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Abstract

Standard compressive sensing results state
that to exactly recover an s sparse signal in
Rp, one requires O(s · log p) measurements.
While this bound is extremely useful in prac-
tice, often real world signals are not only
sparse, but also exhibit structure in the spar-
sity pattern. We focus on group-structured
patterns in this paper. Under this model,
groups of signal coefficients are active (or
inactive) together. The groups are prede-
fined, but the particular set of groups that
are active (i.e., in the signal support) must be
learned from measurements. We show that
exploiting knowledge of groups can further
reduce the number of measurements required
for exact signal recovery, and derive univer-
sal bounds for the number of measurements
needed. The bound is universal in the sense
that it only depends on the number of groups
under consideration, and not the particulars
of the groups (e.g., compositions, sizes, ex-
tents, overlaps, etc.). Experiments show that
our result holds for a variety of overlapping
group configurations.

1 Introduction

In many fields such as genetics, image processing, and
machine learning, one is faced with the task of recov-
ering very high dimensional signals from relatively few
measurements. In general this is not possible, but for-
tunately many real world signals are, or can be trans-
formed to be, sparse, meaning that only a small frac-
tion signal coefficients are non-zero. Compressed Sens-
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ing [3, 6] allows us to recover sparse, high dimensional
signals with very few measurements. In fact, results in-
dicate that one only needs O(s·log p) random measure-
ments to exactly recover an s sparse signal of length
p.

In many applications however, one not only has knowl-
edge about the sparsity of the signal, but some addi-
tional information about the structure of the sparsity
pattern as well:

• In genetics, the genes are arranged into pathways,
and genes belonging to the same pathway are of-
ten active/inactive in a group [22].

• In image processing, the wavelet transform coef-
ficients can be modeled as belonging to a tree,
with parent-child coefficients simultaneously be-
ing large or small [5, 21, 19].

• In wideband spectrum sensing applications, the
spectrum typically displays clusters of non-zero
frequency coefficients, each corresponding to a
narrowband transmission [15]

In cases such as these, the sparsity pattern can be rep-
resented as a union of certain groups of coefficients
(e.g., coefficients in certain pathways, tree branches,
or clusters). This knowledge about the signal struc-
ture can help further reduce the number of measure-
ments one needs to exactly recover the signal. Indeed,
the authors in [10] derive information theoretic bounds
for the number of measurements needed for a variety of
signal ensembles, including trees. In [2, 7], the authors
show that one needs far fewer measurements when the
signal can be expressed as lying in a union of sub-
spaces, and explicit bounds are derived when using a
modified version of CoSaMP [17] to recover the signal.
In this paper, we derive bounds on the number of ran-
dom i.i.d. Gaussian measurements needed to exactly
recover a sparse signal when its pattern of sparsity lies
in a union of groups, when solving the convex recovery
algorithm introduced in [11].
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We analyze the group-structured sparse recovery prob-
lem using a random Gaussian measurement model.
We emphasize that although the derivation assumes
the measurement matrix to be Gaussian, it can be ex-
tended to any subgaussian case, by paying a small con-
stant penalty, as shown in [14]. We restrict ourselves
to the Gaussian case here since it highlights the main
ideas and keeps the analysis as simple as possible.

Note that in this work, variables can be grouped into
arbitrary sets, and we make no assumptions about the
nature of the groups, except that they are known in
advance. In short, we derive bounds for any generic
group structure of variables, whether the groups over-
lap or form a partition of the ambient high dimensional
space.

To the best of our knowledge, these results are new
and distinct from prior theoretical characterizations
of group lasso methods. Asymptotic consistency re-
sults are derived for the group lasso when the groups
partition the space of variables in [1]. Similarly, in
[9], the authors consider the groups to partition the
space, and derive conditions for recovery using the
group lasso [25]. In [12, 13], the authors derive con-
sistency results for the group lasso under arbitrary
groupings of variables. In [18], the authors consider
overlapping groups and derive sample bounds under
the group lasso [25] setting. The authors in [11] de-
rive consistency results in an asymptotic setting, for
the group lasso with overlap, but do not provide ex-
act recovery results. The general group lasso scenarios
is different from what we consider, in that the group
lasso yields vectors whose support can be expressed as
a complement of a union of groups, while we consider
cases where we require the support to lie in a union
of groups, a distinction made in [11]. Note that in
the case of non-overlapping groups, the complement
of a union of groups is a union of (a different set of)
groups. In this paper, we (a) derive sample complexity
bounds in a compressive-sensing framework when the
measurement matrix is i.i.d. Gaussian. (b) We focus
on non-asymptotic sample bounds, and in a case where
the support is contained in a union of groups, and (c)
make no assumptions about the nature of groups. To
derive our results, we appeal to the notion of restricted
minimum singular values of an operator.

We bound number of measurements needed for exact
recovery with two terms. One term (kB) grows lin-
early in the total number of non-zero coefficients (with
a small constant of proportionality). This is close to
the bare minimum of one measurement per non-zero
component. The other term only depends on the num-
ber of groups under consideration, and not the partic-
ulars of the groups (e.g., compositions, sizes, extents,
etc.). In particular, the groups need not be disjoint.

The degree to which groups overlap, remarkably, has
no effect on our bounds. In this regard, our bounds
can be termed to be universal. This is somewhat sur-
prising since overlapping groups are strongly coupled
in the observations, tempting one to suppose that over-
lap may make recovery more challenging.

Our main result shows that for signals with support
on k of M possible groups, exact recovery is pos-
sible from (

√
2 log(M − k) +

√
B)2k + kB measure-

ments using an overlapping group lasso algorithm, B
being the maximum group size. Note that the bound
depends on the sparsity s of the signal via the kB
term. We will routinely compare the performance of
the group lasso to the standard lasso, to study the ef-
fects of overlap between groups on the actual number
of measurements needed to exactly recover a signal.
For the lasso bound, we will use the one derived in [4]:
(2s + 1) log(p − s). Assuming that M = O(poly(p)),
our bound is roughly k log(p)+kB. For the same prob-
lems, the lasso which ignores the group structure of the
sparse signal components would require approximately
kB log(p) measurements. Hence, taking advantage of
the group structure will allow us to take fewer mea-
surements to reconstruct the signal.

Our proof derives from the techniques developed in
[4]. The rest of this paper is organized as follows: in
Section 2, we lay the groundwork for the main contri-
bution of the paper, viz. applying the techniques from
[4] to the specific setting of group lasso with overlap-
ping groups. We describe the theory and reasoning
behind this approach. In Section 3 we derive bounds
on the number of random i.i.d. Gaussian measure-
ments needed to be taken for exact recovery of group
sparse signals. We further derive bounds for the num-
ber of measurements required for robust recovery of
signals as well. Section 4 outlines the experiments we
performed and the corresponding results obtained. We
conclude our paper in Section 5.

1.1 Notations

We first introduce notations that we will use for the
rest of the paper. Consider a signal of length p, that
is s sparse. Note here that in case of multidimen-
sional signals like images, we assume they are vec-
torized to have length p. The coefficients of the sig-
nal are grouped into sets {Gi}Mi=1, such that ∀i ∈
{1, 2, · · · ,M}, Gi ⊂ {1, 2, · · · , p}. We denote the set
of groups by G = {Gi}i=1..M , and | · | denotes the car-
dinality of a set. We let x? be the (sparse) signal to
be recovered, whose non zero coefficients lie in k of the
M groups G? ⊂ G. Formally,

G? = {Gi ∈ G? : supp(x?) ∩Gi 6= 0}
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We assume |G?| = k ≤ M = |G|. We let Φn×p be a
measurement matrix consisting of i.i.d. Gaussian en-
tries of mean 0 and unit variance so that every column
is a realization of an i.i.d. Gaussian length n vector
with covariance I. For any vector x ∈ Rp, we denote
by xG a vector in Rp such that (xG)i = xi if i ∈ G,
and 0 otherwise. We denote the observed vector by
y ∈ Rn : y = Φx?. The absence of a subscript follow-
ing a norm ‖ · ‖ implies the `2 norm. The dual norm
of ‖ · ‖p is denoted by ‖ · ‖∗p. The convex hull of a set
of points S is denoted by conv(S).

2 Preliminaries

In this section, we will set up the problem that we wish
to solve in this paper. We will argue as to why exact
recovery of the signal corresponds to the minimization
of the atomic norm of the signal, with the atoms obey-
ing certain properties governed by the signal structure.

2.1 Atoms and the atomic set

To begin with, let us formalize the notion of atoms
and the atomic norm of a signal (or vector). We will
restrict our attention to group-sparse signals in Rp,
though the same concepts can be extended to other
spaces as well. We assume that x ∈ Rp can be decom-
posed as :

x =
k∑

i=1

ciai, ci ≥ 0

The vectors ai are called atoms, and form the basic
building blocks of any signal, which can be represented
as a conic combination of the atoms. Note that the
sum notation, rather than the integral notation, im-
plies that only a countable number of coefficients can
be non-zero. We denote A = {a} to be the atomic set.
Given a vector x ∈ Rp and an atomic set, we define
the atomic norm as

||x||A = inf

{∑

a∈A
ca : x =

∑

a∈A
caa, ca ≥ 0 ∀a ∈ A

}

(1)
The atomic decomposition of the signal yields a repre-
sentation of a signal in terms of some predefined atoms.
Usually, few atoms used in a representation indicates
a “simpler” representation. Hence, to obtain a “sim-
ple” representation of a vector, we look to minimize
the atomic norm subject to constraints (equation (2)):

x̂ = argmin
x∈Rp

||x||A s.t. y = Φx (2)

Indeed, when the atoms are merely the canonical basis
in Rp, the atomic norm reduces to the standard `1
norm, and minimization of the atomic norm yields the
well known lasso procedure [23].

Assuming we are aware of the group structure G, we
now proceed to define the atomic set and the corre-
sponding atomic norm for our framework:

∀G ∈ G, let

AG = {aG ∈ Rp : ||(aG)G||2 = 1, (aG)Gc = 0}

A = {AG}G∈G (3)

We now show that the atomic norm of a vector x ∈ Rp
under the atomic set defined in equation (3) is equiv-
alent to the overlapping group lasso norm defined in
[11], a special case of which is the standard group lasso
norm [25]. Thus, minimizing the atomic norm in this
case is exactly the same as the group lasso with over-
lapping groups.

Lemma 2.1 Given any arbitrary set of groups G, we
have

||x||A = ΩGoverlap(x)

where ΩGoverlap(x) is the overlapping group lasso norm
defined in [11].

Proof In (1), we can substitute vG = cGa, giving us
cG = |cG| · ||a|| = ||cGa|| = ‖vG‖. Hence,

||x||A = inf

{∑

a∈A
ca : x =

∑

a∈A
caa ca ≥ 0 ∀a ∈ A

}

= inf

{∑

G∈G
||vG|| : x =

∑

G∈G
vG

}

= ΩGoverlap(x)

Corollary 2.2 Under the atomic set defined in (3) ,
when G partitions Rp,

||x||A =
∑

G∈G
||xG||

Proof ΩGoverlap =
∑
G∈G ||xG|| in the non overlapping

case.

Thus, (2) yields:

x̂ = argmin
x∈Rp

ΩGoverlap(x) s.t. y = Φx (4)

which can be solved using [11].

Also note that we can directly compute the dual of the
atomic norm from the set of atoms

‖u‖∗A = sup
a∈A
〈a, u〉 = max

G∈G
||uG|| (5)

The dual norm will be useful in our derivations below.
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2.2 Gaussian Widths and Exact Recovery

Following [4], we define the tangent cone and normal
cone at x? with respect to conv(A) under ||x||A as
[20]:

TA(x?) = cone{z − x? : ||z||A ≤ ||x?||A} (6)

NA(x?) = {u : 〈u, z〉 ≤ 0, ∀z ∈ TA(x?)} (7)

= {u : 〈u, x?〉 = t‖x‖A
and ‖u‖∗A ≤ t for some t ≥ 0}

We note that, from [4] (Prop. 2.1), x̂ = x? (2) is
unique iff

null(Φ) ∩ TA(x?) = {0} (8)

Hence, we require that the tangent cone at x? inter-
sects the nullspace of Φ only at the origin, to guarantee
exact recovery.

Before we state the main recovery result from [4], we
define the Gaussian width of a set:

Definition Let Sp−1 denote the unit sphere in Rp.
The Gaussian width ω(S) of a set S ∈ Sp−1 is

ω(S) = Eg
[
sup
z∈S

gT z

]

where g ∼ N (0, I)

Gordon uses the Gaussian width to provide bounds on
the probability that a random subspace of a certain di-
mension misses a subset of the sphere [8]. In [4], these
results are specialized to the case of atomic norm re-
covery. In particular, we will make use of the following:

Proposition 2.3 [[4], Corollary 3.2] Let Φ : Rp →
Rn be a random map with i.i.d. zero-mean Gaus-
sian entries having variance 1/n. Further let Ω =
TA(x∗) ∩ Sp−1 denote the spherical part of the tan-
gent cone TA(x?). Suppose that we have measurements
y = Φx?, and we solve the convex program (2). Then
x? is the unique optimum of (2) with high probability
provided that

n ≥ ω(Ω)2 +O(1).

To complete our problem setup we will also restate
Proposition 3.6 in [4] :

Proposition 2.4 (Proposition 3.6 in [4]) Let C be
any non-empty convex cone in Rp, and let g ∼ N (0, I)
be a Gaussian vector. Then:

ω(C ∩ Sp−1) ≤ Eg[dist(g, C∗)] (9)

where dist(., .) denotes the Euclidean distance between
a point and a set, and C∗ is the dual cone of C

We can then square (9) use Jensen’s inequality to ob-
tain

ω(C ∩ Sp−1)2 ≤ Eg[dist(g, C∗)2] (10)

We note here that the dual cone of the tangent cone
is the normal cone, and vice-versa.

Thus, to derive measurement bounds, we only need to
calculate the square of the Gaussian width of the in-
tersection of the tangent cone at x? with respect to the
atomic norm and the unit sphere. This value can be
bounded by the distance of a Gaussian random vector
to the normal cone at the same point, as implied by
(10). In the next section, we derive bounds on this
quantity.

3 Gaussian Width of the Normal
Cone of the Group Sparsity Norm

For generic groups G, we have

v ∈ NA(x?)⇔ ∃γ ≥ 0 : 〈v, x?〉 = γ‖x?‖A,
‖vG‖ = γ if G ∈ G?, ‖vG‖ ≤ γ if G 6∈ G?. (11)

It is not hard to see that, in the case of disjoint groups,

NA(x?) = {z ∈ Rp : zi = γ
(x?)i
||x?G||

∀G ∈ G?, (12)

||zG|| ≤ γ ∀G /∈ G?, γ ≥ 0}

However, in the case of overlapping groups, no such
closed form exists.

We now prove the main result of this paper, a sufficient
number of Gaussian measurements needed to recover
a group-sparse signal:

Theorem 3.1 To exactly recover a k-group
sparse signal decomposed into M groups in Rp,
(
√

2 log(M − k) +
√
B)2k + kB i.i.d. Gaussian

measurements are sufficient.

To prove this result, we need two lemmas:

Lemma 3.2 Let q1, . . . , qL be L, χ-squared random
variables with d-degrees of freedom. Then

E[ max
1≤i≤L

qi] ≤ (
√

2 log(L) +
√
d)2.

Proof Let ML := max1≤i≤L qi. For t > 0, we have
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that

E[ML] =
log[exp(t · E[ML])]

t
(i)

≤ log[E[exp(t ·ML)]]

t
(ii)
=

log[E[max1≤j≤L exp(t · qj)]]
t

(iii)

≤ log[LE[exp(t · q1)]]

t

=
log(L)− d

2 log(1− 2t)

t

Where (i) follows from Jensen’s inequality , (ii) follows
from the monotonicity of the exponential function, and
(iii) merely bounds the maximum by the sum over all
the elements. Now, setting t = (2 + 2ε)−1 with ε =√

d
2 log(L) yields E[ML] ≤ (

√
2 log(L) +

√
d)2

Note that t can be optimized depending on the applica-
tion. We use this particular choice because it makes no
assumptions about the relative magnitudes of (M −k)
and B.

Lemma 3.3 Suppose v ∈ Rp is supported on some set
of groups G? ⊂ G. Then,

‖v‖ ≤
√
|G?| ‖v‖∗A .

Proof By duality, it suffices to show that ‖z‖A ≤√
|G?| ‖z‖ for all z with supp(z) ⊂ G?. For any such

z, there exists a representation z =
∑
G∈G? bG where

none of the supports of bG overlap. It then follows that

‖z‖A
(i)

≤
∑

G∈G?

‖bG‖

(ii)

≤
√
|G?|

(∑

G∈G?

‖bG‖2
)1/2

=
√
|G?| ‖z‖

Where (i) follows from the definition of the norm
‖ · ‖A and (ii) is a consequence of the relation
‖β‖1 ≤

√
k‖β‖2 for k dimensional vectors β

Proof of Theorem 3.1 Intuition: Note that, from
(10),the Gaussian width of the intersection of the tan-
gent cone at x? with the unit sphere is bounded above
by the expected euclidean distance between a random
Gaussian vector and the normal cone at x? (11). We
can further bound this distance by the distance be-
tween a random Gaussian vector g and a particular
vector r ∈ NA(x?), shown in (13). We proceed to
construct such a vector r and prove the result

Eg[dist(g, C∗)2] ≤ Eg[dist(g, r)2], r ∈ NA(x?) (13)

Now, let S = ∪G∈G?G, i.e. S is the indices correspond-
ing to the union of groups that support x?. Note that
S ⊂ {1, 2, . . . , p}.
Since the normal cone is nonempty, there exists a v ∈
NA(x?) with ‖v‖∗A = 1 and vSc = 0. Since v is in the
normal cone, it will also satisfy 〈v, x?〉 = ‖x?‖A. We
will use this v in our bound below.

Let w ∼ N (0, Ip) be a vector with i.i.d. Gaussian
entries. We can write w = [wS wSc ]T . Let t(w) =
maxG6∈G? ‖wG‖.
Let us now construct a vector r ∈ NA(x?). We can
decompose r as r = [rS rSc ]T . Let rS = t(w) ·vS , and
rSc = wSc .

From (11), and from our definition of t(w), we have
r ∈ NA(x?). Referring to (10), we now consider the
expected squared distance between NA(x?) and w:

E[dist(w,C∗)] ≤ E[||r − w||2]

(i)
= E[‖rS − wS‖2 + ‖rSc − wSc‖2]

= E[‖rS − wS‖2]

(ii)
= E[‖rS‖2] + E[‖wS‖2]

= E[‖t(w) · vS‖2] + E[‖wS‖2]

(iii)
= E[t(w)2] · ‖vS‖2 + E[‖wS‖2]

(iv)
= E[t(w)2] · ‖vS‖2 + |S|
(v)

≤ (
√

2 log(M − k) +
√
B)2 · ‖vS‖2 + kB

(vi)

≤ (
√

2 log(M − k) +
√
B)2 · k + kB

Where (i) follows because S and Sc are disjoint, (ii)
follows from the fact that rS and wS are independent,
(iii) follows from the fact that v is deterministic. We
obtain (iv) since ‖wS‖2 is a χ2 random variable with
|S| degrees of freedom. (v) follows from Lemma 3.2,
and from the fact that kB is a upper bound on the
signal sparsity. Finally, (vi) follows from Lemma 3.3,
noting that |G?| ≤ k, and ‖v‖∗A = 1.

If the groups are disjoint to begin with, the normal
cone will be given by (12), and ‖vS‖2 = k. Also, in
this case, we have |S| = kB. We see that we do not
pay an additional penalty when the groups overlap.
This fact is surprising, since one would expect that one
would need more measurements to effectively capture
the dependencies among the overlapping groups.

3.1 Remarks

The kB term in the bound is an upper-bound on
the signal sparsity. In the case of highly overlapping
groups, this value may be much larger than the signal
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sparsity, but such cases seldom arise in real-world ap-
plications. If the group sizes are vastly different, then
it is pessimistic to bound the quantity with the maxi-
mum group size B, but this yields a simple expression
for the measurements needed. It is of course possible
to obtain tighter bounds using the techniques in our
work for cases where the groups are of varying sizes.

It can be seen from Theorem 3.1 that the number of
measurements is linear in k and B. Hence, the number
of measurements that are sufficient for signal recovery
grows linearly with the number of active groups in the
signal, and also the maximum group size. This can be
seen analogous to the linear dependence of the lasso
bound on the sparsity s of the signal, though for over-
lapping groups, kB 6= s.

We note that although we pay no extra price to mea-
sure the signal when the groups overlap, there is an
additional cost in the recovery process of the signal, in
that the groups need to first be separated by replica-
tion of the coefficients [11], or resort to a primal-dual
method to solve the problem [16].

Finally, we compare the bound we obtain to the stan-
dard lasso measurement bound [4]:

(2s+ 1) log(p− s) (14)

The bound we obtain in Theorem 3.1 can be upper
bounded by

2kmax{2 log(M), B}+ kB (15)

Noting that s ≤ kB with equality when the groups do
not overlap. In this case, (15) evaluates to

2s

B
max{2 log(M), B}+ s

= (2s+ 1)
max{2 log(M), B}

B

which is smaller than the lasso bound (14) by a factor

of roughly log(M)
B log(p) . So, in most cases, our bound shows

that the we can perform better than the conventional
lasso by exploiting the additional group structured in-
formation that is available.

3.2 Noisy Observations

The results we obtain can be easily extended to the
case where we obtain noisy observations, assuming
that the noise is bounded. In the noisy case, we ob-
serve

y = Φx? + θ, ‖θ‖ ≤ δ
We then solve the atomic norm minimization prob-
lem, with a relaxed constraint to take into account the

bounded noise:

x̂ = argmin
x∈Rp

||x||A s.t. ‖y − Φx‖ ≤ δ (16)

We restate corollary 3.3 from [4]:

Proposition 3.4 [[4], Corollary 3.3] Let Φ : Rp →
Rn be a random map with i.i.d. zero-mean Gaus-
sian entries having variance 1/n. Further let Ω =
TA(x∗) ∩ Sp−1 denote the spherical part of the tan-
gent cone TA(x?). Suppose that we have measurements
y = Φx? + θ, and ‖θ‖ ≤ δ. Suppose we solve the
convex program (16). Let x̂ denote the optimum of
(16). Also, suppose ‖Φz‖ ≥ ε‖z‖ ∀z ∈ TA(x?). Then
‖x? − x̂‖ ≤ 2δ

ε with high probability provided that

n ≥ ω(Ω)2

(1− ε)2 +O(1).

Substituting the result in Theorem 3.1 in Proposition
3.4, we have the following corollary yielding a suffi-
cient condition to accurately recover a signal when the
measurements are corrupted with bounded noise:

Corollary 3.5 Suppose we wish to recover a k− group
sparse signal having M groups, such that the maximum
group size is B. Let x̂ be the optimum of the convex
program (16). To have ‖x̂− x?‖ ≤ 2δ

ε with high prob-
ability,

(
√

2 log(M − k) +
√
B)2k + kB

(1− ε)2

i.i.d. Gaussian measurements are sufficient.

4 Experiments and Results

We extensively tested our method against the standard
lasso procedure. In the case where the groups over-
lap, we use the replication method outlined in [11], to
reduce the optimization problem to that of non over-
lapping groups. We compare the number of measure-
ments needed for our method with that needed for the
lasso. For the lasso, it would be instructive to keep in
mind the bound derived in [4] , viz. (2s+1) log(p−s).
In the case of non overlapping groups, the bound
evaluates to (2kB + 1) log(kM − kB). We generate
length p = 2000 signals, made up of M = 100 non-
overlapping groups of size B = 20. We set k = 5
groups to be “active”, and the values within the groups
are drawn from a uniform [0, 1] distribution. The ac-
tive groups are assigned uniformly at random. The
sparsity of the signal will be s = 100

We use SpaRSA [24] for the lasso and the group lasso
with overlap, learning λ over a grid. Figure 1 displays
the mean reconstruction error ||x̂− x∗||22/p as a func-
tion of the number of random measurements taken.
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The errors have been averaged over 100 tests, and
each time a new random signal was generated with
the above mentioned parameters.

From the parameters considered, we conclude that ≈
380 measurements are sufficient to recover the signal.
When we have 380 measurements, the lasso does not
recover the signal exactly, as seen in Figure 1.

Figure 1: The group lasso (red) compared with the
lasso (blue). The vertical line indicates our bound.
Note that our bound (380) predicts exact recovery of
the signal, while at the same value, the lasso does not
recover the signal

To show that the bound we compute holds regardless
of the complexity of groupings, we consider the follow-
ing scenario: Suppose we have M = 100 groups, each
of size B = 40. k = 5 of those groups are active, and
the values within each group are assigned from a uni-
form [−1, 1] distribution. We arrange these groups in
three configurations:

(i) The groups do not overlap, yielding a signal of
length p = 4000, and signal sparsity s = 200.

(ii) A partial overlapping scenario, where apart from
the first and last group, every group has 20 ele-
ments in common with a group above it, and 20
common with the group below, giving p = 2020,
s ∈ [120, 200] depending on which of the 100
groups are active.

(iii) An almost complete overlap, where apart from
one element in each group, the remaining ele-
ments are common to each group. This leads to
p = 139 and s = 44

(iv) We also considered cases intermediate to the ones
listed above. Specifically, we considered (a) a
highly overlapping scenario which is identical to
the previous case, but with odd and even groups
disjoint, giving p = 178 and s ≤ 80. We also
consider (b) a random overlap case where the first
50 groups are non overlapping and the remaining
50 are assigned uniformly at random from the
existing p = 2000 indices. s ≤ 200 in this case.

The scenarios we consider are depicted in Figure 2. In
each of the cases, we compute the bound to be ≈ 630.
The bound becomes looser as the complexity of the
groupings increases. This, as argued before, is a result
of the bound for the signal sparsity becoming looser.

Figure 2: Types of groupings considered. Each set of
coefficients encompassed by one color belongs to one
group.

We can see from Figure 3(a) that our group lasso
bound (≈ 630) holds for all cases. For the sake of com-
parison, we considered the lasso performance on the
signals in cases (i) - (iv) as well, and these are plotted
in Figure 3(b). From the values of p and s computed
for the four cases, we have the corresponding bounds
for the lasso [4] to be 3305 for the no overlap case (i),
[1819, 3010] for the partial overlap case (ii) and 405
for the almost complete overlap case (iii) respectively.
The lasso bounds for case (iv a) and (iv b) are 738
and 3000 respectively. Another thing to note is that,
apart from cases (iii) and (iv a), the group lasso al-
ways outperforms the lasso. This leads us to believe
that when there is excessive overlap between groups,
the knowledge of the group structure does not aid in
signal reconstruction.

Our final experiment outlines the relationship between
the number of groups M and the number of measure-
ments needed, when k = M

10 . We consider the par-
tial overlap scenario as mentioned before in case (ii),
with B = 10. Figure 4 shows that as we increase
the number of total groups, we naturally need more
measurements. It is also instructive to note that since
the number of active groups is proportional to M , we
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(a) performance of the group lasso on cases consid-
ered in Figure 2. Note that our bound evaluates to
630, clearly sufficient measurements to recover the
signal in all cases.
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(b) performance of the lasso on cases considered in
Figure 2.

Figure 3: (Best seen in color) Performance on various
grouping schemes. The group lasso outperforms the
lasso in all cases apart from (iii) and (iv a). This shows
that as the amount of overlap increases, the group lasso
does not yield any advantage as compared to the lasso,
and if anything, performs worse.

get an almost linear relationship between M and the
number of measurements needed for perfect recovery.
This effect is captured in our bound, which scales lin-
early with k, the number of active groups, which is
linear in M , the total number of groups in this exper-
iment. The probability of error is computed empiri-
cally from 100 runs for each (measurement,M) pair.
Another thing to note with regards to Figure 4 is that
the x-axis shows the number of groups in the signal,
since our bound depends only on that. In the present
setup, the corresponding dimensionality of the signal is
(505, 755, 1005, 1255, 1505, 1755, 2005) respectively for
each M in Figure 4.

5 Conclusion

We showed that, when additional structure about the
support of the signal to be estimated is known, we can
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Figure 4: Number of measurements needed vs the total
number of groups for recovery. The image shows the
probability of error, with blue indicating values that
are (nearly) zero. The maximum value on the plot
corresponds to a 0.06 probability of error. (Best seen
in color).

recover the signal in much fewer measurements that
what would be needed in the standard compressed
sensing framework using the lasso. Also, we showed
that we surprisingly do not pay an extra penalty when
the groups overlap each other. Moreover, the bound
holds for arbitrary group structures, and can be used
in a variety of applications. The bounds we derive are
tight, and can be extended to subgaussian measure-
ment matrices by incurring a constant penalty. Exper-
imental results on both toy and real data agree with
the bounds we obtained. Under pathological condi-
tions of overlap between groups, it might be prudent
to use the lasso instead of the group lasso.
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