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Abstract

We study the prevalent problem when a test dis-
tribution differs from the training distribution.
We consider a setting where our training set con-
sists of a small number of sample domains, but
where we have many samples in each domain.
Our goal is to generalize to a new domain. For
example, we may want to learn a similarity func-
tion using only certain classes of objects, but
we desire that this similarity function be appli-
cable to object classes not present in our training
sample (e.g. we might seek to learn that “dogs
are similar to dogs” even though images of dogs
were absent from our training set). Our theo-
retical analysis shows that we can select many
more features than domains while avoiding over-
fitting by utilizing data-dependent variance prop-
erties. We present a greedy feature selection al-
gorithm based on using T -statistics. Our exper-
iments validate this theory showing that our T -
statistic based greedy feature selection is more
robust at avoiding overfitting than the classical
greedy procedure.

1 Introduction

The generalization ability of most modern machine learn-
ing algorithms are predicated on the assumption that the
distribution over training examples (roughly) matches the
distribution over the test data. There is growing literature
studying settings where this implicit assumption fails to
hold — often referred to as domain adaptation or trans-
fer learning. This problem is central in fields such as
speech recognition (Legetter & Woodland, 1995), compu-
tational biology (Liu et al., 2008), natural language pro-
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cessing (Blitzer et al., 2006; Daumé, 2007; Guo et al.,
2009), and web search (Chen et al., 2008; Gao et al., 2009).

We examine how severe this problem can be, even on one
of the most conventional benchmark datasets, the MNIST
digits dataset. Here, state-of-the-art algorithms reliably ob-
tain classification error rates below 1%, when recognizing
one digit vs. the other digits. Consider a natural modi-
fication of this setting where we train a model to recog-
nize the digit “2” vs. the other even digits. If we learn
to recognize a “2” accurately (vs. only even digits), then
we may hope that our classifier will robustly recognize a
“2” against new odd digits. Unfortunately, this is far from
being true: a logistic regression algorithm, trained on this
dataset and achieving a (true) test error rate of about 0.5%
(against even digits), jumps to 35% error rate when tested
vs. odd digits, a startling 7000% increase in error. While
the present work uses deep belief network features (Hin-
ton et al., 2006), trained on unlabeled data, this situation
is generic across many other common training methods we
have tried: SVMs with various kernels and logistic/linear
regression with various feature choices (where error rates
increase from hundreds to thousands of percent depending
on the details of the experiment). The striking issue is that
the true test performance on the training (source) distribu-
tion is not at all reflective of the performance on the test
(target) distribution — raising the question of how to con-
trol for overfitting.

We elucidate this overfitting issue by examining how var-
ious “area under the ROC curves” change as we greedily
add more features. Here, we train our model to recognize
the digit “2” vs. eight other digits (our training source dis-
tribution), and test recognition of a “2” vs. the remaining
digit (our test target distribution) with balanced distribu-
tions where a “2” appears half the time in both the train-
ing and test distributions. The first four plots in Figure 1
show both the area under the ROC curve on the held-out
data coming from the training distribution (the dashed red
curve) and on the held-out data coming from the test dis-
tribution (the solid red curve) vs. the number of features
we have greedily added. Note two striking effects: 1) how
rapidly the true test performance degrades; 2) more trou-
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Figure 1: Area under ROC (AUROC) (y-axis) for predicting digit ’2’ using the greedy algorithm. The x-axis shows the order of
variables were picked out of a list of 2000 total variables. The top dashed line shows generalization or ’test’ performance on the source
domain. The transfer to a new domain is shown much below it as the solid line. The last figure on the right shows the average of all the
ROC curves. The horizontal line is at “chance.”

bling, how quickly the true performance for the training
and test distributions diverge. In particular, note that the
true performance on the source training distribution is not
at all reflective of the true performance on the target test
distribution, even after adding just a few features: a clas-
sic example of overfitting. The final plot shows the average
of the training and test performance, averaged over which
digit is held out, and cycling through digits.

Overfitting is to be expected, because this experiment vi-
olates the learning theoretic preconditions for successful
generalization. Furthermore, for this particular experiment,
we could argue that a generative approach is more robust:
if we have a model for generating a “2”, then it should be
good for recognition in diverse settings. While the gener-
ative framework is promising, particularly for generating
predictive features, often, empirical loss driven methods
outperform them, and it is sometimes difficult to specify
good generative models.

In this work, we assume a distribution over domains, and
that our training sample consists of a small number of
sample domains independently drawn from the distribution
over domains and where we have access to many samples
in each domain. The goal in our setting is to perform well
on new domains sampled from this distribution. For ex-
ample, in the previous experiments, we can consider that
we have eight sample (known) domains in our training set,
where domains are of the form “2 vs. 0”, “2 vs. 1”, “2
vs. 3”, etc. In a sense, this much like the standard su-
pervised learning model, except that sampled “points” are
now “domains”. The challenge is that we desire to avoid
overfitting with an extremely small number of domains —
in particular, with fewer samples (e.g. fewer number of
domains) than we are traditionally accustomed to using in
our standard supervised learning paradigms, where we typ-
ically have hundreds to millions of samples.

The problem of domain adaptation is more general than
this particular formulation, where our focus is on how to
do well on a new random domain. There are numerous dif-
ferent aspects of the domain adaptation problem that have
been studied. For example, assumptions considered are:
when the classes are “imbalanced” (e.g. when Pr[Y |D]

could vary with the domain D); “covariate shift” (Bickel
et al., 2007) where Pr[X|D] varies with the domain D,
while Pr[Y |X,D] is not a function of the domain; un-
der a change of representation, the joint distributions of
Pr[(X,Y )|D] is more similar (Blitzer et al., 2006; Xue
et al., 2008; Guo et al., 2009; Huang & Yates, 2009; Jiang
& Zhai, 2007); settings where one desires mixtures of pre-
dictors which adapt to each domain (Daumé & Marcu,
2006). A detailed discussion of these models is beyond the
scope of this paper (see (Jiang, 2007) for a more compre-
hensive review.). There is also a growing body of theoret-
ical work, including (Huang et al., 2007; Ben-David et al.,
2007; Cortes et al., 2008; Baxter, 2000) that concentrates
on either characterizing the degradation that can occur due
to distributional shift (e.g. (Ben-David et al., 2007)) or ro-
bustly training using biased sampling, such as the sample
selection bias work of (Cortes et al., 2008).

Our work differs in that we assume a distribution over do-
mains, and our focus is on generalization on new domains.
Tne interesting application of this work is on learning sim-
ilarity functions. For example, we may desire to learn a
similarity function for objects, where objects of the same
label have high similarity, in manner so as to be able to uti-
lize this similarity function to recognize new objects, not
present in our training set — the problem of “zero-shot”
learning.

Our Contributions: Our analysis focuses on the issue
of overfitting, and we borrow the idea from small sample
statistics that a certain empirical variance should be uti-
lized when deciding whether or not an effect is significant,
namely, that an added feature will decrease our error. We
do this using T -statistics. The key idea is that we can es-
timate the weight of each feature on each training domain
separately. Indeed, if this weight varies wildly over the
training source domains, then even though this feature may
be useful on all our source domains, its potential for gen-
eralization to new domains may be poor. We show that our
data-dependent version of feature selection robustly enjoys
the usual feature selection properties, i.e. we can select
many more features than domains, particularly if certain
data-dependent variances are low, under relatively weak as-
sumptions.
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The contributions of this work are as follows:

• Using small sample statistics, namely that of T -tests,
we provide a more robust procedure to add features,
which takes into account data-dependent properties.

• Using the theory of large deviations for self-
normalized sums, we show that we can robustly
add many more feature than domains (exponentially
more), utilizing certain empirical variances. To our
knowledge, these deviation bounds have not been uti-
lized in the analysis of machine learning algorithms.

• We empirically demonstrate that we control for over-
fitting using an alternative greedy procedure for fea-
ture addition, based on the T -statistic. In particular,
we show that these ideas can be utilized towards the
theory of “zero-shot learning”.

2 Setting

A key idea in our setting is that we consider a distribution
over domains, which we denote by Pr[D] (it is possible that
there may be an infinite number of domains). Conditioned
on a domainD = d, the distribution over input/output pairs
is Pr[(X,Y )|D = d]. Our inputs are X ∈ Rp. As is
standard, these inputs could represent a high dimensional
feature space. The goal is to find a weight vector which
minimizes the squared error, averaged over both instances
and over the domains. More precisely, the error we want to
minimize is:

L(w) = EDEX,Y [(Y − w ·X)2|D],

where the inner and outer expectations are over (X,Y ) and
D, respectively.

Our training set consists of a set of n known domains
{d1, d2, . . . dn}, where each domain is sampled indepen-
dently. In practice, while n is small, we often have a large
number of samples in each domain, so that the second or-
der statistics can be estimated accurately on each training
domain. As a natural abstraction, we assume that for each
domain d in our training set, we have knowledge of both
E[XY |D = d] and E[XX>|D = d].

For our theoretical analysis, we also assume the joint in-
put covariance matrix E[XX>] is known, as it can be
estimated accurately with unlabeled data. This permits
a cleaner exposition in terms of unbiased estimation, al-
though this distinction is relatively minor in practice.

3 Feature Selection and Small Sample
Statistics

Our goal is to avoid overfitting while adding features: we
desire confidence that our added feature actually improves

the error on new domains. The naive greedy method is to
add features which maximally decreases our training set
error, which, as we have shown in the Introduction, can
perform very poorly. Instead, we provide a theory which
more sharply characterizes when adding a feature actually
improves our performance.

3.1 Adding a Single Feature

We first investigate the question of whether or not a sin-
gle feature improves the null prediction of always saying
0. It is natural to base our theory using unbiased estimates,
as we often have the most robust statistical tests for these
estimates.

Consider a feature Xi, which is normalized, so that
E[X2

i ] = 1. The optimal weight on this feature is w∗i =
E[XiY ]. Furthermore, any weight wi on Xi has regret:

L(wi)− L(w∗i ) = (wi − E[XiY ])2.

Hence, with respect to adding just one feature, our task is
to find a feature Xi and weight vector wi such that we have
confidence that wi is closer to E[XiY ] than 0 is (as weight
0 corresponds to the null prediction).

The natural unbiased estimate for w∗i is simply:

µ̂i =
1

n

∑

k

E[XiY |dk].

The Central Limit Theorem implies that µ̂i should be close
to E[XiY ] on the order of O(σ(XiY )√

n
), where σ(XiY ) is

the standard deviation. A key idea in small sample statis-
tics is to take into account the empirical variance. Here,
when determining if Xi is useful, we seek to consider the
(unbiased) variance estimate:

σ̂2
i =

1

n− 1

∑

k

(E[XiY |dk]− µ̂i)2.

and the issue is how to utilize this estimate rather than the
true variance.

In our domain adaptation setting, it may be the case that this
covariance for certain “robust” features E[XiY ] is more
consistently correlated with the target — it is these features
that we seek to add. By contrast, “large” sample analysis
typically involves only using an upper bound on the stan-
dard deviation σ(XiY ), along with tail bounds such as the
Bernstein bound (Bernstein, 1946), to get estimates on the
deviation between µ̂i and its mean. However, crucially, as
σ(XiY ) could vary greatly with our feature Xi, we desire
a sharper estimate which takes into account the empirical
variance, σ̂2

i .

If µ̂i followed a normal distribution, then this question re-
duces to a Student’s T -test. Here, the T statistic is:

Ti =
µ̂i

σ̂i/
√
n
.
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While we do not expect the µ̂i to actually follow a normal
distribution, there is a rather large literature showing that
the T -test is robust (see for example (de la Pena et al.,
2009)). We now demonstrate this point under a milder as-
sumption that µ̂i is symmetric, where the source of ran-
domness is from a random domain. Equivalently, this is
an assumption that the covariances E[XiY |d] are symmet-
ric about their mean (i.e. both E[XiY |d] − E[XiY ] and
−(E[XiY |d]−E[XiY ]) have the same distribution, where
d is the source of randomness). The following theorem as-
sumes no moment conditions on Xi or Y (not even upper
bounds). It shows that we can accurately test an exponen-
tial number of features with high confidence. This bound
has similar behavior to the T -distribution (for fixed n) as
we scale the number of features.

Theorem 1. Assume the random vector E[XY |d]−E[XY ]
is symmetric (where d is random). Let δ > 0. Suppose F is
a set of features whose size satisfies |F| ≤ δ

2e
n
8 (e.g. it is

of size at most exponential in n). Then for all Xi in F , we
have with probability greater than 1− δ:

|µ̂i − E[XiY ]| ≤ σ̂i√
n

√
4 log

2|F|
δ
,

where no moment bounds on X and Y are assumed, aside
from existence of E[XY |d] and E[XY ].

The proof of this theorem is in the appendix. The key is that
this theorem shows that the empirical variance can be taken
into account when searching through a large feature set.
Also note that this bound compares favorably well with the
idealized case in which the random variables XiY are IID
normal, which can be explicitly verified. In fact, asymptot-
ically, as implied by the Central Limit Theorem, the only
improvement possible is that the constant of 4 would be-
come a 2.

The proof of this bound, which we provide in the Ap-
pendix, is significantly more subtle than the standard
“Bernstein”-like bounds, since the T -statistic has much
“thicker” tails. Our proof is based on the following bound
for “self-normalized” sums, which, to our knowledge, has
not been utilized in the machine learning literature.

Theorem 2. (See Theorem 2.15 in (de la Pena et al.,
2009)) Assume Z1, . . . Zn are independent, mean 0, sym-
metric random variables. For all t > 0, the following
bound on the self-normalized sum holds:

Pr

[
(
∑n
i=1Zi)

2

∑n
i=1Z

2
i

> t

]
≤ exp

(
− t
2

)
,

where no moment bounds on Zi are assumed (aside from
its mean existing).

For completeness, we add the proof of this theorem as well.
It is based on a simple symmetrization argument along with
Hoeffding’s tail inequality. Note that the above bound is

not quite a large deviation bound for a T -statistic, as the
denominator uses

∑n
i=1Z

2
i , while a T -statistic would have

a term of the form
∑n
i=1(Zi−Ẑ)2, where Ẑ is the empirical

estimate of the mean,
∑n
i=1Zi/n. This subtlety leads to

the condition in Theorem 1 that the size of F is at most an
exponential in n.

3.2 Subset Selection

Merely searching for the lowest error solution over all sub-
sets of, say, size q is prone to overfitting. Instead, we seek
to take into account the empirical variance when searching
over subsets of features. We now provide a data-dependent
bound showing that the empirical variance can be utilized
for a much sharper bound. In the next subsection, we dis-
cuss a greedy method for this search.

Given some set of features S of size q, let X̃1 . . . X̃q be an
orthonormal basis for this subspace (e.g. E[X̃iX̃j ] is 0 if
i 6= j and 1 if i = j. Note that we can put S into this
basis as we have assumed knowledge of E[XX>]). The
best weight vector for this subspace (in this basis) is again
just the covariance [µS ]i = E[X̃iY ]. Define the (unbiased)
empirical means and variances as follows:

[µ̂S ]i =
1

n

∑

k

E[X̃iY |dk],

[σ̂S ]
2
i =

1

n− 1

∑

k

(E[X̃iY |dk]− [µ̂S ]i)
2.

We take µ̂S as the estimate of the weight vector on this sub-
space. We now provide our data dependent generalization
bound, in terms of an appropriate empirical variance. In
particular, we are interested in a generalization bound for
all subsets of size q out of a feature set of size p.

Corollary 3. Assume the random vector E[XY |d] −
E[XY ] is symmetric. Let δ > 0. Assume that our set of
features F is of size p, and that qpq ≤ δ

2e
n
8 . For all subsets

S ⊂ F of size q, we have:

L(µ̂S)− L(µS) ≤
(∑

i∈S
[σ̂S ]

2
i

)
8q log p+ log(2/δ)

n
.

This bound is analogous to the usual bounds for regres-
sion where instead of the sum empirical variance, we have
the true variance (which is usually assumed to be constant
in idealized Gaussian noise regression model1). Crucially,
the bound shows that we can robustly utilize the empirical
variance when doing our estimation. The implications of
this are that we can design a much sharper procedure for
testing if a feature improves performance.

1For the usual model, where Y = βX+η where η is Gaussian
noise with variance σ2. The risk bound above is just σ2 q log p

n
,

which is improved by a factor of q. We conjecture if we made the
further assumption that the random vector E[XiY |d] − E[XiY ]
is spherically symmetric, then the factor of q can be removed.
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Figure 2: Area under ROC (AUROC) (y-axis) for predicting digit ’2’ for both the greedy algorithm (shown in red) and for our T -greedy
algorithm (shown in blue), as we add more features (x-axis). As is seen in the last graph, since we choose features based on T-statistics,
our T-statistics is generally higher than that of the greedy algorithm.

3.3 Practice: The T-Greedy Algorithm

In practice, the natural methodology is to “greedily” choose
a feature instead of searching all subsets, which usually
consists of finding the feature which decreases the error
the most. Instead, we introduce the T -greedy algorithm, a
“stagewise” procedure for adding the feature which has the
highest T -statistic. The goal is to add a feature in which
we have the most confidence that the true error will be im-
proved.

There are a variety of greedy regression procedures, such
as “stepwise”,“stagewise”, etc. (Zhang, 2011; Foster &
George, 1994; Donoho & Elad, 2002)). We now present
a stagewise variant by considering covariances with our
residual error (Y −w ·X). Suppose that our current weight
vector isw (on our current set of features). For each feature
Xi, we compute the empirical mean and variance:

µ̂i =
1

n

∑

k

E[Xi(Y − w ·X)|dk],

σ̂2
i =

1

n− 1

∑

k

(E[Xi(Y − w ·X)|dk]− µ̂i)2.

Note that with a finite number of samples in each domain,
we would simply use the empirical estimates instead. Now
we just add the feature with the highest T -statistic, e.g. add
the feature:

i? = argmax
i
Ti

where Ti = µ̂i

σ̂i/
√
n

. Now our update to the weight on this
feature is simply:

wi? ← wi? +
µ̂i

Ê[X2
i ]
, Ê[X2

i ] =
1

n

∑

k

E[X2
i |dk].

Observe that this is actually a biased estimate of the opti-
mal weight on this added feature. Technically, our theory
is only applicable to using unbiased estimates, where we
would have E[X2

i ] in the denominator. This is a minor dis-
tinction in practice, and with unlabeled data we could es-
sentially run the unbiased version. We should point out that
stepwise variants are also possible.

4 Experimental Results

We now present results on the MNIST and CIFAR image
datasets. The MNIST digit dataset contains 60,000 training
and 10,000 test images of ten handwritten digits (0 to 9),
with 28×28 pixels. In all experiments, we use 10,000 dig-
its (1,000 per class) for training and 10,000 digits for test-
ing. Instead of using raw pixel values, each image was rep-
resented by 2000 real-valued features, that were extracted
using a deep belief network (Hinton et al., 2006).

We also present results on the more challenging CIFAR im-
age dataset (Krizhevsky, 2009), that contains images of 10
object categories, including airplane, car, bird, cat, dog,
deer, truck, deer, frog, and horse. As with the MNIST
dataset, we use 10,000 images (1,000 per class) for training
and 10,000 images for testing. Each image was also rep-
resented by 2000 real-valued features, that were extracted
using a deep belief network (Krizhevsky, 2009). We note
that extreme variability in scale, viewpoint, illumination,
and cluttered background, makes object recognition task
for this dataset difficult.

In all experiments, we report the area under ROC (AU-
ROC) metric of two different algorithms, that we refer to
as the greedy and our proposed T-greedy algorithm. The
greedy algorithm chooses the next feature which decreases
the squared loss the most on the training set. The T-greedy
algorithm, on the other hand, chooses a feature with the
largest T-statistic. For both methods, we report both gener-
alization error on our training or ’source’ domains as well
as generalization error on test or ’target’ domains. We do
not focus on the issue of stopping but rather on robustness.
There are a variety of methods for stopping which we men-
tion in the Discussion.

4.1 MNIST (2 vs. other)

In our first experiment, shown as the leftmost plot in Fig. 2,
we tested the ability of the proposed algorithm to general-
ize to a new target domain: recognizing the digit ’2’ vs. the
new, previously unseen digit ’9’. To this end, we created
eight source domains: {’2’ vs. ’0’},..., {’2’ vs. ’8’}, where
each domain contained a balanced set of 2000 labeled train-
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Figure 3: Area under ROC (AUROC) (y-axis) for learning similarity function for both the greedy algorithm (shown in red) and for our
T -greedy algorithm (shown in blue), as we add more features (x-axis). As seen in the last graph, since we choose features based on
T-statistics, our T-statistics are generally higher than that of the greedy algorithm.

ing examples2. Our new target domain (as the test set) {’2’
vs. ’9’} also contained a balanced set of 2000 examples.

Fig. 2, the leftmost plot, displays an evolution of the area
under ROC (AUROC) metric for both greedy (red curves)
and T -greedy (blue curves) algorithms. Note that an area
of 0.5 corresponds to random classifier, shown on the graph
as a horizontal line. The dashed curves correspond to gen-
eralization or ’test’ performance on the source domains,
whereas the solid curves display performance on the tar-
get domain. Observe that after adding only 3-4 features,
test performance of the greedy algorithm on the new target
domain (red solid curve) rapidly becomes close to random.
Test error on the source domains, however, keeps improv-
ing, clearly demonstrating that no overfitting on the source
domains is occurring. Hence, for the greedy algorithm, the
true error on the source and target domains rapidly diverge.

This is in sharp contrast to the performance of the T -greedy
algorithm. Even though performance of the T -greedy algo-
rithm on the source domains (blue dashed curve) is slightly
worse (as expected as it is not as aggressively striving for
source error minimization), the true AUROC on the source
and target domains diverges less rapidly — in particular,
these curves start close together. Fig. 2 further shows re-
sults for different source/target splits. We consistently ob-
serve that as we add few features, the T -greedy algorithm
overfits much less on the target domain. This consistency
is also seen in left most plot of Fig. 4, that displays results
averaged over all splits of the source and target domains.

The rightmost plot of Fig. 2 also shows the T -statistic of
the added feature to the model of both algorithms. We only

2Remember, our key assumption is that the sampled domains
are independent and that the source domains are known.

show one such figure since they all look similar.

4.2 Learning similarity function

We now consider a more demanding task of learning a
similarity function between two images. A good similar-
ity function can provide insight into how high-dimensional
data is organized and can significantly improve the perfor-
mance of many machine learning algorithms that are based
on computing similarity metric. Our goal is to learn a sim-
ilarity function that can not only work well for objects that
are part of the training set, but also works well for new ob-
jects that we may have never seen before: a widely studied
problem known as a “zero-shot” learning.

We formulate the similarity learning problem in our regres-
sion setting as follows. Given two feature vectors corre-
sponding to two images φ(X1) and φ(X2), we consider a
linear regression function:

y = sgn(
∑

i

wiφi(X
1)φi(X

2)),

where we set y = 1 if two images have the same label (pos-
itive example), and y = −1 if two images have different
labels (negative example).

Fig. 3, top row, displays results on learning a similarity
function for MNIST digits. In particular, consider learning
a similarity function on all the digits, but with digit ’9’ ex-
cluded. Similar to the previous experiment, we constructed
nine source domains (corresponding to digits 0 through 8).
Each domain contained 1000 positive and 1000 negative
examples, where negative examples were randomly sam-
pled from the remaining digits in the source domain. Our
target domain contained 1000 positive examples of newly
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Figure 4: Area under ROC averaged over all splits of source/target domains for predicting digit 2 (left), learning similarity function for
MNIST digits (middle) and CIFAR images (right).

observed images of ’9’ and 1000 negative examples, ran-
domly sampled from images of 0-to-8.

Fig. 3, top leftmost plot, shows that the generalization error
of the greedy algorithm on the source and target domains
rapidly diverge. The T -greedy, on the other hand, is able
to select up to 25 reliable features that help us generalize
well to the new target domain. Fig. 3 further displays per-
formance results when generalizing a similarity function to
different target domains. Again, the rightmost plot shows
the value of the added T -statistic for one of these plots.

Finally, we experimented with learning a similarity func-
tion for more challenging image CIFAR dataset. Similar to
the results on the MNIST dataset, Fig. 3, bottom row, shows
that the T -greedy algorithm is able to consistently pick up
to 50 robust features that are useful for transfer to a new
domain (note the difference in scale on the x-axis, which
now goes to 300 features). The greedy algorithm, however,
barely improves upon making random predictions.

We have focused attention on the individual domains to
help drive home how variable each domain is from the oth-
ers. But, it is sometimes hard to see the signal amongst
all this noise, so we also provide averaged versions of the
AUROC curves (Fig. 4). The T -greedy algorithm is able
to pick up many more robust features and overfits far less
on the target domain (difference in blue-dashed and blue-
solid curves). The greedy algorithm’s test error diverges
after adding only a single feature. Almost immediately we
see a big gap in the error on the source and target domains
(difference in red-dashed and red-solid curves).

5 Discussion

All experiments demonstrate that the T -greedy algorithm
has better correspondence between training AUROC and
testing AUROC. The curves start out with the training and
the testing AUROC curves with about the same value. This
is particularly striking in the averaged curves, shown in
Fig. 4. So by looking only at the training curves one can
get a good estimate of the generalization performance. As
expected, eventually overfitting occurs, since the training
AUROC continues to improve whereas the testing AUROC

decreases. However, even then it is possible to get a han-
dle on using our method (e.g. when to stop). One option
is to simply keep yet another domain held out for cross-
validation and cycle through. Alternatively, we can use
properties of the T-statistic to get a handle on when to stop
(e.g. when the T -statistics is behaving like chance). Here,
Bonferoni can also be used as a heuristic to decide how
many variables to use. Again, this is made easier by the
fact that the curves are close.

We also observe that the variability between domains is
much greater than the variability within any given domain
(Figs. 2, 3, and 4 all show this variability). Classical statis-
tics assumes that each error is independent (if just merged
across all the domains), but we see from plots that each
domain behaves idiosyncratically. Sometimes they overfit
after a few variables, sometimes they continue to improve.
This means that using more observations from the domains
we have already studied is not informative of how we will
extrapolate to new domains. Such small sample sizes were
the original motivation for Gosset to come up with his Stu-
dent’s T-statistic. Note that we do not have many degrees
of freedom but we can still obtain as much information out
of the data we have. Indeed, as we see from our analysis
and experiments, this information can still be substantial.

A Appendix

First, let us prove Theorem 2 (also, see Theorem 2.15 in
(de la Pena et al., 2009)).

Proof. (of Theorem 2). Let εi be Rademacher random var-
ialbes (e.g. independent random variables which take val-
ues uniformly in {−1, 1}). Since each Zi is symmetric, we
have that the distribution of Zi is indentical to the distribu-
tion of εiZi. Hence, we have that:

Pr

[
(
∑n
i=1Zi)

2

∑n
i=1Z

2
i

> t

]
= Pr

[
(
∑n
i=1εiZi)

2

∑n
i=1Z

2
i

> t

]

Now we bound this latter quantity for every realization of
Zi. Consider a fixed set of values z1, . . . zn (some realiza-
tion ofZ1, . . . Zn). For these fixed values, let us now bound
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the probability:

Pr

[
(
∑n
i=1εizi)

2

∑n
i=1z

2
i

> t

]
= Pr



(

n∑

i=1

εizi

)2

> t

n∑

i=1

z2i




= Pr



∣∣∣∣∣
n∑

i=1

εizi

∣∣∣∣∣ >

√√√√t

n∑

i=1

z2i




≤ 2 exp

(
− t
∑n
i=1z

2
i

2
∑n
i=1z

2
i

)

= 2 exp(−t/2)

where the second to last step is by Hoeffding’s inequality
(where the only randomness is due to the εi). To see this,
note that we are adding the indpendent variables εizi which
are mean 0 and bounded in magnitude by zi.

Now we prove Theorem 1.

Proof. (of Theorem 1) For symmetric, mean 0, indepen-
dent Zi, define:

µ̂ =
1

n

n∑

i=1

Zi, σ̂2 =
1

n− 1

n∑

i=1

(Zi − µ̂)2

The T -statistic is then defined as:

T =
µ̂

σ̂/
√
n

Define the related quantity:

T̃ =
µ̂

(
1
n

∑n
i=1Z

2
i

)1/2
/
√
n

and note that:
(
∑n
i=1Zi)

2

∑n
i=1Z

2
i

= T̃ 2

Also, one can show that T̃ 2 = n
n−1

T 2

1+ T2

n−1

. Hence, using

the bound on self-normalized sums,

Pr[T 2 ≥ t2] = Pr

[
T̃ 2 ≥ n

n− 1

t2

1 + t2

n−1

]

≤ 2 exp

(
−1

2

n

n− 1

t2

1 + t2

n−1

)

≤ 2 exp

(
−1

2

t2

1 + t2

n−1

)

Now let us choose t =
√

4 log 2|F|
δ . By assumption on the

size of F , we have that t2 ≤ n/2, and so t2

n−1 ≤ n
2(n−1) ≤

1 (since n ≥ 2). Hence,

Pr

[
T 2 ≥ 4 log

2|F|
δ

]
≤ 2 exp

(
−1

2

t2

2

)
=

δ

|F|

Our result now follows by the union bound (over all |F|
features).

Our corollary now follows:

Proof. (of Corollary 3) For any subset, the regret is:
∑

i∈S
(µ̂i − E[X̃iY ])2

Now note that there are no more than pq possible subsets.
Also, each subset comes with its own basis. So let us de-
mand confidence on all qpq possible basis elements. So we
use Theorem 1 with a set of size qpq features (note that
the log of the size of this set is bounded by 2q log p). Our
theorem now follows by summing over the errors.
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