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Abstract

The fused lasso was proposed recently to en-
able recovery of high-dimensional patterns
which are piece-wise constant on a graph,
by penalizing the `1-norm of differences of
measurements at vertices that share an edge.
While there have been some attempts at com-
ing up with efficient algorithms for solving
the fused lasso optimization, a theoretical
analysis of its performance is mostly lack-
ing except for the simple linear graph topol-
ogy. In this paper, we investigate sparsis-
tency of fused lasso for general graph struc-
tures, i.e. its ability to correctly recover the
exact support of piece-wise constant graph-
structured patterns asymptotically (for large-
scale graphs). To emphasize this distinction
over previous work, we will refer to it as Edge
Lasso.

We focus on the (structured) normal means
setting, and our results provide necessary and
sufficient conditions on the graph properties
as well as the signal-to-noise ratio needed to
ensure sparsistency. We examplify our results
using simple graph-structured patterns, and
demonstrate that in some cases fused lasso
is sparsistent at very weak signal-to-noise ra-
tios (scaling as

√
(log n)/|A|, where n is the

number of vertices in the graph and A is the
smallest set of vertices with constant activa-
tion). In other cases, it performs no better
than thresholding the difference of measure-
ments at vertices which share an edge (which
requires signal-to-noise ratio that scales as√

log n).

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

1 Introduction

In this paper, we consider the problem of correctly
identifying the locations of a piece-wise constant sig-
nal over the vertices of a network from noisy observa-
tions in the high-dimensional setting. Specifically, for
a given network G = (V,E), we observe one realization
of the random vector

y = β + ε,

where β ∈ RV and ε ∼ N(0, σ2I), with σ2 known. The
vector β is piece-wise constant over elements of an un-
known partition of the vertices V , where each element
of the partition corresponds to a connected induced
sub-graph of G. We seek to (1) perfectly identify such
a partition and (2) determine the signs of all pairwise
differences βv − βv′ , where (v, v′) ∈ E. These proper-
ties are known as sparsistency.

The motivations for studying such problem are mul-
tiple. From the practical standpoint, the localization
of patterns in a network is an important task in a va-
riety of applications, ranging from anomaly detection
in sensor networks to disease outbreak detection, com-
munity extraction in social networks, identification of
differentially expressed set of genes in microarray data
analysis and virus spread detection in the Internet.

From a theoretical perspective, the problem described
above is an instance of the structured normal means
problem, a variant of the classical normal means prob-
lem in which the possible patterns of non-zero entries
of the mean vector are prescribed as connected sub-
graph of a given graph. Existing analyses of the prob-
lems of signal detection and localization in the struc-
tured normal means setting are fairly recent: see, in
particular, [3], [1], [2], [12], [4]. However, these pri-
marily consider simple graph topologies such as linear
[4], lattice [4, 2, 3] or tree [3, 12]. More general graph
structures are considered in [11] and [1], however these
do not guarantee exact recovery of the support of the
pattern. The former focuses on `2 or hamming dis-
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tance recovery under a probabilistic graphical model,
while the latter focuses on testing. Furthermore, some
of these works assume that the activation cluster size
is known and some rely on procedures that are com-
putationally infeasible for large graphs.

In this paper, we focus on the fused lasso originally
proposed in [14] to enable recovery of high-dimensional
patterns which are smooth (piece-wise constant) on
a graph. The key idea is to penalize the `1-norm of
differences of measurements at vertices that share an
edge to encourage sparsity of the edges which connect
vertices that have different signal values. While there
have been some attempts [15, 7, 8] at coming up with
efficient algorithms for solving the fused lasso opti-
mization, a theoretical analysis of its performance is
mostly lacking. The only exception, to the best of our
knowledge, is [9] which analyzes the linear graph topol-
ogy, assuming that the signal-to-noise ratio (SNR) in-
creases with graph size. In this paper, we investigate
sparsistency of fused lasso for general graph structures
and provide a more refined analysis of the SNR re-
quired for different graph structures. To emphasize
this distinction, we call it Edge Lasso.

We will begin by introducing some mathematical ter-
minology, concerning the oriented graph. Consider a
undirected graph G defined by a set of vertices V and
undirected edges E which are unordered pairs of ver-
tices. We construct an orientation of G by defining a
head e+ ∈ e and tail e− ∈ e. The incidence matrix
D ∈ RE×V for the oriented graph is the matrix whose
De,v entry is 1 if v = e+, −1 if v = e− and 0 otherwise.

We suppose that there is a partitioning of the vertices,
A = {Ai}ki=1, defined by maximal subgraphs of con-
stant signal. Henceforth, without loss of generality,
we will assume that each A ∈ A is connected. For
a vertex v ∈ V , denote A(v) = Ai for i ∈ {1, ..., k}
such that v ∈ Ai. Hence, βv = βw if and only if
A(v) = A(w). We also denote δ = mine∈B |βe+ − βe− |
to be the minimal gap of the signal across elements of
A. We define the signal to noise ratio (SNR) as δ

σ . Let
s = sign(Dβ) and B = {e ∈ E : A(e+) 6= A(e−)} =
support(s). We also refer to the boundary of A as
∂A = {e : e ∩ A 6= ∅ and e ∩ V \A 6= ∅}. Furthermore,
we will define −B = E\B and G−B denotes the graph
with V (G−B) = V and E(G−B) = −B.

Remark 1.1. Note that A comprises of the connected
components of G−B and B is the minimal set of edges
with this property. In this way the set B induces A,
the structure of β.

We will devote the remainder of the study to estimat-
ing A, or equivalently estimating B.

Definition 1.2. Let β̂ be an estimator of β. β̂ is

sparsistent if

lim
n→∞

P{sign({Dβ̂) = sign(Dβ)} = 1

When there are tuning parameters to our estimators,
we will say that the estimator is sparsistent if there
exists any sequence of tuning parameters that give us
sparsistency in accordance with the above definition.
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Figure 1: A qualitative summary of our sparsistency
results for the SNR required by Edge thresholding,
Edge lasso (for the 1-d, 2-d Grid and Nested Complete
Graph), and an Oracle that has a priori knowledge of
A. (In the figure it is assumed that |A| scales like n
for all A ∈ A.)

Our results provide conditions on the graph properties
(motivated by algebraic graph theory) as well as the
signal-to-noise ratio needed to ensure sparsistency for
the edge lasso. We examplify our results using simple
graph-structured patterns, and demonstrate that in
some cases, such as the nested complete graph (defined
later), edge lasso is sparsistent at very weak signal-to-
noise ratios scaling as

√
(log(n)/|A|, where |A| denotes

the smallest set of vertices with constant activation.
This is close to the optimal performance expected since
an oracle, that knows the partition, A, a priori, will
simply average the measurements in each A ∈ A, thus
boosting the SNR by

√
|A|. However, for the most

common applications of the fused lasso, namely the 1
dimensional and 2 dimensional grids, edge lasso does
not seem to perform much better than thresholding the
difference of measurements at vertices which share an
edge (which requires signal-to-noise ratio that scales
as
√

log n). In fact, we can show that edge lasso does
not yield sparsistency for decreasing SNR for 1-d and
2-d grids. These findings are depicted in Figure 1.
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1.1 Mathematical Preliminaries

We first introduce geometric properties of the inci-
dence matrix, D. For a detailed exposition of these
mathematical objects refer to [6]. For any oriented
graph, the column space of D is row(D>), and its or-
thogonal complement is null(D>). To cut a subset of
the vertices, A ⊂ V , from the graph is to define A to
be the positive shore and Ā = V \A the negative shore.
Now we define signed characteristic vectors of a cut to
be χ(A) such that

χ(A)e =





+1 , e+ ∈ A, e− ∈ Ā
−1 , e− ∈ A, e+ ∈ Ā
0 , otherwise

Notice that {χ({v})}v∈V is precisely the columns of D,
so by definition it forms a basis for row(D>). More-
over χ(A) =

∑
v∈ADv which we will use often. (We

often subscript D with e and v interchangably where
e means rows and v means columns.)

Let us introduce the signed characteristic vectors of
cycles, χ(φ) where φ is an ordered collection of vertices
that form a cycle such that (φi, φi+1) ∈ E.

χ(φ)e =





+1 , e+ = φi+1 and e− = φi
−1 , e− = φi+1 and e+ = φi
0 , otherwise

So, if an edge e is contained in the cycle then χ(φ)e = 1
if the orientation of e is in the direction of the cycle
and χ(φ)e = −1 otherwise. Not only is it the case
that null(D>) contains χ(φ) for all cycles φ but it is
spanned by all such χ(φ). We will denote the projec-
tion onto these spaces as Pnull(D>) and Prow(D>).

Another common object of interest in algebraic graph
theory is the unnormalized Laplacian matrix L ∈
RV×V . If ∆ is the diagonal degree matrix for
the graph, and W its adjacency matrix, then L =
∆ − W . Also, let us denote the largest degree as
∆max. Moreover, we see that the incidence matrix
and the Laplacian are related by L = D>D. We
also would like to note that the null space and row
space (null(D), row(D)) is equal to the null and row
space of L. The null space of D is specifically the vec-
tors that are constant over connected components of
G. Furthermore, the projection onto the null space
is obtained by averaging a vector within connected
components. For an operator Φ define the Moore-
Penrose pseudoinverse Φ†. We will often use the oper-
ator norm,

|||Φ|||2,∞ = sup
‖b‖2≤1

‖Φb‖∞

where the norms `2 and `∞ are the Euclidean and
max norms. Throughout this study we use Bachmann-
Landau notation for asympotic statements. Namely, if

an/bn → 0 then an = o(bn) and bn = ω(an). To be
clear we define sign(0) = 0. For a vector z ∈ RE
and a non-empty set of edges B ⊂ E, we will denote
with zB the vector in RE which agrees with z in the
coordinates B and has zero entries in the coordinates
in Bc. Similarly, for a matrix D ∈ RV×E , we will write
DB for the matrix D with the rows in −B replaced by
zero vectors.

2 Edge Thresholding

It is natural as a first pass to merely difference ob-
servations ye+ − ye− and hard threshold to obtain an
estimator of B, and thus an estimate of A. In this
way, edge thresholding is meant to be the simplest es-
timator that might obtain sparsistency. Although we
will be estimating B in this section notice that this is
roughly equivalent to estimating β because we can av-
erage observations Y within connected components of
G−B to obtain a β̂. The estimator is given by,

B̂th(τ) = {e : |ye+ − ye− | > τ}

We find that B̂th is the support of the solution to the
dual problem,

min
z∈RE

∑

e∈E
(ye+ − ye− − ze)2 + λ‖z‖0

for λ = τ2. We now characterize necessary and suffi-
cient conditions to obtain consistency of the estimator
B̂th, where consistency occurs if P{B̂th = B} → 1.

Theorem 2.1. Suppose that |B||E| → 0 for simplicity.

1. If δ
σ = ω(

√
log |E|) then B̂th is consistent for B.

2. If δ
σ = o(

√
log(|E| − |B|)) then B̂th is not consis-

tent for B.

The proof of the theorem is given in the supplemen-
tary material.[10] We see immediately that the signal
to noise ratio must be increasing like the log of the
number of edges for B̂th to achieve consistency.

3 The Edge Lasso

In this section we will describe the edge lasso estima-
tor, which arises as the solution to a generalized fused
lasso problem as defined in [15] with the graph con-
straints specified by the matrix D. In particular, the
edge lasso is the minimizer of the convex problem

min
β̂∈Rp

1

2
‖y − β̂‖22 + λ‖Dβ̂‖1, (1)
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were λ > 0 is a tuning parameter. Thus, the edge
lasso is the penalized least squares estimator of β with
penalty term given by the `1 norm of the differences
of measurements across edges in G. We denote the
problem (1) the primal problem and its solution the
primal solution. The fused primal problem directly
estimates A through β̂. We remark that the primal
solution is always unique because the `2 loss is strictly
convex and, just like edge thresholding, is invariant
under changes in the orientation of the edges. Hence,
the objective function in eq. (1) is strictly convex.

As shown in [15], the dual problem to (1) is given by

minz∈Rm

1

2
‖y − λD>z‖22 such that ‖z‖∞ ≤ 1, (2)

and any solution ẑ to the dual problem results in the
primal solution (see [15] for details)

β̂ = y − λD>ẑ = Pnull(D−B̂)(y − λD>B̂ ẑB̂). (3)

where B̂ = {e ∈ E : |ẑe| = 1}. In this way, we can
assess if the solution to the dual program is sparsis-
tent. Unlike the primal solution, the solution to the
dual problem is not always unique. In fact it may be
that there are two solutions with different dual spar-
sity patterns B̂, but have the same β̂. [15]

When testing for sparsistency we use the following pri-
mal dual witness (PDW) construction, pioneered by

[16], which results in a pair (β̂, ẑ) of primal and dual
solutions. The PDW construction will be used as suffi-
cient conditions for sparsistency. Note that this is not
a practical method for solving the dual problem and
is only used as a proof technique. We begin by setting
ẑB = sign(Dβ), which is equivalent to assuming the
knowledge of both B and the sign differences. Using
this knowledge, compute β̂ = Pnull(D−B)(y − λD>B ẑB).
The PDW steps are as follows.

1. Verify the complementary slackness condition
sign(DBβ̂) = ẑB.

2. Construct z̃ by solving the linear program

minz̃∈Z‖z̃‖∞ (4)

where Z is the set of all dual parameters that sat-
isfy the zero-subgradient condition in the noiseless
setting, i.e.

Z = {z ∈ R−B : D−BD
>
−Bz = −D−BD>B ẑB}

3. Construct the noisy dual by

ẑ−B =
1

λ
D−BL

†
−Bε+ z̃

where L−B is the Laplacian of the graph G−B.

4. Check the strict dual feasibility condition
‖ẑ−B‖∞ < 1.

Theorem 3.1. If the PDW method passes for all large
enough n then the solution to the dual program (2) is
sparsistent.

Before we can prove Theorem 3.1 we need the following
lemma. This lemma will also be used when proving
Proposition 5.5.

Lemma 3.2. Suppose we are given the boundary set B
with sign vector ẑB ∈ {−1, 0, 1}E supported only over

B. Let ẑ†−B = D−BL
†
−B( yλ−D>B ẑB). Set ẑ† = ẑB+ ẑ†−B

and obtain the corresponding primal solution

β̂ = y − λD>ẑ†.

There exists a solution to the dual problem with B and
ẑB as given if and only if ∃f ∈ null(D>−B) such that

1. Dual feasibility: ‖z†−B + f‖∞ ≤ 1

2. Complementary slackness: sign(DBβ̂) ⊆ ẑB

Where ⊆ in the complementary slackness is taken to
mean that it is equal over the support of sign(DBβ̂).

Proof sketch. A detailed proof can be found in the sup-
plementary material.[10] We first enumerate the KKT
conditions and find that ẑ† arises due to the zero-
subgradient conditions leaving only the dual feasibility
and complementary slackness to be satisfied. We have
that for a subgradient γ of ‖z‖∞ the KKT conditions
are

1. (zero subgradient) D(λD>ẑ − y) + γ = 0;

2. (dual feasibility) ‖ẑ‖∞ ≤ 1;

3. (complementary slackness) γi ≥ 0 if ẑi = 1, γi ≤ 0
if ẑi = −1, and γ = 0 otherwise.

Notice that the existence of such a γ is necessary and
sufficient for dual optimality due to convexity. Con-
sidering the zero subgradient condition only over −B,

λD−BD
>
−Bẑ−B +D−B(λD>B ẑB − y) = 0

because over −B, γe = 0. This is yields ∃f ∈
null(D>−B), ẑ−B = ẑ†−B + f . Using the SVD of D−B
we find that (D−BD>−B)†D−B = D−BL

†
−B. Further-

more defining γB = DBβ̂ is necessary and sufficient
for the remainder of the zero subgradient condition.
Now the complementary slackness holds if and only if
sign(DBβ̂) ⊆ ẑB.
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Proof of Theorem 3.1. We will show that the condi-
tions of Lemma 3.2 are satisfied if the PDW passes. By
construction, if 1 passes then complementary slackness
in Lemma 3.2 will be satisfied. By step 2 of the PDW
construction, D−BD>−Bz̃ = −D−BD>B ẑB implies that

ẑ = −D−BL†−BD>B ẑB + f , for some f ∈ null(D>−B),
again by the SVD decomposition of L−B. But we
know that L†−Bβ = 0 because the Moore-Penrose pseu-
doinverse has zero action on any vectors that are con-
stant over connected components of G−B. Therefore,
1
λD
>
−BL

†
−Bε = 1

λD
>
−BL

†
−By. Next, by step 3 we know

that

ẑ−B = D−BL
†
−B(

y

λ
−D>B ẑB) + f = ẑ†−B + f

If step 4 passes then dual feasibility holds.

4 Noiseless Recovery

In this section we consider the performance of the
edge lasso in the noiseless case, i.e. when the vertices
are observed without noise. The reasons for investi-
gating this seemingly uninteresting case are two-fold.
First, somewhat surprisingly, there are many graphs
for which the primal problem will not recover the cor-
rect sparsity pattern A, for any value λ > 0. (See
Figure 3) For these graphs, consistent noisy recovery
with the edge lasso is therefore hopeless. Secondly,
and more importantly, as we will show later in Sec-
tion 5, in order for noisy recovery to be possible at
all, it is necessary that strict dual feasibility holds, i.e.
‖ẑ−B‖∞ < c for some c < 1 for some dual solution ẑ
to the noiseless edge lasso problem.

Below, we will outline sufficient conditions for sparsis-
tency that are based on the topology of the graph G.
To this end, recall that, for a given estimated partition
Â, we have an explicit form for the approximation er-
ror incurred on v ∈ Â(v) ∈ Â using the characteristic
vector of the cut Â, namely

β̂v − βv = (Pnull(D−B̂)(β − λD>B̂ ẑB̂))v − βv

= −λχ(Â(v))>ẑB̂
|Â(v)|

Notice that |χ(Â(v))>ẑB̂| ≤ |∂Â(v)| because of the
definition of the chararacteristic vector. We find that
the success and failure of the noiseless edge lasso is
dictated by the presence of a bottleneck cut of elements
A ∈ A in a sense made precise in the following result.

Lemma 4.1. Let ẑ be the result of the PDW method
and notice that in the noiseless setting z̃ = ẑ−B. Then
for some A ∈ A there exists a cut of A with shores
C, C̄ such that

‖z̃‖∞ =
1

|∂C ∩ ∂C̄|

∣∣∣∣
|C|
|A|χ(C̄)>ẑB −

|C̄|
|A|χ(C)>ẑB

∣∣∣∣

Proof. For the following theorem we will focus on a
connected component A that contains an edge e such
that |z̃e| = ‖z̃‖∞. Let Q = {e ∈ E(A) : |z̃e| = ‖z̃‖∞}
and denote ζ = ‖z̃‖∞. Suppose that Q is not a cut
of A (the removal of Q does not disconnect A). There
exists a spanning tree of A not containing Q as we can
take any spanning tree of A with Q removed. Take
e ∈ Q then form a cycle φ containing e by including
the unique path in the spanning tree from eh to et. No-
tice that e is the unique element of φ such that |ẑe| = ζ.
Construct a new edge vector z′ = z̃ + ηχ(φ) for some
small η such that |z′e| is smaller over the cycle φ. Notice
that |z′e| < ζ and with |η| < ζ −maxe′ 6=e |ze|, |z′e′ | < ζ
for all e′ ∈ φ. Repeat this procedure for the other
elements of Q replacing z̃ with z′. We obtain a new
edge vector that satisfies the zero subgradient condi-
tion because we only added elements of the null(D>−B).
Moreover ‖z′‖∞ < ‖z̃‖∞, contradicting the fact that
z̃ is the solution to eqn. (4) in PDW step (2). Hence,
Q is a cut of A and for all e ∈ Q, |z̃e| = ‖z̃‖∞, and let
one shore of the cut be C. Notice that |Q| = |∂C∪∂C̄|
and ‖z̃‖∞|∂C ∪ ∂C̄| = |χ(C)>z̃| = |χ(C)>ẑ−B |. Now,
Proposition 7.2 from the supplementary material [10]
states that the zero subgradient condition is equivalent
to,

χ(C)>ẑ−B =
|C|
|A|χ(A)>ẑB − χ(C)>ẑB

=
|C|
|A|χ(A)>ẑB −

|C|+ |C̄|
|A| χ(C)>ẑB

=
|C|
|A|χ(C̄)>ẑB +

|C̄|
|A|χ(C)>ẑB

Using the previous Lemma we offer the following suf-
ficient conditions for correct recovery (and strict dual
feasibility).

Theorem 4.2. Define the following notion of connec-
tivity for each A ∈ A,

ρ(A) = max
C⊂A

|C|
|∂C ∩ ∂C̄|

|∂C̄ ∩ ∂A|
|A| (5)

Then the result of the PDW method satisfies,

‖ẑ−B‖∞ ≤ 2 max
A∈A

ρ(A)

Thus, the noiseless problem recovers the correct A if
ρ(A) = maxA∈A ρ(A) < 1/2.

Proof. Consider the C,A pair in the proof of Lemma

4.1. We need to show that, 1
|∂C∩∂C̄| |

|C|
|A|χ(C̄)>ẑ −

|C̄|
|A|χ(C)>ẑ| ≤ 2ρ(A). To this end, note that

1032



Sparsistency of the Edge Lasso over Graphs

1
|∂C∩∂C̄| |

|C|
|A|χ(C̄)>ẑ − |C̄||A|χ(C)>ẑ| is smaller than

|χ(C̄)>ẑ|
|∂C ∩ ∂C̄|

|C|
|A| +

|χ(C)>ẑ|
|∂C ∩ ∂C̄| |

|C̄|
|A|

which in turn is smaller than

2 max
C⊂A

|χ(C̄)>ẑ|
|∂C ∩ ∂C̄|

|C|
|A| ≤ 2 max

C⊂A
|∂C̄ ∩ ∂A|
|∂C ∩ ∂C̄|

|C|
|A| = 2ρ(A).

See Figure 2 for an illustration of condition (5) in the
previous theorem. Later we will describe a class of
graphs which we call the nested complete graphs for
which ρ(A) = 1

|A| for A ∈ A.

Figure 2: An example of the quantities in eq. (5) for
a cut of set A depicted by the large vertices. The cut
C are the black vertices, ∂C ∩ ∂C̄ are blue edges, and
∂C̄ ∩ ∂A are red edges. The RHS of eq. (5) for this
cut is 5/21.

In our next result, we give necessary conditions for
noiseless recovery, which require the |∂A|/|A| to be
small enough and the out-degree to be greater than
the in-degree for v ∈ A. Figure 3 shows an example
of a graph for which this condition is violated and,
therefore, noiseless recovery fails.

Figure 3: An example where for all λ > 0 the edge
lasso does not recover the true A. The 0 to the right
is separated into its own element of the partition.

Corollary 4.3. Consider a vertex v ∈ A ∈ A. Let
ν = |{e ∈ −B : v ∈ e}| be the degree of v within −B.

If ν < |D>v s| − |∂A||A| then B̂ 6= B.

Remark 4.4. Under the conditions of Corollary 4.3,
ρ(A) is close to 1 for large |A|.

Proof. First suppose B̂ = B and z̃B̂ = s. Set C = {v}
in Proposition 7.2. Then ν ≥ |D>v z̃−B̂| while by

the proposition |D>v z̃−B̂| = | 1
|A|χ(A)>ẑB − D>v ẑB| ≥

|D>v s| − |∂A||A| . We immediately arrive at a contradic-

tion: ν ≥ |D>v s| − |∂A||A| > ν.

5 Noisy Recovery

We now analyze the performance of the noisy edge
lasso estimator. We will rely on the PDW construc-
tion and on the results from the previous section to for-
mulate conditions under which the edge lasso achieves
sparsistency. All of the proofs in this section are in
the supplementary material and are a combination of
Gaussian concentration and noiseless recovery. We
first provide conditions guaranteeing that, asymptoti-
cally, the first step of the PDW construction passes.

Lemma 5.1. Let β̂ be the estimated signal resulting
from the PDW method and δ is the minimal gap of the
symbol. If ∀A ∈ A,

δ

σ
= ω

(
1√
|A|

)
and λ = o

(
δ
|A|
|∂A|

)
(6)

then step (1) of the PDW method passes with proba-
bility tending to 1.

We continue our study of the noisy reconstruction with
the edge lasso by outlining sufficient conditions for
sparsistency based on the 2,∞ norm of the operator
D−BL

†
−B. The intuition is that if we have some dual

slack in the sense that ‖z̃‖∞ is bounded away from 1

and if we bound the maximum of |(D−BL†−Bε)e| then
the PDW method will pass. We show that we can ac-
curately describe ‖D−BL†−B‖2,∞ with the spectrum of
the Laplacian. Specifically, if the eigenvectors corre-
sponding to low eigenvalues do not differ significantly
across an edge then we have a small ‖D−BL†−B‖2,∞.

Lemma 5.2. Let z̃ be the result of step (2) of the
PDW method. If ‖z̃−B‖∞ < c for all large n for some
0 < c < 1 and

σ = o

(
λ

|||D−BL†−B|||2,∞
√

log(| − B|)

)

Then step (4) in the PDW method passes for large
enough n.

By putting together the results described so far we
arrive at the following conditions for sparsistency.

Theorem 5.3. Suppose that the following conditions
hold for all A ∈ A,

ρ(A) = o(1)
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δ

σ
= ω

( |∂A|
|A| |||D−BL

†
−B|||2,∞

√
log(| − B|)

)

δ

σ
= ω

(
1√
|A|

)

then the edge lasso is sparsistent.

Proof. Recall from Theorem 4.2 that ‖z̃‖∞ ≤
2 maxA∈A ρ(A) and so ‖z̃‖∞ = o(1). The second con-
dition implies the conditions of Lemma 5.2 for some

λ = o(δminA∈A
|A|
|∂A| ). Thus, step (4) of the PDW

method passes for large enough n. The third condi-
tion completes the conditions of Lemma 5.1 and step
(1) passes for large enough n.

Thus far our conditions rely on the size of
|||D−BL†−B |||2,∞ with no obvious validation techniques.
We are able to relate this norm to the smoothness of
eigenvectors of Laplacians weighted by the reciprocals
of eigenvalues. (The eigenvalues are denoted ξv = Ξv,v
and ξ†v is the pseudoinverse of the scalar - it is recip-
rocated if it is non-zero.)

Proposition 5.4. Let the spectral decomposition of
the Laplacian for A ∈ A be LA = UΞU> then
|||D−BL†−B|||2,∞ is equal to

max
A∈A

max
e∈A

√∑

v∈V
(Uv,e+ − Uv,e−)2(ξ2

v)†

So, if each eigenvector Uv is ηv-Lipschitz with respect
to the shortest path distance then (Uv,e+−Uv,e−)2 ≤ η2

v

and |||D−BL†−B|||2,∞ ≤ max
A∈A

√∑

v∈A
η2
v(ξ2

v)†

We conclude this section with a final observation and
a result that we will use in the next section to analyze
the 1d and 2D edge lasso. There are many graphs for
which the in degree of a vertex matches the out degree
(namely the intersection with ∂A(V )), such as the 1D
and 2D grids. We show that when the approximation
error is small relative to the noise there is no hope of
achieving sparsistency.

Proposition 5.5. Suppose that |A| and that for some
A ∈ A there exists v ∈ A such that |D>B,vs| = |{e /∈ B :
v ∈ e}|. Let the maximum gap of β between elements
of A be denoted δmax. If δmax

σ = o(1) then edge lasso
is not sparsistent.

5.1 Examples

Our findings suggest that the sparsistency of the edge
lasso is highly dependent on the topology of G and its
partitionA. In general, it is necessary that there exists

no bottleneck cuts (cuts that force ρ(A) to be large).
We apply our results to the edge lasso over the 1 and 2
dimensional grids, commonly referred to as the fused
lasso. In these cases the SNR must not decrease to
achieve sparsistency, which is in sharp contrast to the
performance of the oracle. (See Figure 1) We provide
a topology called the nested complete graph that sat-
isfies the sufficient conditions for sparsistency. These
examples are meant to provide a blueprint for using
the previous results to explore topologies for which
the edge lasso is sparsistent.

5.2 1D and 2D Fused Lasso

Due to the popularity of total variation penalization,
it is imperative that we discuss the 1D and 2D fused
lasso. In the 1D grid each vertex can be associated
with a number in {1, ..., n} and we connect the pairs
with Euclidean distance less than or equal to 1. Simi-
larly, in the 2D grid each vertex can be associated with
a number in {1, ..., n0}×{1, ..., n1}. In the 2D grid we
will say that a vertex v is a corner if its degree within
A(v) (the partition element containing v) is 2. (See
Figure 4)

Figure 4: A 2D grid with |A| = 2 depicted as union of
black and red vertices. The red vertex is an example
of a corner.

Corollary 5.6. (a) Consider the 1D fused lasso with
a non-trivial signal such that |A| = 2. If the signal
to noise ratio is decreasing (δmax/σ = o(1)) then
the 1D fused lasso is not sparsistent.

(b) Consider the 2D fused lasso with a A ∈ A such
that A contains a corner v and |A| = 2. If the
signal to noise ratio is decreasing (δmax/σ = o(1))
then the 2D fused lasso is not sparsistent.

Proof. If the signal is non-trivial then there is a vertex
v ∈ A ∈ A that is adjacent to ∂A. |D>v s| = 1 which is
the degree of v within A, so the conditions of Proposi-
tion 5.5 hold. The 2D case follows by considering the
corner as v with |D>v s| = 2.

We see these typical mistakes in the 1D fused lasso in
Figure 5. Here we observe a small incorrect element
of Â at the boundary of a true element of A. We also
simulate (with 500 runs for each n) the tradeoff be-
tween the SNR and the probability of recovering A as
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n increases. (Figure 6) The signal used in the sim-
ulations is a plateau where middle n/3 vertices have
increased signal.
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Figure 5: A typical mistake in the 1D fused lasso.
The vertical lines indicate the beginning and end of
estimated Â.
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Figure 6: Simulated probability of recovery per SNR
for a fused lasso for the plateau signal with A ∈ A of
size n/3. There is little change in the tradeoff between
SNR and probability of recovery as n increases.

5.2.1 Nested Complete Graph

We construct the nested complete graph from p + 1
copies of the complete graph with p vertices by adjoin-
ing each complete graph to each other with one edge.
We can form this such that each vertex has only one
edge leaving its element in A which are the original
complete graphs. (See Figure 7) We find that mod-
ulo factors that scale like the log n, the sparsistency
thresholds are the same as that of the oracle.

Corollary 5.7. Suppose we construct the nested com-
plete graph with p vertices in A and p+ 1 elements in
the partition (|A| = p and |A| = p + 1). If the SNR
satisfies,

δ

σ
= ω(

1√
p

√
log(p(p+ 1)))

Then the fused lasso is sparsistent.

Proof. Consider a cut C of the complete graph with p
vertices. The cut size is |∂C∩∂C̄| = |C|(p−|C|) while

Figure 7: Nested complete graph with p = 3. A are
the complete subgraphs of size 3.

the cut boundary is |∂C̄ ∩ ∂A| = p− |C|. Hence,

|∂C̄ ∩ ∂A|
|∂C ∩ ∂C̄|

|C|
|A| =

(p− |C|)
|C|(p− |C|)

|C|
p

=
1

p

Thus, ρ(A) = o(1).

We know that the spectrum of the Laplacian of the
p-complete graph has one eigenvalue of 0 and the
rest are p. Because the eigenvectors are normalized
the Lipschitz constants ηv ≤ 1 as in Proposition 5.4.

Hence,
√∑

v∈V η
2
v(ξ2

v)† ≤
√∑

v∈A
1
p2 = 1√

p Moreover

|∂A| = |A| = p and we have that

max
A∈A

|∂A|
|A|

√∑

v∈V
η2
v(ξ2

v)†
√

log(| − B|) ≤ 1√
p

√
log(p(p+ 1))

By Theorem 5.3 the result follows.

6 Discussion

We have demonstrated that the performance of edge
lasso depends critically on the structural properties of
the graph. Edge lasso can achieve sparsistency for gen-
eral graph structures under very weak signal-to-noise
rations, however this happens under quite restrictive
conditions of 5.3. For the 1D and 2D fused lasso, vi-
olating these conditions leads to inconsistency. More-
over, a typical case where we can demonstrate the con-
ditions of Theorem 5.3 are satisfied (nested complete
graph) is an example where we could have a priori
identified the possible set A using graph cuts. In fu-
ture work, we are investigating whether there are ex-
amples where edge lasso would dominate both edge
thresholding and a priori graph cuts if exact recovery
of A is desired. Another direction of work is to investi-
gate whether approximate recovery guarantees can be
made for edge lasso under measures such as the False
Discovery Rate (FDR [5]).
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