A Technical Results

A.1 Proof of Lemma 1

Using the definition of \mathcal{Z} and $h_{\mathbf{x}}$, we have

$$\begin{aligned} 1 - \operatorname{err}(h_{\mathbf{x}}) &= \Pr_{((\mathbf{r}, \mathbf{s}), b) \sim \mathcal{D}}(b = h_{\mathbf{x}}(\mathbf{r}, \mathbf{s})) \\ &= \operatorname{Pr}(\mathbf{s} = P(\mathbf{x})) \ \operatorname{Pr}(b = h_{\mathbf{x}}(\mathbf{r}, \mathbf{s}) | \mathbf{s} = P(\mathbf{x})) + \\ \operatorname{Pr}(\mathbf{s} \neq P(\mathbf{x})) \ \operatorname{Pr}(b = h_{\mathbf{x}}(\mathbf{r}, \mathbf{s}) | \mathbf{s} \neq P(\mathbf{x})) \\ &= \operatorname{Pr}(\mathbf{s} = P(\mathbf{x})) * 1 + \operatorname{Pr}(\mathbf{s} \neq P(x)) * \frac{1}{2} \\ &= \frac{1}{2}(Pr(\mathbf{s} = P(\mathbf{x})) + 1). \end{aligned}$$

Rearranging, we get the result.

A.2 Proof of Lemma 2

Let p_k denote the probability that after drawing $\mathbf{r}_1, \ldots, \mathbf{r}_k$, i.i.d., an independently drawn \mathbf{r}_{k+1} is not spanned by $\mathbf{r}_1, \ldots, \mathbf{r}_k$. Also, let B_k be a Bernoulli random variable with parameter p_k . Whenever $B_k = 1$, the dimensionality of the subspace spanned by the vectors we drew so far increases by 1. Since we are in an *n*-dimensional space, we must have $B_1 + \ldots + B_{m'} \leq n$ with probability 1. In particular, we have

$$n \geq \mathbb{E}[B_1 + \ldots + B_{m'}] = p_1 + \ldots + p_{m'}$$

Also, for any $k \leq m'$, by the assumption that the vectors are drawn i.i.d., we have

$$p'_{m} = \Pr(r_{m'+1} \notin \operatorname{span}(r_{1}, \dots, r_{m'}))$$

$$\leq \Pr(r_{m'+1} \notin \operatorname{span}(r_{1}, \dots, r_{k}))$$

$$= \Pr(r_{k+1} \notin \operatorname{span}(r_{1}, \dots, r_{k})) = p_{k}.$$

Combining the two inequalities, it follows that $m'p_{m'} \leq n$, so $p_{m'} \leq n/m'$ as required.