
SUPPLEMENTARY MATERIAL FOR

“Infinite-Dimensional Kalman Filtering Approach

to Spatio-Temporal Gaussian Process Regression”

1 Introduction

1.1 Wiener Process and White Noise

In the actual paper, we have denoted stochastic differential equations in Itô
notation (cf. Karatzas and Shreve, 1991; Øksendal, 2003) such as

df(t) = Af(t) dt+ L dW(t), (1)

where W(t) is a Wiener process (or Brownian motion) with diffusion matrix
Qc. The Wiener process is a Gaussian process with statistics:

E[W(t)] = 0

E[W(t)WT (s)] = Qc min (s, t) .
(2)

In this supplementary material we will rewrite the equation (1) in differential
equation form:

df(t)/dt = Af(t) + Lw(t), (3)

where the driving process w(t) is a Gaussian white noise with statistics

E[w(t)] = 0

E[w(t)wT (s)] = Qc δ(s− t),
(4)

and can be considered as the formal derivative of Wiener process w(t) =
dW(t)/dt. Here Qc is called the spectral density of the white noise process.
The space-time white noise can be defined in analogous manner.

The white noise notation is very convenient in practical computations, be-
cause in many cases the differential equations can be treated as if they were
deterministic differential equations. For this reason this notation is often pre-
ferred in engineering literature (cf. Jazwinski, 1970; Grewal and Andrews, 2001).
However, it is important to make sure that every operation is indeed valid in
rigorous Itô calculus sense (Karatzas and Shreve, 1991; Øksendal, 2003), and
treat the white noise notation only as a convenient notation for the actual Itô
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calculus in operation. To emphasis the actual meaning of the equations, we
have chosen to use the Itô notation in the paper itself.

The background of the notation is that in rigorous sense, we cannot directly
define differential equations driven by a white noise such as (3). Let’s formally
integrate the equation (3), which gives an integral equation of the form

f(t)− f(t0) =

∫ t

t0

Af(t) dt+

∫ t

t0

Lw(t) dt. (5)

Now the last integral cannot be defined as Riemann integral, because the white
noise process is formally non-continuous everywhere. However, it can be de-
fined as so called Itô stochastic integral (see, e.g. Karatzas and Shreve, 1991;
Øksendal, 2003) provided that we interpret the term w(t) dt as increment of
Wiener process W(t). In Itô formalism the equation can be written in form

f(t)− f(t0) =

∫ t

t0

Af(t) dt+

∫ t

t0

L dW, (6)

where dW is the Wiener process increment. The second integral is now stochas-
tic integral with respect to the stochastic “measure” W(t), the Wiener process.
If we drop the integral signs and consider small values of t− t0, the equation can
be written in the more compact form (1), which is the most common notation
for Itô stochastic differential equations in stochastics literature. The solution
f(t) of an Itô stochastic differential equation is called an Itô process. Note that
the equation can be formally written as

df(t)/dt = Af(t) + L dW/dt, (7)

and comparing to Equation (3) reveals that the white noise process can be con-
sidered as the formal derivative of Wiener process dW/dt. However, a slightly
problematic thing is that the Wiener process is everywhere non-differentiable,
and this causes appearance of the delta function in the covariance of white noise.

For the above reasons we also use the Itô notation for infinite-dimensional
stochastic differential equations in the actual paper, because there the situation
is analogous to the finite-dimensional case. In this supplement we use the white
noise notation, because it is easier when doing the actual analytic calculations.

1.2 Multi-Dimensional Fourier Transform

The Fourier transform of function f(x) : R
d 7→ R is here defined as

F [f ](ω) =

∫

Rd

f(x) exp(−iωT x) dx. (8)

The inverse transform is

F−1[F ](x) =
1

(2π)d

∫

Rd

F (ω) exp(iωT x) dω. (9)
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where F (ω) = F [f ](ω). Fourier transforms are rarely explicitly computed,
but precomputed tables are often used instead (see, e.g. R̊ade and Wester-
gren, 2004). One-dimensional Fourier transform pairs have been extensively
tabulated in literature and because exp(±iωT x) =

∏

j exp(±iωj xj) multi-
dimensional Fourier transforms can be computed as sequential application of
single-dimensional transforms. The Fourier transform of a vector valued func-
tion can be computed by applying Fourier transform to each of the components
of the vector separately.

The important properties, which make Fourier transform particularly useful
for solving linear ordinary and partial differential equations are the following:

• Linearity: If f(x) and g(x) are arbitrary functions and a, b ∈ R are con-
stants, then:

F [a f + b g] = aF [f ] + bF [g]. (10)

• Derivative: If f(x) is a k times differentiable function, defined on whole
space Rd and vanishing at infinity, then the Fourier transform of the partial
derivative ∂kf/∂xk

i is

F [∂kf/∂xk
i ] = (iωi)

k F [f ]. (11)

That is, the Fourier transform maps derivatives to polynomials and thus
transforms ordinary and partial differential equations into algebraic equa-
tions.

• Convolution: The convolution of functions f(x) and g(x) defined on whole
space R

d as above can be defined as

(f ∗ g)(x) =
∫

Rd

f(x− x′) g(x′) dx′. (12)

The Fourier transform of the convolution is then the product of Fourier
transforms of f and g:

F [f ∗ g] = F [f ]F [g]. (13)

The Fourier transform is also useful in computing the covariance functions of
stochastic ordinary and partial differential equations due to the following prop-
erties:

• Wiener-Khinchin: If f(x) is a zero mean wide sense stationary random
field with covariance function

Cf (u) = E[f(x) f(x+ u)], (14)

then the spectral density Sf (ω) of the process f(x) is the Fourier transform
of Cf (u):

Sf (ω) = F [Cf ]. (15)
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• If h(x) is a function and H(iω) is Fourier transform (i.e., the transfer
function), then the spectral density of the convolution process g(x) =
h(x) ∗ f(x) is

Sg(ω) = H(iω)Sf (ω)H(−iω) = |H(iω)|2 Sf (ω). (16)

The Gaussian spatial white noise process can be defined as a random field w(x)
with the properties:

E[w(x)] = 0

E[w(x)w(x+ u)] = q δ(u).
(17)

The spectral density of the white noise process can be obtained as the Fourier
transform of the covariance function Cw(u) = q δ(u) and it is given as

Sw(ω) = q. (18)

Due to this property the parameter q or its matrix equivalent in the definition
of white noise is often called the spectral density of the white noise process.

In this document and in the paper write we stationary covariance function
C(x,x′) = C(x−x′) simply as C(x). In the case of spatio-temporal covariances,
the stationary covariance functions are denoted as C(x, t).

2 Details of Squared Exponential Covariance Func-

tion Example

The squared exponential (or exponential of square) class of covariance functions
has the form

C(x) = exp
(
−αx2

)
, (19)

where in the parameterization of Rasmussen and Williams (2006) we have α =
1/(2L2). If we rename one of the input as t, and use separate scales for time
and input, we get

C(x, t) = exp
(
−αx x

2 − αt t
2
)

= exp
(
−αx x

2
)
exp

(
−αt t

2
) (20)

which can be seen to be separable in space and time. The corresponding spectral
density is also separable

S(ωx, ωt) =

(
π

αx

)d/2

exp

(

− ω
2
x

4αx

) (
π

αt

)1/2

exp

(

− ω2
t

4αt

)

(21)

Following the procedure presented by Hartikainen and Särkkä (2010) we can
now approximate the last term with a polynomial in ω2

t :

exp

(

− ω2
t

4αt

)

≈ 1

a0 + a1 (iωt)2 + · · ·+ aN (iω)2N
. (22)
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We can then form the spectral factorization, which will gives

1

a0 + a1 (iωt)2 + · · ·+ aN (iω)2N

=

(
1

b0 + b1 (iωt) + · · ·+ bN (iωt)N

)

︸ ︷︷ ︸

Ht(iωt)

(
1

b0 + b1 (−iωt) + · · ·+ bN (−iωt)N

)

︸ ︷︷ ︸

Ht(−iωt)

(23)

where Ht(iωt) has poles only in the upper half plane. Thus we get the approx-
imation

S(ωx, ωt) ≈ Ŝ(ωx, ωt) = |Ht(iωt)|2 Sx(ωx), (24)

where

Sx(ωx) =

(
π

αx

)d/2(
π

αt

)1/2

exp

(

− ω
2
x

4αx

)

. (25)

Let ωx be fixed and consider the process f̃ satisfying the stochastic differential
equation

b0 f̃(ωx, t) + b1
∂f̃(ωx, t)

∂t
+ · · ·+ bN

∂N f̃(ωx, t)

∂tN
= w̃(ωx, t), (26)

where t 7→ w̃(ωx, t) is a white noise process with spectral density Sx(ωx). The
process now has the spectral density, which was defined in the Equation (24).
Taking inverse Fourier transform with respect to the space then implies that
the process satisfying the stochastic equation

b0 f(x, t) + b1
∂f(x, t)

∂t
+ · · ·+ bN

∂Nf(x, t)

∂tN
= w(x, t), (27)

where w(x, t) is a time-white process with spatial spectral density (25), and
thus exponential covariance function, has the spectral density (24) and thus
approximately the covariance function (20).

If we define f = (f, ∂f/∂t, . . . , ∂N−1f/∂tN−1), it is easy to see that the
above equation can be written in form

∂f(x, t)

∂t
= Af(x, t) + Lw(x, t) (28)

where A and L are constant matrices.

3 Details of the Cressie & Huang Example

Consider the stationary covariance function introduced in Example 1 of Cressie
and Huang (1999):

C(x, t) =
σ2

(a2t2 + 1)d/2
exp

(

− b2||x||2
a2t2 + 1

)

. (29)
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The spectral density is Gaussian in space and thus we get the spatial Fourier
transform easily:

Fx[C(x, t)] =
σ2πd/2

bd
exp

(

−a2t2 + 1

4b2
||ωx||2

)

=
σ2πd/2

bd
exp

(

−||ωx||2
4b2

)

exp

(

−a2||ωx||2
4b2

t2
)

.

(30)

Taking Fourier transform with respect to t is again a Gaussian transform for
the last term, which gives the spectral density

S(ωx, ωt) =
σ2πd/2

bd
exp

(

−||ωx||2
4b2

)(
2b π1/2

a ||ωx||

)

exp

(

− b2

a2||ωx||2
ω2
t

)

=
2σ2π(d+1)/2

a ||ωx|| bd−1
exp

(

−||ωx||2
4b2

)

exp

(

− b2

a2||ωx||2
ω2
t

)

.

(31)

Let’s form the following Taylor series approximation to the inverse of the last
term, write it in terms of iωt and factor out the highest order term:

exp

(
b2

a2||ωx||2
ω2
t

)

≈ 1 +

(
b2

a2||ωx||2
)

ω2
t +

1

2

(
b2

a2||ωx||2
)2

ω4
t

= 1−
(

b2

a2||ωx||2
)

(iωt)
2 +

1

2

(
b2

a2||ωx||2
)2

(iωt)
4

=
1

2

(
b2

a2||ωx||2
)2
(

2

(
a2||ωx||2

b2

)2

− 2

(
a2||ωx||2

b2

)

(iωt)
2 + (iωt)

4

)

(32)

The roots of the polynomial on the right are given as

r = ±21/4 exp(±iπ/8) ||ωx|| (a/b), (33)

and thus the stable roots are

rs = −21/4 exp(±iπ/8) ||ωx|| (a/b). (34)

By expanding the corresponding polynomial, we get the following:

(iωt)
2 + 25/4 cos(π/8) ||ωx|| (a/b) (iωt) + 21/2 ||ωx||2 (a/b)2. (35)

Thus, if we define

H(iωx, iωt) =
1

(iωt)2 + 25/4 cos(π/8) ||ωx|| (a/b) (iωt) + 21/2 ||ωx||2 (a/b)2
.

(36)
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then H is a time-stable transfer function such that

S(ωx, ωt) ≈ H(iωx, iωt)Sw(ωx)H(−iωx,−iωt) (37)

where

Sw(ωx) =
2σ2π(d+1)/2

a ||ωx|| bd−1
exp

(

−||ωx||2
4b2

)

2

(
a2||ωx||2

b2

)2

=

(
4σ2π(d+1)/2a3

bd+5

)

||ωx||3 exp
(

−||ωx||2
4b2

) (38)

Now let w(x, t) be a time-white Gaussian process with spectral density function
Qw(x) = F−1

x [Sw(ωx)] and define the operators

A0 = F−1
x [21/2 ||ωx||2 (a/b)2]

A1 = F−1
x [25/4 cos(π/8) ||ωx|| (a/b)],

(39)

then the process f(x, t) approximately has the covariance function C(x, t):

∂2f(x, t)

∂t2
+A1

∂f(x, t)

∂t
+A0f(x, t) = w(x, t). (40)

The first of the operators is just

A0 = 21/2 (a/b)2 F−1
x [||ωx||2] = −21/2 (a/b)2 ∇2 (41)

The second operator can be written as

A1 = 25/4 cos(π/8) (a/b)F−1
x [||ωx||] = 25/4 cos(π/8) (a/b)

√

−∇2 (42)

In numerical computations the operator square root can be usually easily im-
plemented. Thus the resulting pseudo-differential evolution equation is of the
form

∂

∂t

(
f(x, t)
∂f(x,t)

∂t

)

=

(
0 1

c0 ∇2 −c1
√
−∇2

)(
f(x, t)
∂f(x,t)

∂t

)

+

(
0
1

)

w(x, t), (43)

where c0 = 21/2 (a/b)2 and c1 = 25/4 cos(π/8) (a/b) are constants.
To compute approximation to the covariance function with scalar x, let’s

approximate the operators with their Dirichlet counterparts on finite interval
[−L,L]. Consider the eigenvalue problem

−∇2vn(x) = −∂2vn(x)

∂x2
= λ2

n vn(x), vn(−L) = vn(L) = 0, (44)

The normalized (squared) eigenvalues and orthonormal eigenfunctions for n =
1, 2, . . . are:

λn =
nπ

2L

vn(x) =

√

1

L
sin

(
nπ (x+ L)

2L

)

.
(45)
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Thus the 1d Laplacian can be associated with the formal kernel

K0(x, x
′) = −

∑

n

λ2
n vn(x) vn(x

′), (46)

such that

∇2f(x, t) =

∫

K0(x, x
′) f(x, t) dx (47)

If we expand f(x, t) on the basis {vn(x)} then we have

f(x, t) =
∑

n

fn(t) vn(x). (48)

where fn(t) =
∫
f(x, t) vn(x) dx. Thus

∇2f(x, t) =

∫

K0(x, x
′) f(x, t) dx

= −
∑

n,n′

λ2
n vn(x) vn(x

′) fn′(t) vn′(x) dx

= −
∑

n,n′

λ2
n vn(x) δn,n′ fn′(t)

= −
∑

n

λ2
n vn(x) fn(t).

(49)

The square root operator
√
−∇2 now has the formal kernel

K1(x, x
′) =

∑

n

λn vn(x) vn(x
′). (50)

We can now form (random) series expansion for w(x, t) as follows:

w(x, t) =
∑

n

wn(t) vn(x)

wn(t) =

∫

w(x, t) vn(x) dx.

(51)

The differential equation can now be expressed in terms of the basis coefficients
as follows:

d

dt

(
fn(t)
dfn(t)
dt

)

=

(
0 1

−c0 λ
2
n −c1 λn

)(
fn(t)
dfn(t)
dt

)

+

(
0
1

)

wn(t). (52)

which should be true for all n. The joint spectral density Q̃ for the process
noise can be derived as follows:

E[wn(t)wm(s)] = E[

∫∫

w(x, t) vn(x)w(x
′, s) vm(x′) dx dx′]

=

∫∫

vn(x) E[w(x, t)w(x
′, s)] vm(x′) dx dx′

=

∫∫

vn(x)Qc(x− x′) vm(x′) dx dx′ δ(t− s).

(53)
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i.e.,

Q̃nm =

∫∫

vn(x)LQc(x− x′)LT vm(x′) dx dx′. (54)

with L = (0, 1). Thus we have a model of the form

df = Af dt+ dW, (55)

where f = (f1, df1/dt, f2, df2/dt, . . . , ) and

A =










(
0 1

−c0 λ
2
1 −c1 λ1

)

(
0 1

−c0 λ
2
2 −c1 λ2

)

. . .










(56)

and the diffusion matrix of W is Q̃. The measurement model is then

yk = H̃k f + ek, (57)

where H̃k = (v1(xk) 0 v2(xk) 0 · · · ).
The equation for the mean m and covariance P of f are now given as

dm

dt
= Am (58)

dP

dt
= AP+PAT + Q̃. (59)

Let P∞ be the solution to the equation

AP∞ +P∞ AT + Q̃ = 0 (60)

Then we have

Cf (τ) = E[f(t) fT (t+ τ)] =

{
P∞ exp(τ A)T , for τ ≥ 0
exp(−τ A)P∞ , for τ < 0

(61)

where

exp(τ A) =










exp

{(
0 1

−c0 λ
2
1 −c1 λ1

)

τ

}

exp

{(
0 1

−c0 λ
2
2 −c1 λ2

)

τ

}

. . .










(62)
If we define v(x) = (v1(x), v2(x), . . .), then we have

f(x, t) =
∑

n

fn(t) vn(x) = vT (x)Hf(t) (63)
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where H is a matrix with elements Hj,2j = 1 and thus

E[f(x, t) f(x+ ξ, t+ τ)] = E[vT (x)Hf(t)vT (x+ ξ)Hf(t+ τ)]

= vT (x)H E[f(t) f(t+ τ)]HT v(x+ ξ)

= vT (x)HCf (τ)H
T v(x+ ξ).

(64)

Thus we can approximate the covariance function defined by the stochastic
equation by

Cf (x, t) ≈ vT (0)HCf (t)H
T v(x). (65)

The covariance function can be now numerically computed by using a finite
number of terms from this expansion. The Kalman filtering and RTS smoothing
based estimation solution can be done by using a finite number of series terms
in dynamic model (55) and measurement model (57).

4 Details of Modeling US Monthly Precipita-

tion and Temperature Data

4.1 Model

We implemented the separable spatio-temporal GPs as finite-dimensional SDEs
of form as

df(t) = Af(t) dt+ L dW(t), (66)

where matrix A is a dN×dN block diagonal matrix, where the N×N blocks are
constructed in such a way that they determine the desired temporal covariance
function Ct(t) for the n components (see Hartikainen and Särkkä, 2010, for
more details). In this example we used the Matérn temporal covariance model.
For the spatial covariance Cx(x) we used 2-dimensional Matérn covariance (ν =
3/2), which is used in forming the elements of diffusion matrix Qc of W(t).

To further lighten up the computations we formed the finite-dimensional
model (66) to a latent inducing process u(t) on fixed spatial locations {xi

u}mi=1,
and constructed a linear-Gaussian mapping from the inducing process to a
infinite-dimensional latent process as f(x, t)|u(t) ∼ N(H(x)u(t),R(x), where
matrices in the mapping are set to H(x) = Cf ,uC

−1
u,u and R(x) = diag(Cf ,f −

Cx,u C−1
u,u Cu,x), where the covariance terms are evaluated with the spatial co-

variance function Cx. This can be seen as dynamic formulation of fully inde-

pendent conditional (FIC) sparse approximation recently proposed in the stan-
dard GP regression framework. Different approximations can be constructed by
choosing the matrices H and R appropriately.

To achieve the computational efficiency (i.e., O(dm2) complexity in mea-
surement updates) with the low-rank model one can use the matrix inversion
lemma to avoid the inversion of n×n matrix and rather invert a m×m matrix.
In Kalman filtering context the matrix inversion lemma is commonly imple-
mented such that the estimated states and covariances are replaced with infor-

mation vectors and information matrices, which are defined as Ik = P−1
k and
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ik = P−1
k mk. This formulation is Kalman filter is commonly termed as informa-

tion filter (Grewal and Andrews, 2001). In addition to computational efficiency
the information filter is more numerically robust with the low-rank model, which
is particularly important in marginal likelihood based hyperparameter learning.

4.2 Data

The data we consider in the paper consists of monthly precipitation and tem-
perature minimum/maximum measurements 1 collected in the US from years
1895-1997. There are 11918 measurements stations for the precipitation data
and 8125 for the temperatures. Subsets of this data were used by Paciorek and
Schervish (2006) and Vanhatalo and Vehtari (2008) to assess spatial regression
models. High fraction of the measurements is missing, and our aim is to fill
out the missing measurements by taking account of the spatio-temporal cor-
relations in the data. As the size of original data is very large we focus on
(roughly) the same subset of data as in Paciorek and Schervish (2006). The
subset is collected from a rectangular area ([−109.5,−101]× [36.5, 41.5] lon/lat)
around Colorado and comprises of 502 stations for the precipitation and 423
for the temperature readings. The total number of measurements in the subset
are 372873 for precipitation, 336156 for maximum temperature and 336720 for
minimum temperature.

Locations of the measurements stations for precipitation data are shown
in Figure 1. Examples of time-series of each data set are shown in Figure 1.
The time dynamics of precipitation are much more chaotic than the naturally
periodic behavior of temperature readings.

Figure 1: Locations of the measurement stations in the precipitation data. Black
dots represent the locations in the whole data, and red dots the locations in the
subsample, which used in the experiments. Plots with temperature data are
similar, but the number of stations is smaller.

1http://www.image.ucar.edu/GSP/Data/US.monthly.met/
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Figure 2: Example time series of each data and estimate of them obtained
with STGP (ν = 3/2). Black dots are the measurements, dark gray the mean
estimate and light gray the 95% uncertainty.
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