A Technical Results

A. 1 Proof of Lemma 1

Using the definition of \mathcal{Z} and $h_{\mathbf{x}}$, we have

$$
\begin{aligned}
& 1-\operatorname{err}\left(h_{\mathbf{x}}\right)=\operatorname{Pr}_{((\mathbf{r}, \mathbf{s}), b) \sim \mathcal{D}}\left(b=h_{\mathbf{x}}(\mathbf{r}, \mathbf{s})\right) \\
&= \operatorname{Pr}(\mathbf{s}=P(\mathbf{x})) \operatorname{Pr}\left(b=h_{\mathbf{x}}(\mathbf{r}, \mathbf{s}) \mid \mathbf{s}=P(\mathbf{x})\right)+ \\
& \operatorname{Pr}(\mathbf{s} \neq P(\mathbf{x})) \operatorname{Pr}\left(b=h_{\mathbf{x}}(\mathbf{r}, \mathbf{s}) \mid \mathbf{s} \neq P(\mathbf{x})\right) \\
&= \operatorname{Pr}(\mathbf{s}=P(\mathbf{x})) * 1+\operatorname{Pr}(\mathbf{s} \neq P(x)) * \frac{1}{2} \\
&= \frac{1}{2}(\operatorname{Pr}(\mathbf{s}=P(\mathbf{x}))+1) .
\end{aligned}
$$

Rearranging, we get the result.

A. 2 Proof of Lemma 2

Let p_{k} denote the probability that after drawing $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$, i.i.d., an independently drawn \mathbf{r}_{k+1} is not spanned by $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$. Also, let B_{k} be a Bernoulli random variable with parameter p_{k}. Whenever $B_{k}=1$, the dimensionality of the subspace spanned by the vectors we drew so far increases by 1 . Since we are in an n-dimensional space, we must have $B_{1}+\ldots+B_{m^{\prime}} \leq n$ with probability 1 . In particular, we have

$$
n \geq \mathbb{E}\left[B_{1}+\ldots+B_{m^{\prime}}\right]=p_{1}+\ldots+p_{m^{\prime}}
$$

Also, for any $k \leq m^{\prime}$, by the assumption that the vectors are drawn i.i.d., we have

$$
\begin{aligned}
p_{m}^{\prime} & =\operatorname{Pr}\left(r_{m^{\prime}+1} \notin \operatorname{span}\left(r_{1}, \ldots, r_{m^{\prime}}\right)\right) \\
& \leq \operatorname{Pr}\left(r_{m^{\prime}+1} \notin \operatorname{span}\left(r_{1}, \ldots, r_{k}\right)\right) \\
& =\operatorname{Pr}\left(r_{k+1} \notin \operatorname{span}\left(r_{1}, \ldots, r_{k}\right)\right)=p_{k}
\end{aligned}
$$

Combining the two inequalities, it follows that $m^{\prime} p_{m^{\prime}} \leq n$, so $p_{m^{\prime}} \leq n / m^{\prime}$ as required.

