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Abstract

We consider the problem of learning a sparse
regression model for predicting multiple re-
lated outputs given high-dimensional inputs,
where related outputs are likely to share com-
mon relevant inputs. Most of the previous
methods for learning structured sparsity as-
sumed that the structure over the outputs
is known a priori, and focused on design-
ing regularization functions that encourage
structured sparsity reflecting the given out-
put structure. In this paper, we propose
a new approach for sparse multiple-output
regression that can jointly learn both the
output structure and regression coefficients
with structured sparsity. Our approach refor-
mulates the standard regression model into
an alternative parameterization that leads
to a conditional Gaussian graphical model,
and employes an inverse-covariance regular-
ization. We show that the orthant-wise
quasi-Newton algorithm developed for L1-
regularized log-linear model can be adopted
for a fast optimization for our method.
We demonstrate our method on simulated
datasets and real datasets from genetics and
finances applications.

1 Introduction

In a regression estimation with inputs lying in a high-
dimensional space, lasso [18] has been widely used to
obtain a sparse estimate of parameters. Lasso opti-
mizes the squared error loss function with an L1 reg-
ularization to select only few input variables relevant
to outputs with non-zero regression coefficients. While

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

lasso was originally proposed for univariate-output re-
gression, in this paper, we consider a sparse estimation
of multiple-output regression, assuming that related
outputs are likely to be affected by a common set of
relevant inputs. Most of the previous approaches for
combining statistical strength across multiple regres-
sion tasks to estimate such structured sparsity patterns
in regression coefficients were based on introducing dif-
ferent types of regularization functions that reflect the
prior knowledge on output structure representing how
multiple outputs or tasks are related [15, 22, 10, 9, 7].
For example, when all of the outputs are believed to
be related, mixed-norm penalties (e.g., L1/L2, L1/L∞
norms) have been used to recover a union support
or the set of inputs that are relevant to all of the
outputs jointly [15]. In order to incorporate a more
complex output structure, these mixed-norm penalties
have been further extended by allowing for multiple
overlapping groups of related outputs [22, 10, 7].

While most of these previous works share the limi-
tation that the output structure needs to be known
a priori, in this paper, we propose a new approach
for a sparse multiple-output regression estimation that
can learn both the structured sparsity in regression
coefficients and the output structure jointly. We as-
sume that the output structure can be represented as
a graph, where each node corresponds to an individual
output variable and related outputs are connected with
an edge. Then, the outputs that are related accord-
ing to the graph are encouraged to share a common
set of relevant inputs, leading to a structured sparsity
pattern in regression coefficients. Although the similar
problem setting has been considered in graph-guided
fused lasso (GFlasso) [10], GFlasso was restrictive in
that the output graph structure needs to be available
as prior knowledge. In addition, rather than directly
decoding the relationship between correlated outputs
and their common relevant inputs, GFlasso used the
heuristic approach that made the values of the regres-
sion coefficients for a given input to be the same for
correlated outputs, which is a somewhat arbitrary as-
sumption that may not hold in reality.
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Instead of using the standard formulation for regres-
sion estimation that minimizes the squared error loss
with a specific penalty function for structured spar-
sity, our proposed approach is based on a maximum-
likelihood estimation with inverse-covariance regular-
ization. More specifically, we first establish the con-
nection between sparse inverse-covariance estimation
(widely known as graphical lasso [6, 14]) and sparse
multiple output regression, and propose an alternative
and more powerful formulation for learning a sparse
multiple-output regression via inverse-covariance reg-
ularization that can recover both the output struc-
ture and regression coefficients with structured spar-
sity. This alternative formulation leads to a con-
vex optimization problem of semi-definite program.
Instead of relying on the computationally inefficient
interior-point method [3], we take advantage of the
problem structure and show how the orthant-wise
limited-memory quasi-Newton (OWL-QN) algorithm
[1] for learning L1-regularized log-linear model can be
adopted for efficient optimization.

Although the connection between a single-output lasso
and inverse-covariance regularization was first noticed
by Witten and Tibshirani [20] in their method called
Scout procedure, the approach we propose provides
a significantly deeper insight on the full connection
among multiple-output regression, inverse-covariance
regularization, and structured sparsity. Scout proce-
dure used inverse-covariance regularization to learn
a single-output regression and the input structure,
which we believe is counter-intuitive because a regres-
sion model is primarily concerned with the predictive
model for the output given inputs rather than model-
ing the inputs themselves. In contrast, we show that
in our formulation, inverse-covariance regularization
can be used for predictive modeling in multiple-output
setting. Furthermore, we show that this approach is
equivalent to learning a sparse conditional Gaussian
graphical model (CGGM) analogous to a conditional
random field (CRF) [12] for structured-output predic-
tion for discrete outputs. This connection between
the regression model and graphical model allows us
to recover sparsity pattern in both conditional and
marginal distributions and to extract much richer in-
formation on sparsity patterns in parameters.

Another work that is closely related to ours is a multi-
variate regression with covariance estimation (MRCE)
[16] that performs a joint estimation of sparse regres-
sion coefficients and covariance matrix for correlated
noise across multiple outputs, where the noise covari-
ance matrix can be viewed as output correlation struc-
ture. MRCE uses the standard formulation of regres-
sion model and optimizes the loss function with an
L1 regularization for both regression coefficients and

noise covariance matrix. Although both MRCE and
our proposed method address the problem of joint esti-
mation of regression coefficients and output structure,
they have three major differences. First, our formula-
tion is convex with a single global optimum, whereas
MRCE is only bi-convex. Second, as we show in our ex-
periments, the optimization method for our approach
is significantly faster than that of MRCE even with
the approximate method suggested by Rothman et al.
[16]. Third, our method explicitly recovers a shared
sparsity pattern in regression coefficients for multiple
related outputs, whereas MRCE does not provide any
mechanism for enforcing structured sparsity.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a brief review of the standard for-
mulation of regression and various structured-sparsity-
inducing penalties. In Section 3, we present our new
formulation for multiple-output regression via inverse-
covariance regularization and an efficient optimization
algorithm. We evaluate our method on simulated and
real datasets in Section 4, and conclude in Section 5.

2 Background on Sparse
Multiple-Output Regression

Given J-dimensional inputs xi = (xi1, . . . , xiJ)T ∈ RJ

and K-dimensional outputs yi = (yi1, . . . , yiK)T ∈ RK

for the ith sample, the functional mapping from the
inputs to the outputs is often modeled as a linear re-
gression model:

yi = Bxi + εi, for i = 1, . . . , N, (1)

where B is the K × J matrix of regression coeffi-
cients βkj ’s, N is the number of samples, and εi =
(εi1, . . . , εiK)T is the vector of length K for noise dis-
tributed as mean 0 and covariance Ψ. The model in
Eq. (1) contains a set of K linear regressions for pre-
dicting the K outputs given the common input space.
Assuming that the input data are standardized to have
mean 0 and unit variance and that the output data are
centered, we consider the model without an intercept.

Let X = (x1, . . . ,xN )T and Y = (y1, . . . ,yN )T denote
the input and output data matrices. When J >> N or
|S| << J , where S = {(j, k) |βkj 6= 0} is the support
of B, the lasso [18] obtains a sparse estimate of B by
solving the following optimization problem:

arg min
B

tr
(
(Y −XB)(Y −XB)T

)
+ λ||B||1, (2)

where ||B||1 =
∑

k,j |βkj | is a matrix L1 norm, and λ is
the regularization parameter that controls the amount
of sparsity in B. A large value of λ leads to a sparser
estimate with a greater number of zero elements in B.
The λ can be determined using cross-validation. Eq.
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Figure 1: Illustration of different sparse multiple-output regression methods. (a) Lasso. (b) MRCE. (c) GFlasso.
The graph structure over the outputs (shown as thick edges) is assumed to be known a priori. (d) Our proposed
method. Solid edges represent direct influence, and the dotted edges indirect influence.

(2) is convex and efficient algorithms such as pathwise
coordinate descent are available [5] for optimization.

Solving Eq. (2) amounts to treating the K regres-
sion problems as independent and performing K sepa-
rate regression analyses, while assuming that the noise
terms εik’s in Eq. (1) are uncorrelated with zeros in the
off-diagonal elements of Ψ. In order to combine the
statistical strengths across multiple regression tasks
through the correlated outputs, MRCE proposed to es-
timate the full noise covariance matrix Ψ [16]. MRCE
minimizes the negative log-likelihood function with an
L1 penalization for both B and Ω = Ψ−1:

argmin
B,Ω

−N log |Ω|+ tr
(
(Y −XB)Ω(Y −XB)T

)

+λ1||B||1 + λ2||Ω||1, (3)

where λ1 and λ2 are the regularization parameters.
Eq. (3) is not convex but bi-convex in B and Ω, as
fixing either B or Ω and solving for the other is a con-
vex problem. Although Rothman et al. [16] proposed
an alternate optimization of B and Ω over iterations,
they also noted that this method often does not con-
verge, and suggested to use an approximate method
that solves each of lasso and graphical lasso [6] once,
followed by another round of optimization for B with
Ω fixed. This approximate method is also less costly
in terms of computational time than the alternate op-
timization, as it is equivalent to terminating the alter-
nate optimization prematurely after a single iteration.

Although MRCE considers the correlation structure
in outputs through the noise model Ψ, MRCE essen-
tially selects relevant inputs for each output indepen-
dently and does not learn structured sparsity in B.
In other words, MRCE does not have any mechanism
that leverages the learned output structure to encour-
age related outputs to share relevant input variables.

In a different body of work on structured-sparsity-
inducing norms, methods for encouraging shared rel-
evant inputs for related outputs, assuming that the
output structure is known, have been proposed. For
example, when all of the outputs are believed to have
the same relevant inputs, a mixed-norm penalty such

as J(B) =
∑

j

√∑
k β

2
kj has been used [15]. For a more

complex group structure, extensions of the mixed-
norm penalty to overlapping groups have been pro-
posed [22, 10, 7]. When the output structure is rep-

resented as a graph, GFlasso used the graph-guided
fusion penalty J(B) =

∑
j

∑
m,k rmk|βmj− sign(rmk)βkj |

to encourage the correlated outputs to share the same
relevant inputs [9].

MRCE and the methods with structured-sparsity-
inducing norms address complementary aspects of the
problem of sparse multiple-output regression estima-
tion. MRCE can learn the output structure but does
not achieve structured sparsity, while the structured-
sparsity-inducing norms can recover structured spar-
sity but have the limitation that the output structure
must be known. Recently an integer programming
method has been proposed that learns the grouping
structure over outputs and shared relevant inputs for
each group of outputs [8], assuming a predefined num-
ber of output groups. In the next section, we propose a
new method for sparse multiple-output regression that
combines the advantages of MRCE and structured-
sparsity-inducing norms, assuming graph-structured
outputs, which is a more expressive representation of
structure than a simple grouping. The behaviors of
different methods are illustrated in Figure 1.

3 Multiple-Output Regression with
Inverse-Covariance Regularization

In order to perform a joint estimation of structured
sparsity and output structure in multiple-output re-
gression, instead of learning the regression model in
the standard parameterization in Eq. (1), we intro-
duce an alternative parameterization of the model de-
rived as a conditional probabaility model p(Y|X) from
the joint distribution p(Y,X), and propose to per-
form a maximum-likelihood estimation with inverse-
covariance regularization. Our approach sheds new
insights on the relationship among the standard regres-
sion model, Gaussian graphical model, and structured
sparsity learning.

3.1 Multiple-Output Regression as
Conditional Gaussian Graphical Model

In order to introduce our alternative formulation of the
regression model in Eq. (1), we start by assuming a
joint probability distribution for xi and yi as follows:

(
xi

yi

)
∼ N

((
0J

0K

)
,Σ

)
, (4)
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where 0D is a vector of D 0’s, and Σ =(
Σxx Σxy

ΣT
xy Σyy

)
, Θ = Σ−1 =

(
Θxx Θxy

ΘT
xy Θyy

)
. It is

well-known that the Σ corresponds to the marginal
independencies in pairs of variables after marginaliz-
ing over all the other variables, whereas the inverse
covariance matrix Θ encodes the conditional indepen-
dence information for each pair of variables given all
the other variables [11]. Thus, the Θ represents a
Gaussian graphical model, where a zero value in the
(i, j)th entry in Θ implies no edge between the ith and
jth variables in the undirected graphical model [6].

From the above joint distribution, we derive the con-
ditional distribution of yi given xi as follows:

yi|xi ∼ N(ΣT
xyΣ−1xxxi, Σyy −ΣT

xyΣ−1xxΣxy), (5)

and equivalently, using the inverse covariance matrix
Θ and the partitioned inverse formula [13],

yi|xi ∼ N(−Θ−1yyΘT
xyxi, Θ−1yy ). (6)

We notice that Eqs. (1), (5), and (6) are differ-
ent parameterizations of the same regression model,
since B = ΣT

xyΣ−1xx = −Θ−1yyΘT
xy and Ψ = Σyy −

ΣT
xyΣ−1xxΣxy = Θ−1yy .

The equivalence of Eq. (1) and Eq. (6) shows that
the standard regression estimation of B and Ψ is re-
lated to the problem of covariance estimation. This
connection was first noticed by Witten and Tibshirani
[20] and exploited in the case of a sparse univariate-
output regression in their Scout procedure. However,
we argue that this connection becomes significantly
more valuable when we consider the multiple-output
case, because of its equivalence to a graphical model
for discriminative modeling that is analogous to condi-
tional random field (CRF) [12] for structured-output
prediction for discrete outputs. In order to see this,
we further expand the quadratic term in the Gaus-
sian distribution in Eq. (6) to obtain what we call a
conditional Gaussian graphical model (CGGM):

p(yi|xi) = exp
(
− 1/2 yT

i Θyyyi − xT
i Θxyyi

)

/Z(Θxy,Θyy,xi), (7)

where

Z(Θxy,Θyy,xi)

=

∫
exp

(
− 1

2
yT
i Θyyyi − xT

i Θxyyi

)
dyi

=
√

(2π)K/ det Θyy exp(1/2xT
i ΘxyΘ−1yyΘT

xyxi)(8)

is the partition function. As Eq. (7) is equivalent
to the Guassian distribution in Eq. (6), the partition
function can be obtained in a closed-form by directly
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Figure 2: Illustration of the behavior of sparse CGGM.
(a) When λ1 →∞, we have the graphical lasso only on
the output data. (b) When λ2 →∞, it approaches the
lasso. (c) Direct influence of input x1 on outputs y1,
y2, and y3. (d) Direct influence of input x1 on output
y1, and indirect influence on y2 and y3.

comparing Eq. (7) with Eq. (6). If Θyy is positive
definite, the integral in the partition function is finite
and the probability distribution is well-defined.

We argue that when our goal is to borrow statistical
strength across multiple outputs for structured-output
prediction, Eq. (7) provides a more natural represen-
tation of multiple output regression than the widely-
used one in Eq. (1). This is because Θyy directly
parameterizes the conditional independence relation-
ship among outputs. Then, Θxy represents the di-
rect influence of inputs on outputs that propagates
through the output network Θyy to influence other
outputs indirectly. We point out that just as in CRF,
Eq. (7) does not model the input distribution, since it
includes parameters only for output interactions Θyy

and input-output interactions Θxy. This is in contrast
with the work by Witten and Tibshirani [20], who used
the representation in Eq. (6) for a different purpose of
modeling input structure in a single-output regression.

3.2 Inverse-Covariance Regularization for
Conditional Gaussian Graphical Models

Although in all of Eqs. (1), (6), and (7), the maximum-
likelihood estimates lead to the same predictive model
for outputs given inputs, enforcing sparsity in these
different parameterizations leads to different sparsity
patterns in B̂. In this section, instead of sparsifying B
and Ψ, we propose to regularize the inverse-covariance
parameters, Θyy and Θxy, in Eq. (6). While lasso and
MRCE that regularize B and Ψ do not result in shared
relevant inputs for multiple related outputs, we show
that the inverse-covariance regularization in CGGM
representation naturally leads to structured sparsity
and extracts much richer and intuitively more appeal-
ing information on the sparse interactions between in-
puts and outputs as well as among outputs.

Our new approach minimizes the negative log-
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likelihood for Eq. (6) or equivalently Eq. (7) with an
L1 regularization of the inverse-covariance parameters
as follows:

argmin −L(X,Y; Θxy,Θyy)+λ1||Θxy||1+λ2||Θyy||1
subject to Θyy � 0, (9)

where λ1 and λ2 are the regularization parameters that
control the amount of sparsity, and

L(X,Y; Θxy,Θyy) = −1/2 tr
(
YΘyyYT

)

−tr
(
XΘxyYT

)
−
∑

i

logZ(Θxy,Θyy,xi)

is the log-likelihood based on Eq. (7), or equivalently
from Eq. (6)

L(X,Y; Θxy,Θyy) = −1

2

[
−N log det Θyy

+tr
[
(Y +XΘxyΘ−1yy )Θyy(Y +XΘxyΘ−1yy )T

]]
. (10)

It is straightforward to show that the optimization
problem above is convex. When λ1 >> λ2, the model
effectively disregards the inputs by setting all of the
elements of Θxy to 0, and tries to explain the out-
put variability across samples only through the other
outputs connected to it with edges in Θyy. As illus-
trated in Figure 2(a), this is equivalent to learning a
sparse Gaussian graphical model only for the outputs
using the graphical lasso [6]. On the other hand, if
λ1 << λ2, the model treats the outputs as indepen-
dent of each other given the inputs by setting all of
the off-diagonal entries in Θyy to 0, and tries to ex-
plain the output variability only through the inputs.
As illustrated in Figure 2(b), this is equivalent to lasso.
The optimal values for λ1 and λ2 that strike the right
balance between these two extreme cases can be found
by cross-validation.

While the output structure is recovered in Θ̂yy, the
shared sparsity pattern among the related outputs
with respect to Θ̂yy is recovered in B̂ after apply-
ing the transformation to the standard representation

B̂ = −Θ̂
−1

yyΘ̂
T

xy. If Θ̂yy is diagonal representing in-
dependent outputs, B̂ shows no shared relevant inputs
across outputs. On the other hand, if the output struc-
ture in Θ̂yy contains multiple connected components,
these connected components play the role of groups as
in the group lasso [21], and the outputs in the same
connected component have the same relevant inputs in
B̂. Unlike in [8], the number of such groups does not
need to be pre-defined by the user, but is discovered
automatically.

In addition, our approach allows us to distinguish be-
tween direct and indirect influence of inputs on ouputs.

More specifically, the inputs with non-zero entries in
Θ̂xy can be seen as having direct influence on the cor-
responding outputs, whereas the inputs that are not
relevant in Θ̂xy but become relevant only in B̂ can be
viewed as having only indirect influence on the given
output. As illustrated in Figures 2(c) and (d), in gen-
eral, Θxy corresponds to the direct influence on the
output variables, which then propagate through the
output network Θyy to indirectly influence other out-
put variables. Computing B̂ from Θ̂xy and Θ̂yy via

B̂ = −Θ̂
−1

yyΘ̂
T

xy is equivalent to performing inference or
marginalization on the given graphical model to infer
these indirect influences of inputs on outputs. Thus,
our approach learns both the sparsity in Θxy in the
conditional distribution and the structured sparsity in
B in the marginal distribution.

The optimization problem for our method in Eqs. (9)
and (10) allows for a direct comparison with MRCE in
Eq. (3). Although both MRCE and our approach rep-
resent the output structure using the same parameter
(i.e., Ω = Θyy), the output structure in MRCE does
not play the role of propagating the influence of rel-
evant inputs to other related outputs, and thus, does
not learn a shared sparsity pattern for related outputs.

3.3 Optimization

The problem in Eq. (9) for our approach is a semidef-
inite program with a positive-definite constraint, and
can be solved with an interior-point method [3]. How-
ever, it is well-known that the interior-point method
is computationally slow and does not scale to a high-
dimensional problem. In order to develop a more effi-
cient method, we notice that because Eq. (10) contains
log det Θyy term, which acts as a log-barrier function
for the positive-definite constraint, we do not need
to consider the constraint explicitly. Taking advan-
tage of this property of our problem, we further notice
that efficient optimization methods for a general L1-
regularized log-linear model are directly applicable. In
this paper, we adopt the OWL-QN [1] for learning an
L1-regularized log-linear model.

Motivated by the observation that the L1 norm is
smooth within any orthant, the OWL-QN iteratively
optimizes the L1-regularized negative log-likelihood by
constructing a quadratic approximation of the objec-
tive and finding the minimum of the approximation
within the orthant of the estimate from the previous
iteration. As the OWL-QN is based on the L-BFGS
limited-memory quasi-Newton method, it requires the
computation of the gradient and Hessian in each it-
eration, where the Hessian is approximated using the
gradients of the previous iterations instead of comput-
ing the full Hessian matrix. The gradients of the log-
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Figure 3: Illustration of our method using a single
simulated dataset from Case 1. True parameters are
shown in the top row and estimated parameters in the
bottom row. (a) Θyy, (b) Θxy, (c) B, (d) Θ̂yy, (e)
Θ̂xy, (f) B̂.

likelihood of data given a CGGM are as follows:

∂L(X,Y; Θxy,Θyy)

∂Θxy
= −XTY +

∑

i

E
[
xiy

T
i

]

∂L(X,Y; Θxy,Θyy)

∂Θyy
= −1/2YTY +

∑

i

E
[
yiy

T
i

]
,

where the expectations are taken with respect to
p(yi|xi,Θxy,Θyy) and can be computed as

E
[
xiy

T
i

]
= −xix

T
i ΘxyΘ−1yy (11)

E
[
yiy

T
i

]
= Θ−1yy + Θ−1yyΘT

xyxix
T
i ΘxyΘ−1yy . (12)

Each iteration in the OWL-QN involves a line search
to obtain the optimal estimate along the line given the
gradient and Hessian at the current estimate. In order
to ensure the intermediate search point to be positive
definite, we make use of the fact that A−tB is positive
definite if A is positive-definite, B is symmetric, and t
is sufficiently small. That is, we search for sufficiently
small α ∈ (0,∞) so that the determinant of the next
estimate Θk+1

yy along the ray Θk
yy − αDk

yy given the

search direction Dk
yy is again positive.

4 Experiments

We compare the performance of our method to those of
lasso, MRCE, GFlasso, multi-task lasso with an L1/L2

regularization for union support recovery, using sim-
ulated datasets and two real datasets from genetics
and finance applications. For MRCE, we found the al-
ternate optimization that solves a sequence of convex
problems given either B or Ω often did not converge,
and thus, used the approximate method, as was also
suggested by Rothman et al. [16]. In addition, the
alternate optimization for MRCE was too slow even
for a moderate size of data (taking one full day for a
single simulated dataset of size J = 1000 and K = 50
with cross-validation, compared to a few minutes for
other methods) to be applied to a large-scale simu-
lation study. The regularization parameters in each
method was determined by five-fold cross validation.

4.1 Simulation Study

We evaluate our proposed method and other meth-
ods using simulated data with known parameters. We
use two different simulation strategies, based on 1) the
standard parameterization with B and Ψ in Eq. (1)
and 2) the alternative parameterization with Θyy and
Θxy in Eq. (6). For each individual i, the input vec-
tor xi is generated by setting each element of xi to a
random draw from N(0, 1). Given the true parameters
Θyy and Θxy (or, B and Ψ), the output data yi are
sampled from Eq. (6) (or, from Eq. (1), respectively).

Simulation with Θyy and Θxy We set Θyy and
Θxy, using different output structures such as inde-
pendent, tree, graph, and chain, as follows:

• Case 1 (J = 100, K = 20): Assuming four groups
of outputs with each group containing five output
variables, we generate the output network structure
such that within each of the four groups, the output
structure is a complete graph with weak edge con-
nections, a complete graph with strong edge con-
nections, a chain structure, and independent out-
puts, respectively. Edge weights of this network are
drawn from a uniform distribution [0, 0.5] for the
first group, and from a uniform distribution [0.4, 1.0]
for all the other edges. We set Θyy to the graph
Laplacian of this network and add a small positive
real value to the diagonal elements to ensure Θyy

to be positive definite. We generate Θxy by ran-
domly selecting a single input relevant to each out-
put, and additional zero to three inputs relevant to
a subset of randomly selected m outputs within each
group, where m is drawn from a uniform distribu-
tion [M/2,M ].

• Case 2 (J = 1000 and K = 50): We assume five
groups of outputs, each group with 10 outputs.
For four of the five groups, we set edge connec-
tions/weights using the same strategy as in Case
1. For the additional output group, we assume a
binary tree structure with edge weights drawn ran-
domly from a uniform distribution [0.4, 1.0]. Then,
we set Θyy to the graph Laplacian of this network.
We use the same strategy as in Case 1 to set Θxy.

Simulation with B and Ψ We simulate datasets
with known B and Ψ, using the following scenarios.

• Case 3 (J = 500, K = 50): We assume a tree struc-
ture over outputs, and set Ψ to the graph Laplacian
of a tree with a branching factor of four and edge
weights randomly drawn from [0.4, 1.0]. We set B
by selecting a common relevant input for each of the
internal node and its four child nodes in the tree.

• Case 4 (J = 500, K = 50): We also consider the tra-
ditional scenario that assumes independent noise for
different outputs with a diagonal matrix for Ψ. We
randomly select two relevant inputs for each output.
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Figure 4: ROC curves for the recovery of the true non-
zero regression coefficients in simulation study. The
results are shown for Cases 1 – 4 in (a) – (d).

Results To illustrate the behavior of our method,
in Figure 3, we show the results from a single dataset
simulated from Case 1. Figures 3(a)-(c) show the true
Θyy, Θxy, and B = −Θ−1yyΘT

xy, respectively, and Fig-
ures 3(d)-(f) present the estimates from a dataset of
800 samples. As shown in Figure 3(b), the non-zero
entries in Θxy include inputs relevant to individual
outputs as well as inputs affecting multiple outputs.
However, as shown in Figure 3(c), the inputs relevant
only to individual outputs in Θxy become relevant in
B to multiple related outputs within the correspond-
ing group of outputs in Θyy.

In order to quantitatively compare the performance of
different methods, we generate 30 simulated datasets
of 400 samples from each of Cases 1 – 4. We first
evaluate different methods on the accuracy for the re-
covery of true relevant inputs in B̂ averaged over 30
simulated datasets and show the results as receiver op-
erating characteristic (ROC) curves in Figure 4. For
all scenarios, our method significantly outperforms all
the other previous methods. The results show that
taking into account the output structure while esti-
mating regression coefficients improves the sensitivity
and specificity for recovering sparse structure.

Unlike other regression methods, our method and
MRCE have the ability to estimate the output struc-
ture in addition to the regression coefficients. We com-
pare the performance of the two methods on the recov-
ery of the true output structure as reflected in Θyy for
CGGM and Ω (which is equivalent to Θyy) for MRCE.
As can be seen in Figure 5, our method significantly
outperforms MRCE.

We also compare the performance of the methods on
prediction accuracy by generating additional 200 test
samples for each simulated dataset and computing pre-

0 0.5 10

0.2

0.4

0.6

0.8

1

1−specificity

se
ns

iti
vi

ty

 

 

L1 CGGM
MRCE

0 0.5 10

0.2

0.4

0.6

0.8

1

1−specificity

se
ns

iti
vi

ty

 

 

L1 CGGM
MRCE

(a) (b)

0 0.5 10

0.2

0.4

0.6

0.8

1

1−specificity

se
ns

iti
vi

ty

 

 

L1 CGGM
MRCE

0 0.5 10

0.2

0.4

0.6

0.8

1

1−specificity

se
ns

iti
vi

ty

 

 

L1 CGGM
MRCE

(c) (d)

Figure 5: ROC curves for the recovery of the true out-
put structure from simulated data. The results from
Cases 1 – 4 are shown in (a) – (d). In (b), the ROC
curve for MRCE stops after reaching sensitivity 0.6,
implying many false negatives.
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Figure 6: Prediction errors in simulation study. (a)
Case 2, (b) Case 4. (CG: sparse CGGM, MR: MRCE,
ML: multi-task lasso, GF: GFlasso, LA: lasso)

Table 1: Prediction errors (Human Liver Cohort data)

Sparse CGGM GFlasso MultLasso lasso
2.359 2.369 2.621 4.212

diction errors on these test sets. As shown in Figure 6,
our method achieves lower prediction errors than any
other methods. Even when the outputs are indepen-
dent with no shared sparsity (Case 4, Figure 6(b)), the
performance of our algorithm is still comparable to or
better than all the other methods because the inde-
pendent output structure can be properly reflected as
a diagonal inverse covariance matrix in Θyy.
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Figure 7: Computation time for different methods. (a)
Varying the input size J (K = 20) and (b) varying the
output size K (J = 1000).
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Figure 5: ROC curves for the recovery of the true non-
zero structure in Θyy (or equivalently Ω in MRCE)
from simulated datasets. The results from Case 1 –
4 are shown in (a) – (d). In (b), the ROC curve for
MRCE stops after reaching sensitivity 0.6, implying
many false negatives.
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Figure 6: Prediction errors in simulation study. (a)
Case 2, (b) Case 4. (CG: sparse CGGM, MR: MRCE,
ML: multi-task lasso, GF: GFlasso, LA: lasso)

account the output structure while estimating regres-
sion coefficients indeed improves both the sensitivity
and specificity for recovering sparse structure in the
regression coefficients.

Unlike many other regression methods, our method
and MRCE have the ability to estimate the output
structure in addition to the regression coefficients. We
compare the performance of these two methods on the
recovery of the true output structure as reflected in
the inverse covariance matrices, Θyy for CGGM and
Ω (which is equivalent to Θyy) for MRCE. As can
be seen in Figure ??, our method significantly out-
performs MRCE in the recovery of the true output
structure.

In addition, we compare the performance of the differ-
ent methods in terms of prediction accuracy by gen-
erating additional 200 test samples for each simulated
datset and computing prediction errors on these test
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Figure 7: Computation time for different methods. (a)
Varying the input size J (K = 20) and (b) varying the
output size K (J = 1000).

Table 1: Prediction errors on Human Liver Cohort
data

Sparse CGGM GFlasso MultLasso lasso
2.359 2.369 22.621 4.212

sets. As shown in Figure ??, our method achieves
lower prediction errors than any other methods. Even
when the outputs are independent with no shared spar-
sity pattern (Case 4, Figure ??(b)), the performance
of our algorithm is still comparable to or better than
all the other methods because the independent out-
put structure can be properly reflected as a diagonal
inverse covariance matrix in Θyy.

HLA-DMA
HLA-DRB1
HLA-DQB1
HLA-DQA1
HLA-DQA2
HLA-DRB4
HLA-DOA
HLA-DRB5
HLA-DQB2
HLA-DPA1

Computation time We compare the computation
time of lasso, GFlasso, and sparse CGGM for varying
input and output sizes in Figures ??(a) and (b), re-
spectively. We used the lasso implementation available
in the R package glmnet, and used a Matlab imple-

Figure 8: Estimated association strengthes of SNP
rs9271366 with HLA Class II gene expressions

Figure 8: Estimated association strengths of SNP
rs9271366 with HLA Class II gene expressions.

Computation time We compare the computation
time of lasso, GFlasso, and sparse CGGM for varying
input and output sizes in Figures 7(a) and (b), respec-
tively. We used the lasso implementation available in
the R package glmnet, and used a Matlab implemen-
tation of GFlasso with proximal gradient method for
optimization [4]. We do not include the results for the
approximate MRCE, since it was slower than all of the
other methods by orders of magnitude. Our method
scales reasonably well as J and K increase, although
for large K the main bottleneck is the inversion of Θyy

for computing the expectation in Eq. (12).

4.2 Real Dataset from eQTL Mapping

We apply our and other methods to the gene expres-
sion traits (outputs) and single nucleotide polymor-
phism (SNP) data (inputs) of 178 samples from the
Human Liver Cohort study [17] to discover SNPs that
influence the expression levels of genes. This type of
study is widely known as an expression quantitative
trait locus (eQTL) mapping in the genetics commu-
nity. It is generally believed that when a genetic vari-
ation in the genome such as a SNP perturbs the expres-
sion of a gene, the effect propagates through the gene
network to influence the expressions of genes in the
downstream of the pathway. In this case, the casual
or relevant SNP affects the expression of the target
gene directly, and affects the downstream genes indi-
rectly. Thus, using our new method, we expect not
only to learn the gene network and relevant SNPs for
gene expressions but also to distinguish between di-
rect and indirect influences of SNPs on genes that are
connected in a gene network.

The input dataset consists of J = 937 SNPs on chro-
mosome 6 that have minor allele frequency greater
than 0.05 and whose pair-wise correlations are less
than 0.1. The output dataset includes K = 100 gene
expression traits that have variance greater than 0.05.
We estimate the regression coefficients using 143 sam-
ples and then compute the prediction error on the re-
maining 35 samples. As shown in Table 1, our sparse
CGGM produces the smallest prediction error.

We closely examine a small number of genes in HLA
class II for associations with SNPs on chromosome 6,
motivated by the findings in previous studies [19]. We
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Figure 9: Prediction errors for S&P stock price data.

apply each method to the subset of outputs consisting
of only 11 HLA gene expressions that are known to be
highly correlated. Overall, all of the methods found
the strongest association between SNP rs9270986 and
the expression trait for HLA-DRB5 gene. The esti-
mated regression coefficients between this SNP and
all genes in HLA class II are shown in Figure 8.
While some methods find associations between the
SNP rs9270986 and expression levels of genes other
than the HLA-DRB5 gene, our method identifies only
the HLA-DRB5 gene as being directly perturbed by
the SNP and suggests indirect perturbations for other
genes in HLA Class II by the same SNP.

4.3 Real Dataset from S&P 500 stock prices

We apply each method to the daily stock price data
of the S&P 500 companies in 2005 to learn the model
that can predict the stock prices in the future by using
the stock prices in the past as inputs. We use a first-
order auto-regressive model yt = Byt−1 + εt, where
yt represents the stock prices of the companies at time
t. We select 128 companies with a moderate level of
variance over time (15<σ2<80). Each model is trained
using the data from the first 50 days, and tested on the
data from the next 50 days.

We show the prediction accuracies for different meth-
ods in Figure 9. Overall, our method outperforms all
the other methods. Given the highly structured na-
ture of the stock data with correlated stock prices for
many companies (especially within the same sector),
our results show that taking into account the output
structure and structured sparsity as in our approach
can increase the prediction accuracy.

5 Conclusions

In this paper, we proposed a new approach for a spare
estimation of multiple-output regression that can esti-
mate both the output structure and regression coeffi-
cients with structured sparsity at the same time. The
future work includes exploring the use of an alternative
optimization method such as a fast iterative shrinkage
thresholding algorithm [2].
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