
1 Appendix

Proposition 3.1 If the loss function φ is L-Lipschitz and
all data points lie in a unit ball, then the L2 sensitivity of
the algorithm that computes ∇Gk(wt) from Dk is at most
2L.

Proof. Let Dk, D
′
k be any two data sets differing

in a single element. Without loss of general-
ity, we can assume that Dk and D′k differ only in
their last element, with Dk = {(xkj , ykj )}Nk

j=1 and
D′k = {(xk1 , yk1 ), . . . , (xkNk−1, y

k
Nk−1), (x′kNk

, y′kNk
)}. Let

∇G′k(wt) denote the gradient at wt of the cumulative loss
on D′k.

By definition, we have for datasets Dk and D′k,

∇Gk(wt) =
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Then we have
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≤ 2L ,

where the first inequality follows from triangle inequality
and the last inequality follows from the assumptions that φ
is L-Lipschitz (which gives |φ′(z)| ≤ L ∀z), ykj ∈ {±1},
and ‖xkj ‖2 ≤ 1.

Theorem 4.1 If φ is convex and doubly differentiable with
φ′(z) ≤ 1 and φ′′(z) ≤ c ∀z, then Algorithm 4 is (ε, δ)-
differentially private.

Proof. The proof is similar in overall structure to the proof
of Theorem 9 of Chaudhuri et al. [4]; We provide the de-
tails here for completeness.

To prove (ε, δ) differential privacy, we need the ratio
Pr(wgop|D)
Pr(wgop|D′) of the densities of wgop under two neighboring
data sets D and D′. As the objective function that Algo-
rithm 4 minimizes is convex, it has a unique minimizer and
hence one can show that there exists a bijection between

the noise that is added to the objective and the output of the
Algorithm. This allows us to write the ratios of the densi-
ties of getting any fixed vector as output for adjacent data
sets in terms of the ratios of the noises added to achieve that
particular output vector. Specifically, if wgop is the output
of the algorithm, the following holds:

Pr(wgop|D)

Pr(wgop|D′)
=

Pr(ηD|D)

Pr(ηD′ |D′)
.
|det(J(wgop → ηD|D))|−1

|det(J(wgop → ηD′ |D′))|−1

where J(wgop → ηD|D) represents the Jacobian matrix
of the mapping from wgop to ηD whose (j, k)-th entry is
given by

J(wgop → ηD|D)jk =
∂η

(j)
D

∂w
(k)
gop

We will first bound the ratio of the determinants.

Note that the mapping from wgop to ηD is got by setting
the derivative of the perturbed objective function involving
the dataset D to zero. Thus we have for dataset D, the
following mapping.

ηD = −N(λ+ ∆)wgop +

N∑
i=1

φ′(yiw
>
gopxi)(yixi) .

Under this mapping, the (j, k)-th entry of the Jacobian
J(wgop → ηD|D) is given by

J(wgop → ηD|D)jk = −N(λ+ ∆)I(j = k)−
N∑
i=1

y2i φ
′′(yiw

>
gopxi)x

(j)
i x

(k)
i

Define

A := N(λ+ ∆)Id +

N∑
i=1

y2i φ
′′(yiw

>
gopxi)xix

>
i

and

E := y′2Nφ
′′(y′Nw>gopx

′
N )x′Nx′

>
N−

y2Nφ
′′(yNw>gopxN )xNx>N

Thus we have, the ratio of the determinants of the Jacobians
equal to

|det(J(wgop → ηD|D))|−1

|det(J(wgop → ηD′ |D′))|−1
=
|det(A + E)|
|det(A)|

As the matrix E is of rank atmost 2, by Lemma 2 of [4],
this determinant ratio is equal to

|det(A + E)|
|det(A)|

= |1+θ1(A−1E)+θ2(A−1E)+θ1(A−1E)θ2(A−1E)|



where θ1 and θ2 are the largest and second largest eigen-
values of the matrix A−1E in absolute value.

As φ is doubly differentiable and convex, the second term
in the definition of A is a positive semi definite matrix.
Thus it follows that the eigenvalues of A are greater than
N(λ + ∆) which is the eigenvalue of the first term in the
definition of A. Hence we have

|θl(A−1E)| ≤ | θl(E)

N(λ+ ∆)
| l = 1, 2

Now applying Lemma 3 of [4] gives us the following rela-
tions for the eigenvalues of the matrix E

|θ1(E)|+ |θ2(E)| ≤ 2c

and
|θ1(E)|.|θ2(E)| ≤ c2

Substituting these in the bound above, we get

|det(A + E)|
|det(A)|

≤
(

1 +
c

N(λ+ ∆)

)2

It is easy to verify that the choice of ∆ in Algorithm 4 im-
plies that the above quantity is bounded by e(ε−ε̃) . Thus
we have established the following:

|det(J(wgop → ηD|D))|−1

|det(J(wgop → ηD′ |D′))|−1
≤ e(ε−ε̃)

Now if we can choose a variance for the Gaussian noise
such that the ratio Pr(ηD|D)

Pr(ηD′ |D′)
is bounded by eε̃, then we

have ε-differential privacy overall. Unfortunately, unlike
the noise considered in [4], such a bound is not possible
with the Gaussian noise we use. Instead, for any given data
setD, we will show that the output space Rd can be divided
into two sets Ω1,Ω2 such that Pr(A(D) ∈ Ω1) ≤ δ, and
for all data sets D′ that differ from D in one element, we
get Pr(A(D)=w)

Pr(A(D′)=w) ≤ eε for all w ∈ Ω2; this will allow us to
show (ε, δ) differential privacy for the Gaussian objective
perturbation algorithm.

To prove a (high probability) bound on the ratio of den-
sities, we proceed in the usual way. Let the noise that is
added to data sets D and D′ be ηD and ηD′ . For now we
will assume each component of the noise vectors is cho-
sen independently from N (0, σ2) without committing to
the exact value of σ; this will be selected later. Then we
need to show

Pr(ηD)

Pr(ηD′)
≤ eε̃ .

Using the fact that the noise vectors are Gaussian, we will
consider when the following inequality holds:

exp (− 1

2σ2
(‖ηD‖2 − ‖ηD′‖2)) ≤ eε̃ .

Equivalently we can consider when the following holds:

‖ηD′‖2 − ‖ηD‖2 ≤ 2σ2ε̃ .

Consider the LHS of the above expression. This is equal to

‖ηD′ + ηD − ηD‖2 − ‖ηD‖2

= ‖ηD′ − ηD‖2 + ‖ηD‖2 + 2(ηD′ − ηD)>ηD − ‖ηD‖2

which by Cauchy-Schwartz becomes

≤ ‖ηD′ − ηD‖2 + 2‖ηD′ − ηD‖ ‖ηD‖

To obtain wgop as output for bothD andD′, we know from
before that we must have

ηD = −N(λ+ ∆)wgop −
N∑
i=1

φ′(yiw
>
gopxi)(yixi)

and

ηD′ = −N(λ+ ∆)wgop

−
N−1∑
i=1

φ′(yiw
>
gopxi)(yixi)

−φ′(y′Nw>x′N )(y′Nx′N )

Now by using the fact that |φ′(z)| ≤ 1 ∀z and ‖xi‖ ≤ 1 ∀i,
we have

‖ηD′ − ηD‖ ≤ 2 .

After applying this bound to the previous step and a few
steps of algebra, we find that we need to consider when the
following holds:

‖ηD‖ ≤
σ2ε̃− 2

2
(1)

The above equation cannot be satisfied for all values that
the random variable ‖ηD‖ can take. However, we can al-
ways choose a variance σ such that

Pr

(
‖ηD‖ ≤

σ2ε̃− 2

2

)
≥ 1− δ .

In particular, let σ∗ = σ∗(d, ε̃, δ) be the value that satisfies
the above relation with equality. Note that this corresponds
to choosing σ∗ such that

Pr

(
U ≤

(
σ2ε̃− 2

2σ

)2
)

= 1− δ .

where U is a χ2 random variable with d degrees of free-
dom. Now recall that the noise ηD that must be added to
the objective with data setD to get w as the output satisfies
the following

ηD(w) = −N(λ+ ∆)wgop +

N∑
i=1

φ′(yiw
>
gopxi)(yixi) .



For a given a data set D, consider Ω1,Ω2 defined as below:

Ω1 =

{
w ∈ Rd

∣∣∣ ‖ηD(w)‖ > ε̃σ∗2 − 2

2

}
Ω2 = Rd \ Ω1 .

Clearly, if A(D) ∈ Ω2, then the corresponding Gaussian
noise ηD that was generated to perturb the objective satis-
fies the property ‖ηD‖ ≤ ε̃σ∗2−2

2 . By choice of σ∗, this
happens with probability 1 − δ as required. Putting these
arguments together with the bound on the Jacobian proves
that Algorithm 4 is (ε, δ)-differentially private.

Theorem 4.2 If on each iteration t the third party receives
the sum of noisy gradients from all the parties in a cryp-
tographically secure manner, then Algorithm 1 (with σ∗

chosen as described in Procedure 3) is (ε, δ)-differentially
private.

Proof. Note that the noise vector ηk generated once by
each party Pk is sampled according to a multivariate Gaus-
sian, each component of which is drawn according to
N (0, σ

∗2

K ). Thus the overall noise added to the objective
minimized by the third party is also a multivariate Gaus-
sian, with each component drawn from N (0, σ∗2). As Al-
gorithm 1 can be viewed as Gaussian objective perturba-
tion,by Theorem 4.1 , it follows directly that Algorithm 1
is (ε, δ)-differentially private.

Theorem 5.1 If φ is such that φ′(z) ≤ 1 ∀z , φ′′(z) ≤ c ∀z,
all the data instances xi lie in a unit ball and ∆ = 0, then
with probability at least 1− δ′ (over the draw of D ∼ QN
and randomization in the algorithm), the excess empirical
regularized risk of the perturbed classifier wgop learned by
Algorithm 4 over the minimizer w∗ of J(w) is bounded as

J(wgop) ≤ J(w∗) +
(c+ λ)

2N2λ2
T̂

where T̂ := T̂ (d, ε̃, δ, δ′) satisfies the equation

Pr

(
U ≤ T̂

σ∗2

)
= 1− δ′

where U is a χ2 random variable with d degrees of freedom
and σ∗ = σ∗(d, ε̃, δ) is as chosen in Procedure [3].

Proof. By Taylor series expansion of J , we have

J(wgop) = J(w∗) + (wgop −w∗)>∇J(w∗) +

1

2
(wgop −w∗)T∇2 (J(w)) (wgop −w∗)

for some w ∈ Rd. By definition∇J(w∗) = 0.

By Cauchy-Schwartz, we have

|J(wgop)− J(w∗)| ≤ 1

2
‖wgop −w∗‖2‖∇2J(w)‖ (2)

where the norm with respect the ∇2J(w) is the matrix L2

norm. But

∇2J(w) =
1

N

N∑
i=1

φ
′′
(yiw

>xi)xix>i + λId

which implies

‖∇2J(w)‖ = ‖ 1

N

N∑
i=1

φ
′′
(yiw

>xi)xix>i + λId‖

Applying triangle inequality for matrix norms, we have

‖∇2J(w)‖ ≤ ‖ 1

N

N∑
i=1

φ
′′
(yiw

>xi)xix>i ‖+ ‖λId‖

Since |φ′′(z)| ≤ c, we have,

‖∇2J(w)‖ ≤ c‖ 1

N

N∑
i=1

xix>i ‖+ λ‖Id‖

Again applying triangle inequality, we get

‖∇2J(w)‖ ≤ c 1

N

N∑
i=1

‖xix>i ‖+ λ‖Id‖

Since xi’s lie in the unit ball, we have that ‖xix>i ‖ ≤ 1.
Also ‖Id‖ = 1. Thus we get,

‖∇2J(w)‖ ≤ c+ λ

Substituting this in Equation 2 gives

J(wgop) ≤ J(w∗) +
(c+ λ)

2
‖wgop −w∗‖2

Using Lemma 7 of [4], we can show that for objective per-
turbation, if ∆ = 0, then we have

‖wgop −w∗‖2 ≤ ‖η‖
2

N2λ2

Thus we have

J(wgop) ≤ J(w∗) +
(c+ λ)

2

‖η‖2

N2λ2

We now can bound ‖η‖2 using ‖η‖
2

σ∗2 which is χ2 distributed
by equating the cumulative distribution function to (1− δ′)
to get the statement of the theorem.



Proposition 5.2 The following bound holds for parameters
as in Theorem [5.1] and Algorithm 4

T̂ = O(
d2 log( 1

δ ) log( 1
δ′ )

ε̃2
) ∀ δ, δ′ ≤ 1

e

Proof. Let U be a χ2 distributed random variable with d
degrees of freedom. Then the value of T̂ = T̂ (d, ε̃, δ, δ′) is
such that it satisfies the following equation.

Pr(U ≤ T

σ∗2
) = 1− δ′ (3)

where σ∗ = σ∗(d, ε̃, δ) is chosen as in Procedure [3].

To see how the value of T̂ grows with the parameters it
depends on, we use the following exponential tail bound
for a χ2 random variable from corollary of Lemma 1 in
[9]:

If U is χ2 distributed with D degrees of freedom, for any
positive x,

Pr(U ≥ D + 2
√
Dx+ 2x) ≤ e−x (4)

Substituting x = log( 1
δ′ ) and D = d in the above equation

yields us

Pr(U ≥ d+ 2

√
d log(

1

δ′
) + 2 log(

1

δ′
)) ≤ δ′

Comparing the above two tail inequalities for U , we obtain
that

T̂ ≤ σ∗2(d+ 2

√
d log(

1

δ′
) + 2 log(

1

δ′
)) (5)

As mentioned before, σ∗ is chosen such that the following
holds

Pr(U ≥ (σ∗2ε̃− 2)2

4σ∗2
) = δ

Using the same tail bound as before, but substituting x =
log( 1

δ ), we have

Pr(U ≥ d+ 2

√
d log(

1

δ
) + 2 log(

1

δ
)) ≤ δ

It then follows by comparing the above two equations that

(σ∗2ε̃− 2)2

4σ∗2
≤ d+ 2

√
d log(

1

δ
) + 2 log(

1

δ
))

Expanding the LHS gives

σ∗2ε̃2

4
+

1

σ∗2
− ε̃ ≤ d+ 2

√
d log(

1

δ
) + 2 log(

1

δ
))

Dropping the second term from the bound, we get

σ∗2 ≤ 4

ε̃2
Rδ +

4

ε̃

where Rθ is defined as (d + 2
√
d log( 1

θ ) + 2 log( 1
θ )) for

0 ≤ θ ≤ 1

As 1
ε̃2 would eventually dominate the above bound for σ∗2,

it implies that there exists some constant C such that

σ∗2 ≤ C 1

ε̃2
Rδ (6)

Substituting the bound got here in Equation 5, we get

T̂ ≤ C

ε̃2
RδRδ′ (7)

Now consider the quantity Rθ for some θ

Rθ = d+ 2

√
d log(

1

θ
) + 2 log(

1

θ
))

Rθ ≤ d+ 2

√
d log(

1

θ
) + 2d log(

1

θ
))

Now if θ ≤ 1
e , we have log( 1

θ ) ≥ 1. Thus in this case, we
have

Rθ ≤ d log(
1

θ
) + 2

√
d log(

1

θ
) + 2d log(

1

θ
))

The above can now be written as

Rθ ≤ C ′d log(
1

θ
)

for some C ′

Substituting this in Equation 7 for δ and δ′, it follows that

T̂ ≤ C ′′

ε̃2
d2 log(

1

δ
) log(

1

δ′
) (8)

for some C ′′.

Theorem 5.3 Let φ be convex and doubly differentiable
with φ′(z) ≤ 1 and φ′′(z) ≤ c ∀z. Then there exists a
constant κ such that for any fixed weight vector w0 , any
δ′ > 0, if

N > κ max

(
‖w0‖2 log( 1

δ′ )

τ2
,
c‖w0‖2

τε
,
‖w0‖T̂

1
2

τ

)



where T̂ = T̂ (d, ε̃, δ, δ
′
) is as in Theorem [5.1], then with

probability at least 1 − 2δ′ (over D ∼ QN and random-
ization in the algorithm), the output wgop of Algorithm 4
satisfies

E(x,y)∼Q
[
φ(yw>gopx)

]
−E(x,y)∼Q

[
φ(yw>0 x)

]
≤ τ .

Proof. The proof of this theorem is similar to the proof of
Theorem 18 in [4].

We provide the proof here for completeness.

Let we be the minimizer of the regularized expected risk
Je(w) and w∗ be the minimizer of the regularized empiri-
cal error objective J(w) for the dataset D:

we = argmin
w

Je(w)

where

Je(w) = E(x,y)∼Q

[
φ(yw>x) +

λ

2
‖w‖2

]

w∗ = argmin
w

J(w) := argmin
w

[
N∑
i=1

φ(yiw
>xi) +

λ

2
‖w‖2

]

Let L(w) denote the expected risk associated with output
vector w.

L(w) = E(x,y)∼Q
[
φ(yw>x)

]
We are then interested in the quantity L(wgop) − L(w0)
which can be rewritten as follows:

L(wgop)− L(w0) = (Je(wgop)− Je(we))

+ (Je(we)− Je(w0))

+
λ

2
‖w0‖2 −

λ

2
‖wgop‖2

Dropping the last term which is non-negative, we get

L(wgop)− L(w0) ≤ (Je(wgop)− Je(we))

+ (Je(we)− Je(w0))

+
λ

2
‖w0‖2

Also as we minimizes Je, the second term on the right hand
side is negative and can be removed from the bound. Thus
we have

L(wgop)− L(w0) ≤ (Je(wgop)− Je(we)) +
λ

2
‖w0‖2

From [6], we have the following result:

With probability 1− δ′,

Je(wgop)− Je(we) ≤ 2(Jemp(wgop)− Jemp(wemp))

+O(
log( 1

δ′ )

Nλ
)

where wemp is the non-regularized empirical risk minimizer
given by

wemp = argmin
w

Jemp(w) := argmin
w

N∑
i=1

φ(yiw
>xi)

Thus applying the above bound to the previous equation,
we have with probability 1− δ′,

L(wgop)− L(w0) ≤ 2(Jemp(wgop)− Jemp(wemp)) (9)

+O(
log( 1

δ′ )

Nλ
) +

λ

2
‖w0‖2(10)

Using Lemma 6 of [4] ,we can get the following bound for
the the quantity Jemp(wgop)− Jemp(wemp) when ∆ = 0

Jemp(wgop)− Jemp(wemp) ≤ ‖η‖
2

N2λ
(11)

It can be shown that if sufficiently large number of samples
are taken and λ chosen appropriately, then the condition
for setting ∆ = 0 in Algorithm 4 is satisfied. Precisely,
notice that when N ≥ 4c‖w0‖2

τε and λ ≥ τ
‖w0‖2 , we have

Nλ ≥ 4c
ε . From definition of ε̃, we have

For these values of N and λ, we have ε̃ ≥ 0 and hence
∆ = 0. Thus we can substitute the bound in Equation 11
in Equation 9 to get the following.

With probability 1− δ′,

L(wgop)− L(w0) ≤ 2
‖η‖2

N2λ
+O(

log( 1
δ′ )

Nλ
) +

λ

2
‖w0‖2 (12)

Substituting λ = τ
‖w0‖2 in the above equation, we get with

probability 1− δ′,

L(wgop)− L(w0) ≤ ‖η‖
2‖w0‖2

N2τ
+O(

log( 1
δ′ )‖w0‖2

Nτ
) +

τ

2
(13)

We know that if T̂ is chosen as in Theorem [5.1], with prob-
ability 1− δ′, ‖η‖2 ≤ T̂ . Applying this to the above equa-
tion, we now get with probability 1− 2δ′,

L(wgop)− L(w0) ≤ T̂‖w0‖2

N2τ
+O(

log( 1
δ′ )‖w0‖2

Nτ
) +

τ

2
(14)

As we want the bound on the righthand side to be less than
or equal to τ , we equate the first two terms on the righthand



side to τ
2 separately to get bounds on N . The first term

yields

N =
2
√
T̂‖w0‖
τ

and the second term yields

N = 2
log( 1

δ′ )‖w0‖2)

τ2

Ignoring constants in the above two equations and taking
the maximum value of N and combining with the con-
straint got for N imposed by the requirement that ∆ = 0,
we get the statement of the theorem.


