
Markov Logic Mixtures of Gaussian Processes:
Towards Machines Reading Regression Data

Martin Schiegg1,2, Marion Neumann2, Kristian Kersting2

1Institute of Applied Information Processing
University of Ulm

89069 Ulm, Germany
martin.schiegg@alumni.uni-ulm.de

2Knowledge Discovery Department
Fraunhofer IAIS

53754 Sankt Augustin, Germany
{firstname.lastname}@iais.fraunhofer.de

Abstract

We propose a novel mixtures of Gaussian
processes model in which the gating func-
tion is interconnected with a probabilistic
logical model, in our case Markov logic net-
works. In this way, the resulting mixed
graphical model, called Markov logic mix-
tures of Gaussian processes (MLxGP), solves
joint Bayesian non-parametric regression and
probabilistic relational inference tasks. In
turn, MLxGP facilitates novel, interesting
tasks such as regression based on logical con-
straints or drawing probabilistic logical con-
clusions about regression data, thus putting
“machines reading regression data” in reach.

1 Introduction

Can computers learn to read regression data? Imag-
ine you want to get a declarative description of your
possibly high-dimensional dataset containing a huge
amount of observations. That is, next to providing a
regression model, your computer reads, i.e. interprets
your regression data for you in terms of a declarative
probabilistic knowledge base. Indeed, this is akin to
Machine Reading (MR), the automatic unsupervised
understanding of text. According to Etzioni et al. [10]
MR combines information extraction and reasoning to
draw conclusions about implicitly given knowledge. In
analogy, we investigate the problem of machines read-
ing regression data (MR2D). That is, given a regression
dataset together with weighted logical knowledge, is it
possible to automatically understand and thus be able

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

15 20 25 30 35 40 45 50
time

600

800

1000

1200

1400

1600

1800

he
ig

ht
 (z

)

carry object from cupboard
carry object from kitchen counter
MLxGP

Weight First-Order Logic

1.0 segment(O,T) ⇔ segment(O,T+1)

∞ onT(O,T) ⇒ onT(O,T+1)
...

...
10.0 segment(O!,T)

Evidence

inCb(p) ¬onT(p,18.4) ¬onT(p,25.2)
inCb(c) ¬onT(c,18.4) onT(p,25.7)
¬inCb(k) atT(35.7) onT(k,43.3)
¬onT(k,18.4) atT(25.2) onT(c,43.3)

Subset of Inferred Beliefs

onT(k,22.4) 0.0
onT(k,44.8) 1.0
segment(k,32.5) 1.0
segment(c,41.6) 1.0

Figure 1: Kitchen Regression Data (left) and
Logical Knowledge (right) While setting the table,
the height of the subject’s right hand is observed over
time (left). Background knowledge about the location
of objects and rules describing actions to set the table
are given (right). onT(O) short for onTable(O,T) indi-
cates whether object O is located on the table at time T,
inCb(O,T) short for inCupboard(O) defines the stor-
ing location of O, and atT(T) short for atTable(T)

represents whether the subject is at the table at time
T. Objects are plate (p), cup (c), and knife (k),
and segment(O,T) indicates whether the movement
at time T is assigned to the manipulation of object O.

to “read” the regression data?
As an example consider the situation depicted in
Fig. 1. It shows a regression dataset as well as rela-
tional background knowledge extracted from the real-
world TUM Kitchen Dataset [26]. A subject is setting
the table and the height of the subject’s right hand is
observed over time. Additionally, background knowl-
edge about the location of objects and rules describ-
ing actions to set the table are given. By combining
both types of information, the regression data and the
declarative background knowledge, can a machine ac-
tually understand the process of setting the table?
Other situations in which both regression data and
weighted logical knowledge is available are, for in-
stance, GPS tracks enriched with points of interest

1002

Markov Logic Mixtures of Gaussian Processes

or social network information, and climate data com-
bined with complex knowledge about emission path-
ways. Further examples can be found in robotics where
binary and continuous knowledge gained from differ-
ent sensors together with logical background knowl-
edge can be used to improve context-specific grasping,
terrain modeling or robot localization, among others.

In this context, our main contribution is a novel model
that intertwines Gaussian process (GP) regression [20]
within probabilistic logical languages. Whereas GPs
capture the regression data well, probabilistic log-
ical languages, see e.g. [11, 7, 6] for overviews,
provide powerful formalisms to compactly represent
noisy declarative knowledge. Specifically, we intro-
duce Markov logic mixtures of Gaussian processes
(MLxGP). It takes Tresp’s [27] mixtures of Gaussian
processes (MGP) model and intertwines the gating
function with a probabilistic relational model – in our
case Richardson and Domingos’ [21] Markov logic net-
works (MLNs)1. In doing so, MLxGP facilitates joint
Bayesian non-parametric regression and probabilistic
logical inference. Thus, MLxGP puts MR2D in reach.

Reconsider the Kitchen example in Fig. 1. Here, an
MLxGP can exploit two sources of knowledge, the
MLN and the MGP, to achieve a segmentation of the
data (as indicated by the colors in Fig. 1) and, in turn,
an understanding of the observed data in terms of the
declarative background knowledge. Actually, MLxGP
reads the data as follows: “To set the table the subject
first carried the plate, then the knife, followed by the
cup.” Indeed, one may argue that inference in the GP
and the probabilistic logical model separately is suffi-
cient to achieve the same reading. However, as shown
by our experiments, this is not the case, at least with-
out expensive feature engineering. The probabilistic
logical model and in turn the understanding of the re-
gression data is improved by knowledge captured in
the GP. The GP regression benefits from the proba-
bilistic logical model since it influences predictions for
missing values.

We proceed as follows. We start off by touching
upon related work and briefly reviewing (M)GPs and
MLNs. Then, we introduce MLxGP and describe how
to perform inference and how to learn the mixture
weights and the hyperparameters. Before concluding,
we present our experimental evaluation.

2 Related Work

MLxGPs combine two lines of research: Gaussian pro-
cesses, in particular mixtures of Gaussian processes,

1Other probabilistic relational models could be used in-
stead, as long as they induce a factor graph.

and statistical relational learning.

A multitude of MGPs have been proposed in litera-
ture [27, 19, 14, 29, 1, 25, 22]. We adapt the idea
of Tresp [27] that each observation comes from one
individual unobserved GP, termed expert. From the
observations, expert mixture weights are learned. Ex-
perts obtain infinite noise terms for observations if
they do not belong to this expert. However, in con-
trast to classical MGPs, MLxGP declaratively “ex-
plains” both the experts and the weights by model-
ing the dependencies between the experts as well as
between data points by a probabilistic logical model.
Deisenroth et al. [8] proposed the idea that a classifier
selects one out of two GPs to predict a target value
for a test input. Again, this approach does not handle
implicit knowledge derived from a probabilistic logical
knowledge base (KB). Indeed, several relational GPs
have been proposed, see e.g. [5, 23, 30, 17]. However,
they are no mixtures and assume relations between
data points to be extensional, i.e., given as a set of
true and false ground facts rather than intensional,
i.e., in terms of rules as in MLxGP.

Finally, within the statistical relational learning com-
munity, hybrid models incorporating continuous vari-
ables into probabilistic logical models have been pro-
posed, see e.g. [28, 12, 4]. Also, there has been
extensive work on constructing process model from
continuous data using declarative background knowl-
edge, see e.g. [3] and reference in there. How-
ever, these approaches are all of parametric nature
although Bayesian non-parametric methods are desir-
able to model non-linear functions, for instance.

3 Mixtures of Gaussian Processes

Gaussian processes (GP) [20] are an extremely at-
tractive method to perform non-linear regression be-
cause of their flexible non-parametric nature, their
analytical properties and the predictive uncertainties
they provide. Assume we have a training set D =
{(xi, yi)}i=1,...,n = {(X,y)} of n multi-dimensional
inputs and their corresponding scalar outputs. The
regression task is, given a new input x∗, to obtain
the predictive distribution for the corresponding ob-
servation y∗. The output yi = f(xi) + εi is assumed
to be generated by an underlying latent function and
additive independent Gaussian noise εi ∼ N (0, σ2).
Now, a GP prior on f(xi) ∼ GP(0, k(xi,xj)) yields a
multivariate Gaussian distribution for f = f(X) =

(f(x1), ..., f(xn))
>

with zero mean and covariance
function k(xi,xj), which may be any Mercer kernel
function with hyperparameters θ. For a new input
case x∗, the predictive distribution is Gaussian and
given by f∗ | X,y,x∗ ∼ N (f̄∗, cov(f∗)). For the sake

1003

Schiegg, Neumann, Kersting

of clarity, we focus on predictions for one test input.
See [20] for a comprehensive introduction to GPs.

MGPs are a variant of the mixture of experts
model [13], which extend a single GP to handle
multiple latent functions. Each individual expert
GPk ∈ {GP1, ...,GPR} locally represents the depen-
dencies in the data by using respective hyperparame-
ters Θ = {θ1, ...,θR}. Fig. 2 (upper part) graphically
illustrates such an MGP model for regression using the
gates notation [15] to indicate that the Gaussian field
of latent variables fi is indeed a mixture of GP experts.
Dependent on the state of the nominal selector vari-
able z connected to the gate itself, GP mixtures are
created. The probability distribution of the output y∗
is determined by

P (y∗ | x∗,Θ, X,y) =
∑

z∗

P (y∗, z∗ | x∗,Θ, X,y)

=
R∑

k=1

P (z∗ = k | x∗) N (y∗; f̄∗
k
, cov(fk∗)),

where N (y∗; f̄∗
k
, cov(fk∗)) is the Gaussian density of

y∗ calculated at input x∗ given mean and covariance
of GPk and P (z∗ = k | x∗, z) is the probability that y∗
is generated by the k-th component of the mixture.

4 Markov Logic Networks

First-order probabilistic models essentially join graphi-
cal models with elements of first-order logic by defining
template factors (such as Poole’s parfactors [18]) that
apply to whole sets of objects at once. A simple and
powerful such language is Markov logic [21]. A Markov
logic network (MLN) consists of a set of formulas Fi
in first-order logic weighted by ωi ∈ R. By plugging in
a finite set of constants into the formulas, the ground
MLN results in a Markov network which contains one
binary node for each possible grounding of a predicate
and one feature per formula. A Markov network is
called to be a world if there are values assigned to all
the nodes and features. Then, the probability distri-
bution of a world x is given by the log-linear model

P (x) =
1

Z
exp

(∑

i

ωini(x)

)
(1)

where ni(x) is the number of true groundings of for-
mula Fi in the considered world x and Z is the parti-
tion function. Eq. (1) is equivalent to the product of

potential functions P (x) = 1
Z

∏
i φi (xi)

ni(x), where φi
is the potential for formula Fi. A world is not impossi-
ble if a single formula is violated as it would be the case
in first-order logic. However, it is less likely, dependent
on the relevance of the formula which is determined
by its weight. An important inference task in MLNs

Table 1: The Kitchen MLN The mutual exclu-
sive predicates (denoted by O!) expert(1,T) and
expert(2,T) indicate whether an object is carried
from the cupboard respectively the kitchen counter.
Variables are typed such that T represents points in
time, O stands for objects, and E ranges over the ex-
perts. T+1 denotes the successive time step of T.

Rule First-Order Logic Weight

Only one object is carried
at once.

segment(O!,T) 10.0

If an object is stored in the
cupboard, the movements
to carry it are modeled by
expert 1.

(segment(O,T) ∧ inCupboard(O))

⇔ expert(1,T)

10.0

... otherwise by expert 2. (segment(O,T) ∧ ¬inCupboard(O))
⇔ expert(2,T)

10.0

One object is carried in
successive points in time.

segment(O,T) ⇔ segment(O,T+1) 1.0

An object remains on the
table.

onTable(O,T) ⇒ onTable(O,T+1) ∞

An object, carried in one
instant of time and not
carried in the successive
point in time, is being
placed on the table.

((segment(O,T) ∧
¬segment(O,T+1)) ⇔
(onTable(O,T+1) ∧
¬onTable(O,T)))

40.0

If the subject is at the ta-
ble, the carried object is
put there at that moment.

(segment(O,T) ∧ atTable(T)

⇒ (¬onTable(O,T) ∧
onTable(O,T+1)))

40.0

Usually, the subject is not
at the table.

¬atTable(T) 3.0

An object located on the
table is not carried at the
same time.

onTable(O,T) ⇒ ¬segment(O,T) 4.0

Exactly one expert is ac-
tive at the same time.

expert(E!,T) ∞

is to compute the conditional probability of variables
given the truth values of some others, the evidence E,
by marginalizing over the remaining variables. Belief
propagation [16], for instance, efficiently solves this
problem. For the rest of this paper, we denote the
information provided by the MLN by η = {F,ω, E}.
Tab. 1 shows an MLN for the Kitchen example.
Following logic programming convention, arguments
in upper case denote variables/placeholders, e.g.
inCupboard(O), and in lower case ground predicates,
e.g. inCupboard(plate). The bottom of Fig. 2 shows
part of the induced graphical model.

5 Markov Logic Mixture of GPs

Experts and mixture weights of the MGP approach are
based on training regression data only. Markov logic
mixture of GPs (MLxGP) extends this idea by also
conditioning the mixture weights on an MLN.

5.1 The Model

The MLxGP model consists of two parts, the mix-
ture of experts model and an MLN. Let D =
{(xi, yi)}i=1,...,n be a regression dataset, e.g. motion

1004

Markov Logic Mixtures of Gaussian Processes

y1

fk
1

k

k = 1, 2

x1

z1

yi

fk
i

k

k = 1, 2

xi

zi

y∗

fk
∗

k

k = 1, 2

x∗

z∗

π1 πi

ex(k,x1)

k = 1, 2

ex(k,xi)

k = 1, 2

segment(p,xi) segment(c,xi)

inCupboard(p) inCupboard(c)

Figure 2: Mixed Graphical Model for MLxGP
The upper part is a chain graph for a mixture of
two GPs for regression. Squares represent observed
variables and circles unknowns. Dashed rectangles il-
lustrate gates and solid lined rectangles plates. The
thick horizontal bar represents a set of fully connected
nodes. Note that an observation yi is conditionally
independent of all other nodes given the correspond-
ing latent variable fki . The lower part is the ground
graphical model for the Kitchen example applying the
first three rules and the last rule of Tab. 1 to the con-
stants plate (p) and cup (c). {(xi, yi)}i=1,...,n denotes
the regression dataset, zi represent the selector vari-
ables. The node expert(k,xi) (ex(k,xi)), indicates
whether training case xi belongs to expert GPk.

capture data as in Fig. 1, and η = {F,ω, E} is the
information provided by the knowledge base consist-
ing of first-order formulas Fj which might be depen-
dent on the input of the regression data, their assigned
weights ωj , and some evidence E. The goal is to learn
both the hyperparameters Θ = {θ1, ...,θR} of the
GP experts GP1, ...,GPR, where θk = (θk1 , ..., θ

k
mk

)>,
mk = |θk| and k ∈ {1, 2, ..., R} and their mixture
weights in order to predict unknown output values as
well as truth values of ground atoms. Let z be the la-
tent categorical selector variable indicating which ex-
pert is active for the corresponding input, then the
probability P (zi = k) of yi being generated by the k-
th expert GPk serves as a mixture weight. For each
expert GPk and training input xi, the MLN contains
an atom expert(k,xi) which is connected to the cor-
responding selector variable zi. An illustrating mixed
graphical model of the MLxGP model considering an
excerpt of the Kitchen example is shown in Fig. 2.

The general idea of the MLxGP model is that both the

15 20 25 30 35 40 45 50
time

0.0

0.2

0.4

0.6

0.8

1.0

P(
z=

k) objFromCupboard
objFromCounter

Figure 3: Kitchen Gating Function The gating
GPs provide a segmentation of the input space. In
the Kitchen example, they indicate whether an object
is carried from the cupboard or the kitchen counter.

estimates about the mixture weights provided by the
MLN, which can be interpreted as a declarative prior
for the MLxGP, and the noise of the predictions of the
experts indicate how well a data point is explained by
a specific expert. In MLxGPs, we model this property
by an artificial input-dependent noise constituting a
soft assignment of training points to GP experts. If, in
the extreme case, the data point (xi, yi) is not included
in the training set of expert GPk, then the noise term
of GPk is set to a high value, up to infinity. If, on
the other hand, (xi, yi) is assigned to GPk, then the
artificial noise term is close to zero.

The predictive mean and variance of expert GPk are

f̄i
k

=Kk(xi, X)[Kk(X,X) + Ψk + σ2
kI]−1y, (2)

cov(fki) =Kk(xi,xi) + σ2
k −Kk(xi, X)·

[Kk(X,X) + Ψk + σ2
kI]−1Kk(X,xi), (3)

where the diagonal matrix Ψk constitutes the input-
dependent artificial noise term and σ2

k is the noise vari-
ance of expert GPk. Both terms are obtained from the
learning phase of the MLxGP.

5.2 Inference

In order to do joint inference within the MGP and the
MLN, we have to introduce a gating function.

Gating Function: Given the estimated probabilities
of the selector variables wki = P (zi = k | X,y, η), and
the artificial noise terms Ψk (both will be introduced
later), and given the hyperparameters Θ of the GP
experts, the key component is the gating function. It
defines the mixture assignment at an unknown input
case x∗ based on the latent selector variable z∗ which is
influenced by both the KB and the GP. As gating func-
tion for the MLxGP model, we introduce an R-class
classification Gaussian process model determining the
probability of data point x∗ to be generated by expert

1005

Schiegg, Neumann, Kersting

GPk: wk∗ =

P (z∗ = k | x∗, X,w1, ...,wR) =
exp

(
rf̄z,k∗

)

R∑
ν=1

exp
(
rf̄z,ν∗

) , (4)

where f̄z,k∗ is the prediction of GPzk with a shared out-
put scale r. {GPz1, ...,GPzR} is a second set of so-called
gating GPs with hyperparameters Θz = {θz1, ...,θzR},
where θzk = (θk,z1 , ..., θk,zsk)>, sk = |θzk| and k ∈
{1, 2, ..., R}. In our running example, the two gating
GPs illustrated in Fig. 3 indicate the probability of
the subject carrying an object from the cupboard or
the kitchen counter at an arbitrary point in time. The
rescaling factor r controls the hardness of the assign-
ments of unknown data points to the expert GPs. The
larger r, the harder the assignment to one single GP
expert. For reasons of model complexity, we do not
learn r, but fix it to a value of 6 in all experiments.

To learn the gating GPs, the selector variables are
treated as noise-free observations and the training set
{(xi, wki)}i=1,...,n is used to train a standard GP GPzk
for each k. The belief P (zdummy = k | X, η) ob-
tained from the KB is used as a constant mean function
for GPzk and contains the information provided by the
KB for all data points not contained in D. Technically,
we have to add a constant xdummy to the KB which
covers all test cases for which no regression data is
given, e.g. xdummy covers all points in time with miss-
ing measurements of motion capture data.

Predictive Distribution and Beliefs: Given the
gating function, we can now compute predictive distri-
butions and beliefs. Thus, it is possible to predict con-
tinuous regression values based on the gating function
as well as truth values for ground atoms in the knowl-
edge base. The predictive distribution corresponding
to a new input case x∗ has mean

f̄∗ = P (y∗ | x∗, X,y, z,Θ) =
∑R

k=1
wk∗ f̄

k
∗ ,

where wk∗ is determined by Eq. (4), and f̄k∗ is the pre-
dictive mean at test input x∗ of expert GPk given by
Eq. (2). The predictive variance is determined by

cov (f∗) =
R∑

k=1

wk∗
(

cov(fk∗) +
(
f̄k∗
)2)−

(
R∑

k=1

wk∗ f̄
k
∗

)2

,

where cov(fk∗) is computed as in Eq. (3). The resulting
mixture, denoted as MLxGP, is a Gaussian Process.

Inference in the KB can be performed by any inference
algorithm such as message passing techniques like be-
lief propagation or junction tree.

For the Kitchen MLxGP as depicted in Fig. 2 inter-
esting predictions are the height of the subject’s right

hand while grasping a specific object, or which object
(cup, plate or knife) is carried at which time. These
predictions provide sensible information to enable the
understanding of the regression curve of the MLxGP.

5.3 Learning

The learning phase of the MLxGP consists of two
steps, first we estimate the mixture weights and then
we learn the final hyperparameters of the GP experts.

Estimating Mixture Weights: To estimate the
mixture weights (learning the MLN is left as future
work), we learn them simultaneously with the hyper-
parameters of the GP experts. Hence, we maximize
the expected log-likelihood for both y and z

Q(X,y,Θ, z, η) = E (logP (y, z | X,Θ, η))

=
n∑

i=1

R∑

k=1

wki (logP (yi | X,y−i,θk, η, zi = k)

+ logP (zi = k | X,y−i,Θ, η)) , (5)

where y−i denotes all training outputs except yi
and wki is the mixture weight for xi of expert GPk.
Since MLN and GP are separated by the the selec-
tor variables zi as depicted in Fig. 2, we apply the
Expectation-Maximization algorithm [9].

In the E-step, we compute the probability wki =
P (zi = k | X,y, η) of the selector variable, based on
the GP hyperparameters Θ(t−1) obtained from the pre-
vious M-step. To do so, we first compute a prior for
the MLN atoms expert(k,xi) processing information
from the GP experts model, i.e.

P (zi = k | X,y,θ(t−1)k) =
N
(
yi; f̄

k
i , cov(fki)

)
∑R
ν=1N

(
yi; f̄νi , cov(fνi)

) ,

where N (y;m,σ2) is the likelihood of y given mean m
and variance σ2. To incorporate this information into
the MLN, let gi,k(s) be the feature of the clique only
containing the expert(k,xi) node, i.e. the feature cor-
responding to the unary clique potential of this node,
with states s ∈ {0, 1}. We set this feature to the cur-
rent guess of whether data point xi belongs to expert
GPk or not, i.e.

gi,k(s) =

{
P (zi = k | X,y,θ(t−1)k), for s = 1,

1− P (zi = k | X,y,θ(t−1)k), for s = 0.

Using standard inference techniques for the MLN pro-
vides the belief πki = P (zi = k | X, η) . Combining πki
and the likelihood yields the normalized expert mix-

ture weights wki = P (zi = k | X,y, θ(t−1)k , η) =

πkiN (yi; f̄i
k
, cov(fki))

∑R
ν=1 π

ν
i N (yi; f̄i

ν
, cov(fνi))

.

1006

Markov Logic Mixtures of Gaussian Processes

In the M-step, based on the estimates wki and
πki of the E-step, the hyperparameters Θ(t) for the
GP experts are learned. We therefore maximize
the objective function, Eq. (5), w.r.t. the hyper-
parameters Θ(t) of the expert GPs using, for in-
stance, gradient based optimization. Unfortunately,
logP (zi = k | X,y−i,Θ(t), η) in Eq. (5) has no closed
form and Θ(t) is unknown. Therefore, differentiation
w.r.t. Θ is intractable and we approximate this term
by logP (zi = k | X,y−i,Θ(t−1), η) using the hyperpa-
rameters Θ(t−1) from the previous iteration. This
yields the approximate objective function Q̃.

We set the covariance matrix of expert GPk as Kk =
Kk(X,X) + Ψk + σ2I, where σ2 is the noise variance
obtained from a standard GP trained on the entire
regression dataset and Ψk is a diagonal matrix consti-
tuting the artificial noise featuring a soft assignment
of training points being considered for prediction for
expert GPk. ψkii intuitively consists of two terms:
(a) Contribution from MLN: Based on the estimates

πki determined from the MLN, the term
1−πk

i

πk
i

obtains

a value close to zero if the current belief is that the
training point (xi, yi) belongs to expert GPk, and a
value up to infinity otherwise.
(b) Contribution from GP: 1

n

∑n
j=1 π

k
j (f̄kj − yj)

2 in-
dicates the estimate for the current noise of expert
GPk and is zero for a perfect prediction of all train-
ing cases and positive otherwise. This term guaran-
tees that during weight learning, predictions for actual
training cases of the respective expert are close to their
observed values.
In order to preserve the idea of the artificial noise rang-
ing from zero to infinity dependent on how probable
the corresponding data point belongs to the training
set of the considered expert, these two terms are mul-
tiplied. Hence, the artificial noise

ψkii =

(
1− πki

) (∑n
j=1 π

k
j

(
f̄kj − yj

)2)

nπki

ranges from zero to infinity, whereas ψkii is zero if
(xi, yi) is generated by the k-th expert, i.e. wki = 1,
and takes an infinite value if not, i.e. wki = 0. In the
latter case, the i-th row and i-th column of the inverse
covariance matrices in Eqs. (2) and (3) are zero. In
turn, observation yi has no influence on the prediction
of expert GPk since it is treated as not being part of
its training set.
Now, by computing

∂f̄ki
∂θlj

=

{
[Zl

jα
l]i

[(Kl)−1]ii
− αl

i[Z
l
j(K

l)−1]ii

[(Kl)−1]2ii
, k = l

0, k 6= l
,

∂cov(fki)

∂θlj
=

{
[Zl

j(K
l)−1]ii

[(Kl)−1]2ii
, k = l

0, k 6= l

Table 2: MLxGP vs. GPR

Dataset NRMSE NLPD
GPR MLxGP GPR MLxGP

Kitchen 0.04 0.05 5.88 5.77
Terrain 0.10 0.04 3.57 0.22
Friends-Coffee 0.28 0.12 3.34 10.11
Motorcycle 0.08 0.08 4.58 4.28

Table 3: MLxGP vs. MLN

Dataset CMLL
MLN MLxGP

Kitchen −57.81 -1.07
Terrain −14.13 -9.16
Friends-Coffee −18.20 -2.96
Motorcycle −0.01 −0.01

with αl = (Kl)−1y and Zlj = (Kl)−1 ∂K
l

∂θlj
, the par-

tial derivatives of the objective function Q̃ w.r.t. the
experts’ hyperparameters are given by

∂Q̃(t)

∂θlj
=

n∑

i=1

R∑

k=1

wk
i

(
∂ logP (yi |X,y−i,Θ

(t), η, zi = k)

∂f̄k
i

∂f̄k
i

∂θlj

+
∂ logP (yi | X,y−i,Θ

(t), η, zi = k)

∂cov
(
fk
i

) ∂cov
(
fk
i

)

∂θlj

)

=

n∑

i=1

wl
i

1

[(Kl)−1]ii

(
αl
i[Z

l
jα

l]i

− 1

2

(
1 +

(αl
i)

2

[(Kl)−1]ii

)
[Zl

j(K
l)−1]ii

)
,

using the chain rule for derivation [20]. Q̃ is then op-
timized w.r.t. Θ using, for instance, scaled conjugate
gradient optimization. We consider a constant noise
fixed to the value learned by a standard GP on the en-
tire regression dataset. After convergence of the pro-
posed EM algorithm, all hyperparameters for the re-
sulting GP experts are finally learned again including
the noise variances σ2

k.

Learning Final Hyperparameters: To refine the
hyperparameters θ1, ..., θR and σ2

1 , ...σ
2
R of the expert

GPs GPk, we divide the regression dataset into expert
training sets, one for each expert. The splits are based
on a threshold t of the mixture weights which were
learned by the EM algorithm. Then, a standard GP is
trained on the corresponding set to learn the experts’
final hyperparameters.

6 Experimental Illustration

Our intention here is to investigate the power of inter-
twining probabilistic logical and GP models, i.e., the
following questions: (Q1) Can MLxGP improve per-
formance upon (M)GPs? (Q2) Can MLxGP improve
performance upon MLNs? (Q3) Can MLxGP be used

1007

Schiegg, Neumann, Kersting

15 20 25 30 35 40 45 50
time

0.0

0.2

0.4

0.6

0.8

1.0
P(

se
gm

en
t(O

bj
ec

t,T
im

e)
 =

 1
) segment(knife,Time)

segment(cup,Time)
segment(plate,Time)

0 1 2 3 4 5 6 7 8
depth

2

0

2

4

6

he
ig

ht

0 5 10 15 20 25
day

0

2

4

6

8

10

w
at

er
 c

on
su

m
pt

io
n

at
 c

of
fe

e
ki

tc
he

n CD at w
no CD at w
MLxGP

0 10 20 30 40 50 60
time

150

100

50

0

50

ac
ce

le
ra

tio
n

MGP
expert 1
expert 2
expert 3

15 20 25 30 35 40 45 50
time

0.0

0.2

0.4

0.6

0.8

1.0

P(
se

gm
en

t(O
bj

ec
t,T

im
e)

 =
 1

)

segment(knife,Time)
segment(cup,Time)
segment(plate,Time)

(a) Kitchen

0 1 2 3 4 5 6 7 8
depth

0

1

2

3

4

5

6

he
ig

ht

flat terrain
hilly terrain
MLxGP

(b) Terrain

0 5 10 15 20 25
day

0.0

0.2

0.4

0.6

0.8

1.0

P(
z=

k) coffee drinker at work
no coffee drinker at work

(c) Friends-Coffee

0 10 20 30 40 50 60
time

150

100

50

0

50

ac
ce

le
ra

tio
n

riding
impact
hitting ground
MLxGP

(d) Motorcycle

Figure 4: Experimental Results (a) shows segmentations for the Kitchen example indicating which object
was manipulated at which time, MLN (top) and MLxGP (bottom). (b) compares the regression predictions of
GPR (top) and MLxGP (bottom) for the Terrain example. In (c), the MLxGP (top) and the segmenting gating
functions (bottom) are illustrated for the Friends-Coffee example. The regression predictions for the Motorcycle
dataset is depicted in (d), MGP (top) and MLxGP (bottom).

to realize “machines reading regression data”?

To answer (Q1)-(Q3), we conducted experiments on
several datasets: the real-world Kitchen data used for
illustration throughout the paper, synthetic datasets
for a 1D terrain model and a friends-coffee model,
and the motorcycle dataset. Specifically, we compare
MLxGP and MGP (Q1) on a standard MGP bench-
mark dataset, namely the motorcycle dataset. To com-
pare with GPs, we use leave-one-out cross-validation
(LOO-CV) to compute normalized root mean squared
error (NRMSE) and negative log predictive density
(NLPD). For both measures holds, the smaller the
better. To compare with MLNs, we compute the
conditional marginal log-likelihood (CMLL) defined as
CMLL(X = x) =

∑
i∈Q logP (Xi = xi | E) with query

set Q and evidence set E. CMLL is zero for a perfect
prediction and negative otherwise. To demonstrate
that enriching an MLN with continuous regression
data will improve upon the belief estimate of certain
query variables, we use fixed sets Q and E rather than
performing cross-validation. In all experiments, we set
the rescaling parameter r = 6, the threshold t = 0.5,
and used junction tree for inference in the MLN.

TUM Kitchen Data (Q2,Q3): We evaluated
MLxGP on our Kitchen example which is based on
the TUM Kitchen dataset [26]. Of the demonstration
indexed by (1-3), we considered the time frames where
the subject set the table with a plate, a knife, and
a cup, and viewed a subsample of the motion cap-

ture data of the height of the subject’s right hand
as depicted in Fig. 1. The full MLN is provided in
Tab. 1. The MLxGP experts represented whether
an object was carried from the cupboard (blue) or
the kitchen counter (red). MLxGP not only provides
the corresponding segmentation (cf. Fig. 3) — thus
(Q3) can be answered affirmatively — but it tells us
which object was manipulated through the predicate
segment(Object,Time). Fig. 4(a) illustrates that the
MLN (top) did not give good results since it does not
take regression data into account, and hence is unde-
cided which object was carried after the plate. MLxGP
(bottom), in contrast, infers that the subject first car-
ried the plate, then the knife, followed by the cup.
In fact, MLxGP achieves a CMLL of −1.07 whereas
MLN obtains a CMLL of −57.81, cf. Tab. 3. This
clearly shows that it is beneficial to incorporate regres-
sion data into MLNs and hence, (Q2) can be answered
affirmatively. Moreover, this advantage does not con-
siderably affect regression performance, cf. Tab. 2.

1D Terrain Model (Q1): Suppose that we want to
model a terrain consisting of flat regions and a hill/wall
from n observations (xi, yi) where xi models depth and
yi observed height. Due to limited view, there are
no observations taken directly behind the wall which
results in high local uncertainty when modeling the
terrain. However, if we have further witnessed a head
behind the wall, a human could easily reason how thick
this wall is and that it is very likely to be flat ground
behind the wall, cf. top of Fig. 4(b). MLxGP incorpo-

1008

Markov Logic Mixtures of Gaussian Processes

rates this kind of reasoning into GPR such that these
implicit observations can efficiently be processed for
regression prediction. Let us further suppose the fol-
lowing rules: (a) the flat region has a smooth surface
and the wall has a rough texture, (b) when observ-
ing a head at location x at a certain height, e.g. at
height 6, it is likely that at this location, the person is
standing on flat ground. In the KB, we model these
constraints by probabilistic first-order logic and pro-
vide evidence about the consistency of the surface at
some locations, as well as about the observation of a
head directly behind the wall.

To compare regression performance of MLxGP and
GPR, we evaluated the models by taking the unob-
served points behind the wall into account such that
LOO-CV considers them as additional test sets. The
error measures of MLxGP are NRMSE = 0.04 and
NLPD = 0.22 in comparison with NRMSE = 0.10 and
NLPD = 3.57 in the case of GPR as provided in Tab. 2,
which answers (Q1) clearly affirmatively. These re-
sults present the power of MLxGPs to approximate
unknown data points for which we have background
knowledge, i.e. we can perform constraint reasoning
with GPs.

Friends-Coffee (Q2,Q3): In our synthetic Friends-
Coffee example, the regression dataset consists of
water consumption measurements taken in a coffee
kitchen at a research institute, cf. Fig. 4(c). We mod-
eled the data using two GP experts indicating whether
a coffee drinker is at the office or not. In the MLN, we
encoded that if two persons are friends, they probably
either are both coffee drinkers or not. We assumed two
persons anna and bob and provided evidence that they
are friends, bob is a coffee drinker, and some evidence
about which days they were at work. When analyzing
the regression data, a human could easily reason that
anna is not a coffee drinker, although she is friends
with bob. Now, running inference within the MLN
yielded a probability of 0.57 for anna being a coffee
drinker. The MLxGP, however, additionally takes the
regression data into account and predicted a probabil-
ity of 0.0 for the same query. This improvement is also
shown by the CMLL: −18.20 for MLN and −2.96 for
MLxGP, cf. Tab. 3. This clearly gives an affirmative
answer to (Q2).

It also provides an affirmative answer to (Q3) as shown
by the segmenting gating function in Fig. 4(c) (bot-
tom). We can actually read off: “At first, Anna who
drinks no coffee, 2 was alone at the office. After a few
days, her friend Bob came to work, consuming a lot of
water from the coffee kitchen as he is a coffee drinker.

2We assume that only coffee drinkers consume water
from the coffee kitchen frequently whereas others prefer to
get water from somewhere else.

Then, he worked one day from home, and returned to
the office at the next day. The following days, Anna
was again alone at the office whilst Bob might have
returned for one day, probably without drinking coffee
at that day.”

Motorcycle (Q1): A common benchmark dataset
for MGPs is the motorcycle dataset [24]. This real-
world dataset consists of measurements of acceleration
of the head of a motorcycle rider at an impact. The
data is divided into three phases (riding, impact, hit-
ting ground) and therefore, in both MGP and MLxGP,
we modeled the data using three GP experts. For
MLxGP, we augmented the dataset with soft evidence
on the mixtures, i.e. on every mixture weight, we set
a probability which reflects our initial belief about the
corresponding data point belonging to the respective
expert. We further integrated natural constraints such
as “the impact phase cannot be followed by the rid-
ing phase”, etc. Fig. 4(d) compares the performance
of MLxGP (top) with the one of MGP (bottom). As
the colors indicate, MLxGP was able to partition the
input space into the expected three phases and to de-
pict the corresponding modes. In contrast, the experts
of the MGP have no specific meaning. Moreover, this
additional capability is not sacrificing regression per-
formance. The MGP model yields an NRMSE of 0.10
and an NLPD of 4.62, MLxGP had an NRMSE of
0.08 and an NLPD of 4.28. This clearly provides an
affirmative answer to (Q1).

7 Conclusions

We presented a novel mixture of GPs model, called
MLxGP, which mixes several Gaussian process experts
using Markov logic (ML). MLxGP can be used for
defining complex non-i.i.d. models for tasks requiring
both Bayesian non-parametric regression and proba-
bilistic logical inference. We introduced the model and
inference algorithms for it, and illustrated its effective-
ness on several datasets. Overall our contribution and
results are an encouraging sign that “machines reading
regression data” (MR2D) may not be insurmountable.

This work suggests several avenues for future work
such as relational networks of GPs lifting dependent
GPs [2] to the relational level, learning the structure
and the weights of the MLN jointly with the MGP
part, and the application of MLxGPs within real-
world applications, e.g. realizing robots that under-
stand their grasps.

Acknowledgments: The authors thank the anony-
mous reviewers for their helpful comments. This work
was partly supported by the Fraunhofer ATTRACT
fellowship STREAM and by the European Commis-
sion under contract number FP7-248258-First-MM.

1009

Schiegg, Neumann, Kersting

References

[1] M. Alvarez, J. Peters, B. Schölkopf, and
N. Lawrence. Switched latent force models for
movement segmentation. In Proc. of Neural Infor-
mation Processing Systems (NIPS-2010), pages
55–63. 2010.

[2] P. Boyle and M. Frean. Dependent Gaussian pro-
cesses. In Proc. of Neural Information Processing
Systems (NIPS-2005), pages 217–224, 2005.

[3] W. Bridewell, P. Langley, L. Todorovski, and
S. Dzeroski. Inductive process modeling. Machine
Learning, 71(1):1–32, 2008.

[4] J. Choi, D. Hill, and E. Amir. Lifted inference
for relational continuous models. In Proc. of the
26th Conference on Uncertainty in Artificial In-
telligence (UAI-2010), pages 126–134, 2010.

[5] W. Chu, V. Sindhwani, Z. Ghahramani, and S.S.
Keerthi. Relational learning with Gaussian pro-
cesses. In Proc. of Neural Information Processing
Systems (NIPS-2006), pages 289–296, 2006.

[6] L. De Raedt. Logical and Relational Learning.
Springer, 2008.

[7] L. De Raedt, P. Frasconi, K. Kersting, and S.H.
Muggleton, editors. Probabilistic Inductive Logic
Programming, volume 4911 of Lecture Notes in
Computer Science. Springer, 2008.

[8] M. P. Deisenroth, J. Peters, and C. E. Rasmussen.
Approximate dynamic programming with Gaus-
sian processes. In Proc. of the American Control
Conference (ACC-2008), pages 4480–4485, 2008.

[9] A.P. Dempster, N.M. Laird, and D.B. Rubin.
Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statisti-
cal Society, Series B (Methodological), 39(1):1–38,
1977.

[10] O. Etzioni, M. Banko, and M. J. Cafarella. Ma-
chine reading. In Proc. of the 21st National Con-
ference on Artificial Intelligence (AAAI-2006),
2006.

[11] L. Getoor and B. Taskar, editors. Introduction to
Statistical Relational Learning. MIT Press, 2007.

[12] B. Gutmann, M. Jaeger, and L. De Raedt. Ex-
tending ProbLog with continuous distributions.
In Proc. of the 20th International Conference on
Inductive Logic Programming (ILP-2010), pages
76–91, 2010.

[13] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E.
Hinton. Adaptive mixtures of local experts. Neu-
ral Computation, 3:79–87, 1991.

[14] E. Meeds and S. Osindero. An alternative infi-
nite mixture of Gaussian process experts. In Proc.

of Neural Information Processing Systems (NIPS-
2006), pages 883–890, 2006.

[15] T.P. Minka and J.M. Winn. Gates. In Proc.
of Neural Information Processing Systems (NIPS-
2008), pages 1073–1080, 2008.

[16] K. Murphy, Y. Weiss, and M. Jordan. Loopy
belief propagation for approximate inference: an
empirical study. In Proc. of the 15th Conference
on Uncertainty in AI (UAI-1999), pages 467–475,
1999.

[17] M. Neumann, K. Kersting, Z. Xu, and D. Schulz.
Stacked Gaussian process learning. In Proc. of
the 9th IEEE International Conference on Data
Mining (ICDM-2009), pages 387–396, 2009.

[18] D. Poole. First-Order Probabilistic Inference. In
Proc. of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-05), pages 985–
991, 2003.

[19] C. E. Rasmussen and Z. Ghahramani. Infinite
mixtures of Gaussian process experts. In Proc.
of Neural Information Processing Systems (NIPS-
2002), pages 881–888, 2002.

[20] C. E. Rasmussen and C. K. I. Williams. Gaussian
processes for machine learning. MIT Press, 2006.

[21] M. Richardson and P. Domingos. Markov logic
networks. Machine Learning, 62(1-2):107–136,
2006.

[22] J. Q. Shi, R. Murray-Smith, and D. M. Titter-
ington. Hierarchical Gaussian process mixtures
for regression. Statistics and Computing, 15(1):
31–41, 2005.

[23] R. Silva, W. Chu, and Z. Ghahramani. Hidden
common cause relations in relational learning. In
Proc. of Neural Information Processing Systems
(NIPS-2007), 2007.

[24] B. W. Silverman. Some aspects of the spline
smoothing approach to non-parametric regression
curve fitting. Journal of the Royal Statistical So-
ciety B, 47(1):1–52, 1985.

[25] C. Stachniss, C. Plagemann, and A. J. Lilienthal.
Learning gas distribution models using sparse
Gaussian process mixtures. Autonomous Robots,
26(2–3):187–202, 2009.

[26] M. Tenorth, J. Bandouch, and M. Beetz. The
TUM kitchen data set of everyday manipula-
tion activities for motion tracking and action
recognition. In Proc. of the IEEE 12th Inter-
national Conference on Computer Vision Work-
shops (ICCV Worskhops), Workshop on Tracking
Humans for the Evaluation of their Motion in Im-
age Sequences (THEMIS), pages 1089–1096, 2009.

1010

Markov Logic Mixtures of Gaussian Processes

[27] V. Tresp. Mixtures of Gaussian processes. In
Proc. of Neural Information Processing Systems
(NIPS-2000), pages 654–660, 2000.

[28] J. Wang and P. Domingos. Hybrid markov logic
networks. In Proc. of the 23nd AAAI Con-
ference on Artificial Intelligence (AAAI-2008),
pages 1106–1111, 2008.

[29] O. Williams. A switched Gaussian process for es-
timating disparity and segmentation in binocular
stereo. In In Proc. of Neural Information Pro-
cessing Systems (NIPS-2006), pages 1497–1504,
2006.

[30] Z. Xu, K. Kersting, and V. Tresp. Multi-relational
learning with Gaussian processes. In Proc. of the
International Joint Conference on Artificial In-
telligence (IJCAI-2009), pages 1309–1314, 2009.

1011

