sian with mean 0 and diagonal covariance matrix with
diagonal entries σ∗2

K where σ∗ := σ∗(d, ε̃, δ) is chosen
such that

Pr

(
U ≤ (σ∗ε̃− 2)2

4σ∗2

)
= 1− δ

where U is a χ2 distributed random variable with d de-
grees of freedom. (Note that ηk is sampled once by each
party and the same vector is used in all iterations)

Output: Perturbed gradient ∇Ĝk(wt) of cumulative loss
of wt on Dk

∇Gk(wt) =
∑Nk
j=1 φ

′(ykjw
>
t x

k
j )(ykj x

k
j )

Draw ρkt according to density in Eq. (2) with β = ε
2L

∇Ĝk(wt)← ∇Gk(wt) + ρkt + ηk

return ∇Ĝk(wt)

4 Privacy Analysis
Recall from above that the stochastic gradient descent pro-
cedure described in Section 3 (Algorithm 1) effectively
finds the minimizer of a perturbed form of the overall (mul-
tiparty) regularized ERM objective J(w) (Eq. (1)), with
the perturbation vector η ∈ Rd being sampled from a mul-
tivariate Gaussian density with zero mean and diagonal co-
variance matrix. We therefore first obtain a result on the
privacy of such a Gaussian objective perturbed regularized
ERM classifier, and then apply this result to our setting. Be-
fore this we define the notion of (ε, δ)-differential privacy
[10] which will be used in our results.

Definition. A randomized algorithm A is (ε, δ)-
differentially private if for all data sets D, we can
divide the output space Ω into two sets Ω1 and Ω2 (possi-
bly depending on D) such that Pr[A(D) ∈ Ω1] ≤ δ and

for all data sets D′ that differ from D in a single element
and all ω ∈ Ω2,

Pr[A(D) = ω]

Pr[A(D′) = ω]
≤ eε .

This definition guarantees that algorithm A achieves ε-
differential privacy with probability at least 1 − δ. The set
Ω1 contains all outputs that are considered privacy breaches
according to ε-differential privacy; the probability of such
an output is bounded by δ.

Privacy of Gaussian objective perturbation. Consider
now the Gaussian objective perturbed regularized ERM al-
gorithm shown in Algorithm 4. It can be shown that the
algorithm provides (ε, δ)-differential privacy:

Algorithm 4 GOP (Gaussian Objective Perturbation)
Input:

1. Data set D = (xj , yj)Nj=1

2. Constants: ε, δ, λ, c
Output: (ε, δ)-differentially private classifier wgop

[∆, ε̃] = computeSlack(ε,λ,N ,c)
Draw a vector η ∈ Rd, with each component of η drawn
independently from N (0, σ∗2) where σ∗ is chosen as
mentioned in Procedure 3
Compute wgop = arg minw J(w) + 1

Nw>η + ∆
2 ‖w‖2

return wgop

Theorem 4.1. If φ is convex and doubly differentiable with
φ′(z) ≤ 1 and φ′′(z) ≤ c ∀z, then Algorithm 4 is (ε, δ)-
differentially private.

The proof is based on the techniques used to analyze objec-
tive perturbation in [4] and on properties of the Gaussian
and χ2 distributions; details are provided in the appendix.3

Application to our setting. As noted above, the stochastic
gradient descent based multiparty algorithm we have pro-
posed can be viewed as performing Gaussian objective per-
turbation on the overall multiparty objective. Therefore if
the third party runs the PSGD procedure as outlined, the
privacy guarantee of Theorem 4.1 holds in this case as well.
However, the problem here is that the third party may at-
tempt to run the stochastic gradent descent procedure using
the noisy gradients provided by one of the individual par-
ties Pk only. In this case, the privacy guarantee to the party
Pk is weaker (in particular, it is guaranteed only (ε, δk)-
differential privacy, where δk > δ and depends on Nk.4 In-
stead, we can make use of the cryptographic scheme used

3The χ2 distribution with parameter d corresponds to the den-
sity of the squared L2 norm of a vector of d independent standard
normal random variables.

4Alternatively one can ensure (ε, δ)-differential privacy for the
individual parites by making each party add noise with a variance
that depends on its data set. In such a case, the overall objective

938



Arun Rajkumar and Shivani Agarwal

by [7] at each iteration, where the third party directly re-
ceives the sum of the noisy gradients from all the parties in
a cryptographically secure manner. Once this is done, the
same (ε, δ)-differential privacy guarantee we had for GOP
holds for all the parties in the multiparty setting as well:

Theorem 4.2. If on each iteration t the third party receives
the sum of noisy gradients from all the parties in a cryp-
tographically secure manner as described above, then Al-
gorithm 1 (with σ∗ chosen as described in Procedure 3) is
(ε, δ)-differentially private.

The proof involves establishing equivalence of Algorithm 1
and 4. Details are in the appendix.

5 Generalization Analysis
In this section, we turn to the error analysis of our algo-
rithm. Recall that all data points are assumed to be gen-
erated iid from a fixed but unknown distribution Q over
X×{±1}. We would like to obtain high probability bounds
(over the draw of D ∼ QN and the randomization in the
algorithm) on the expected error of the learned classifier w
on future examples fromQ, e.g. as measured by the φ-loss,
E(x,y)∼Q[φ(yw>x)]. We first have the following result,
which gives a high probability bound on the excess reg-
ularized empirical risk of wgop, J(wgop), over that of the
minimizer w∗ of J(w):

Theorem 5.1. If φ is such that φ′(z) ≤ 1 ∀z , φ′′(z) ≤
c ∀z, all the data instances xi lie in a unit ball and ∆ =
0, then with probability at least 1 − δ′ (over the draw of
D ∼ QN and randomization in the algorithm), the excess
empirical regularized risk of the perturbed classifier wgop
learned by Algorithm 4 over the minimizer w∗ of J(w) is
bounded as

J(wgop) ≤ J(w∗) +
(c+ λ)

2N2λ2
T̂

where T̂ := T̂ (d, ε̃, δ, δ′) satisfies the equation

Pr

(
U ≤ T̂

σ∗2

)
= 1− δ′

where U is a χ2 random variable with d degrees of freedom
and σ∗ = σ∗(d, ε̃, δ) is as chosen in Procedure 3.
The proof makes use of techniques similar to those used in
[4], together with properties of Gaussian and χ2 distribu-
tions; exact details are provided in the appendix.

The above result is better understood using the following
proposition which makes the dependence of the quantity T̂
on the parameters d, ε̃, δ, and δ′ explicit.

Proposition 5.2. The following bound holds for parame-
ters as in Theorem 5.1 and Algorithm 4

can also be guaranteed (ε, δ)-differential privacy but the general-
ization bounds will depend on the number of parties K and the
size of the smallest data set as in [7]

T̂ = O(
d2 log( 1

δ ) log( 1
δ′ )

ε̃2
) ∀ δ, δ′ ≤ 1

e
The proof involves bounding the tail of χ2 distribution us-
ing an inequality of [9] and is given in the appendix.

The following theorem bounds the excess expected φ-loss
of wgop over that of w∗.
Theorem 5.3. Let φ be convex and doubly differentiable
with φ′(z) ≤ 1 and φ′′(z) ≤ c ∀z. Then there exists a
constant κ such that for any fixed weight vector w0 and
any δ′ > 0, if

N > κ max

(
‖w0‖2 log( 1

δ′ )

τ2
,
c‖w0‖2
τε

,
‖w0‖T̂

1
2

τ

)

where T̂ := T̂ (d, ε̃, δ, δ
′
) is as in Theorem 5.1, then with

probability at least 1 − 2δ′ (over D ∼ QN and random-
ization in the algorithm), the output wgop of Algorithm 4
satisfies

E(x,y)∼Q
[
φ(yw>gopx)

]
−E(x,y)∼Q

[
φ(yw>0 x)

]
≤ τ .

Again, the proof is based on methods used in [4]; details
are included in the appendix.

Comparison with bounds of [7] and [4]: It is worth not-
ing that the bounds presented above do not depend on the
number of parties K or the relative sizes of the individual
parties’ data sets. In contrast, the bound in Theorem 4.3
of [7] which bounds the same quantity as in Theorem 5.1
contains three terms: while one term is independent of K
and has the same dependence on ε̃, δ′, and d (assuming the
privacy parameter δ is equal to the confidence parameter δ′;
with an extra log(d) factor due to the different tail bound
on the noise), there are two extra terms which do depend on
the number of partiesK. Thus in this sense, our bounds are
superior to the bounds of [7]. The bound obtained in The-
orem 5.3 (with δ = δ′, and using Proposition 5.2) is very
similar to that obtained for (single-party) objective pertur-
bation in Theorem 4 of [4] (again, their bound has an extra
log(d) factor due to the different noise bound).

Note that while the above bounds are proved for wgop, the
output of Algorithm 4, we also expect them to hold true for
wpsgd, the output of Algorithm 1. This is because theoret-
ically both the algorithms minimize the same objective. In
practice, this depends on the efficacy of the stochastic gra-
dient descent procedure. The experiments in the following
section confirm that the difference is not significant.

6 Experimental Results
In this section we present experimental results that compare
the PSGD and GOP algorithms with the local aggregation
method of Pathak et al [7], using both simulated and real-
world data sets focusing on the effect of two parameters:
the number of parties K, and the relative sizes of the indi-
vidual data sets owned by different parties.

1. Simulated data. We generated 1000 training and 1000
test examples in R10 × {±1} as follows: each instance x

939



A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification

was drawn uniformly at random from the interior of a 10-
dimensional unit hypersphere; a random weight vector w ∈
R10 was then chosen as the true classification vector, and
the instances were labeled according to sign(w · x). This
process was repeated 5 times to obtain 5 random data sets
(each containing 1000 train and 1000 test examples); the
results reported below are averaged over these 5 data sets.

5 10 15
0

0.2

0.4

0.6

0.8

1

Number of parties K

T
es

t e
rr

or

 

 

5 10 15
0

0.2

0.4

0.6

0.8

1

Number of parties K

T
es

t e
rr

or

 

 

1 2 3
0

0.2

0.4

0.6

0.8

1

Skew vector

T
es

t e
rr

or

 

 

1 2 3
0

0.2

0.4

0.6

0.8

1

Skew vector

T
es

t e
rr

or

 

 

GOP
PSGD
Local Agg (LA)

GOP
PSGD
Local Agg (LA)

GOP
PSGD
Local Agg (LA)

GOP
PSGD
Local Agg (LA)

ε = 0.2ε = 0.1

ε = 0.2ε = 0.1

Figure 1: Effect of number of parties K (top) and relative sizes of
individual data sets (bottom) on the PSGD and GOP algorithms
and on the local aggregation (LA) method of Pathak et al [7] on
the simulated data set. The x-axis for the bottom figure represents
different skew vectors (1 = [0.2, 0.2, 0.2, 0.2, 0.2], 2 = [0.1, 0.2,
0.2, 0.25, 0.25] and 3 = [0.01, 0.29, 0.2, 0.25, 0.25]). Results with
PSGD and GOP are with δ = 0.05.

1a. Effect of number of parties K. We considered the
effect of distributing the training set among K parties for
different values of K, namely, K = 5, 10, and 15. Note
that the classifier learned by the GOP algorithm does not
depend on the number of parties; the purpose of this exper-
iment was to evaluate its performance relative to the PSGD
algorithm and the algorithm of [7] for different K. For
each value of K, a data split vector was chosen uniformly
at random from a (K − 1)-dimensional simplex; this was
used to decide the fraction of training data points to allo-
cate to each party. The GOP and PSGD algorithms were
run with δ = 0.05; the results (Figure 1 (top)) show the
average test error for ε = 0.1 (left) and ε = 0.2 (right). As
can be seen, (a) increasing the number of parties causes a
degradation in the performance of the algorithm of [7]; and
(b) the performance of PSGD is similar to that of GOP and
performs better than the algorithm of [7] even when only a
small number of parties are involved.

1b. Effect of relative sizes of individual data sets. In
this experiment we fixed the number of parties to K = 5
and considered the effect of different size splits of the data
among the 5 parties. Three data split vectors were consid-
ered: [0.2, 0.2, 0.2, 0.2, 0.2],[0.1, 0.2, 0.2, 0.25, 0.25] and
[0.01, 0.29, 0.2, 0.25, 0.25]. Each vector indicates the rel-
ative fraction of data owned by different parties. Figure 1

5 10 15
0

0.2

0.4

0.6

0.8

1

Number of parties K

T
es

t e
rr

or

 

 

5 10 15
0

0.2

0.4

0.6

0.8

1

Number of parties K

T
es

t e
rr

or

 

 

1 2 3
0

0.2

0.4

0.6

0.8

1

Skew vector

T
es

t e
rr

or

 

 

1 2 3
0

0.2

0.4

0.6

0.8

1

Skew vector

T
es

t e
rr

or

 

 

GOP
PSGD
Local Agg (LA)

GOP
PSGD
Local Agg (LA)

GOP
PSGD
Local Agg (LA)

GOP
PSGD
Local Agg (LA)

ε = 0.1 ε = 0.2

ε = 0.2ε = 0.1

Figure 2: Effect of number of parties K (top) and relative sizes of
individual data sets (bottom) on the PSGD and GOP algorithms
and on the local aggregation (LA) method of Pathak et al [7] on
the Wisconsin breast cancer data set. The x-axis for the bottom
figure represents different skew vectors (1 = [0.2 0.2 0.2 0.2 0.2],
2 = [0.1, 0.2, 0.2, 0.25, 0.25] and 3 = [0.01, 0.29, 0.2, 0.25, 0.25]).
Results with PSGD and GOP are with δ = 0.05.

(bottom) shows the result for ε = 0.1 (left) and ε = 0.2
(right). Again, one can observe that (a) the algorithm of
[7] depends heavily on the size of the smallest data set,
with performance degrading as the smallest data set size
reduces; and (b) the performance of PSGD and GOP are
similar to each other and are not affected by the skew of
the data sets.

2. Real-world data. We compared the above algorithms
on the Wisconsin breast cancer data set (569 instances, 30
dimensions) [11]. The data set was divided into 5 parts and
5 different (training, validation) splits were generated from
it where the validation set in each split contained a different
part of the data set. Results in Figure 2 are averaged over
these 5 splits. The observations made in the simulated data
set case hold true for this data set as well.

7 Conclusion
We considered the notion of differential privacy in multi-
party settings and proposed a new stochastic gradient de-
scent based algorithm that directly approximates the over-
all multiparty objective. We argued that our algorithm can
be viewed as performing Gaussian objective perturbation
on the overall objective and showed that it achieves (ε, δ)-
differential privacy. We obtained bounds on the excess er-
ror of the learned classifier that are independent of the num-
ber of parties or relative sizes of individual parties’ data
sets. Experimental results show that our method has com-
parable accuracy with the local aggregation method of [7]
in general and outperforms it when the minimum size of
the dataset among all the parties is relatively small or when
the number of parties is large.

940



Arun Rajkumar and Shivani Agarwal

Acknowledgements: We thank Harish Guruprasad and
Manas Pathak for discussions related to this work. We
would also like to thank the anonymous reviewers for their
useful suggestions. This research was supported in part
by a Ramanujan Fellowship to SA from the Department
of Science and Technology, Government of India. AR’s
travel to the conference is supported in part by a Microsoft
Research India Travel Grant.

References

[1] C. Dwork. Differential privacy. In M. Bugliesi, B.
Preneel, V. Sassone, and I. Wegener, editors, ICALP
(2), volume 4052 of Lecture Notes in Computer Sci-
ence, pages 112. Springer, 2006.

[2] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analy-
sis. In Theory of Cryptography Conference, 2006.

[3] K. Chaudhuri, C. Monteleoni: Privacy-preserving
logistic regression. In Neural Information Process-
ing Systems, 2008.

[4] K. Chaudhuri, C. Monteleoni, and A. Sarwate. Dif-
ferentially private empirical risk minimization. In
Journal of Machine Learning Research, 12:1069–
1109, 2011.

[5] B. I. P. Rubinstein, P. L. Bartlett, L. Huang,
and N. Taft. Learning in a large function space:
Privacy-preserving mechanisms for SVM learning.
In http://arxiv.org/abs/0911.5708, 2009.

[6] K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast
rates for regularized objectives. In Neural Informa-
tion Processing Systems, 2008.

[7] M. Pathak, S. Rane, and B. Raj. Multiparty differen-
tial privacy via aggregation of locally trained clas-
sifiers. In Neural Information Processing Systems,
2010.

[8] H. Robbins,S. Monro. A stochastic approximation
method. In Annals of Mathematical Statistics, 22,
400–407, 1951.

[9] B. Laurent and P. Massart. Adaptive estimation of a
quadratic functional by model selection. In Annals
of Mathematical Statistics, 28(5):1302–1338, 2000.

[10] M. Gotz, A. Machanavajjhala, G. Wang, X. Xiao,
and J. Gehrke. Privacy in search logs. In Computing
Research Repository, vol. abs/0904.0682, 2009.

[11] A. Frank, A. Asuncion, UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine,
CA: University of California, School of Information
and Computer Science.

941


