A Appendix: Proof of Theorem 3

Proof Only a sketch of this proof showing the differences with the correspond-
ing steps in a similar derivation for UCB3 are given. The probability that the
arm j is chosen at time ¢ is given by:
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Moreover,
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Denoting 2 5 S € by xo, it can be shown that the first term above is upper
bounded by,
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where, we get the extra factor exp(—H; A? /2) from an application of Hoeffding’s
inequality incorporating the historic data and TjR (n) is the number of times arm
Jj is selected at random in the first n draws. Since d < A; for all j we can replace
exp(—H;A%/2) with exp(—H;d?/2).

It can further be shown that:
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using Bernstein’s inequality.

Finally, we can lower bound, x‘é as follows:
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Using (1), (2), (3) and (4), it can be shown that:
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Thus, for ¢ > 10, the last four terms in (5) are o(%) since d < 1.
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