
A Appendix: Proof of Theorem 3

Proof Only a sketch of this proof showing the differences with the correspond-
ing steps in a similar derivation for UCB3 are given. The probability that the
arm j is chosen at time t is given by:

P[In = j] = ǫjn + (1 −

K
∑

j=1

ǫjn)P[X̄h
j,Tj(n−1) ≥ X̄h

∗,T∗(n−1)]

Moreover,

P[X̄j,Tj(n) ≥ X̄∗
T∗(n)] ≤ P[X̄h

j,Tj(n)
≥ µj +

∆j

2
] +P[X̄h

∗,T∗(n)
≤ µ∗ −

∆j

2
]. (1)

Denoting 1
2

∑n
t=1 ǫ

j
t by xj

0, it can be shown that the first term above is upper
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where, we get the extra factor exp(−Hj∆
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j/2) from an application of Hoeffding’s

inequality incorporating the historic data and TR
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It can further be shown that:
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using Bernstein’s inequality.
Finally, we can lower bound, xj

0 as follows:
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Using (1), (2), (3) and (4), it can be shown that:
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where

Pj :=
cK
d2 e

Hjd
2/c

cK
d2 (eHjd2/c − 1) + n− 1

.

Thus, for c ≥ 10, the last four terms in (5) are o( 1n ) since d < 1.
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