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Abstract

We propose a simple and efficient modifica-
tion of the popular DBSCAN clustering algo-
rithm. This modification is able to detect the
most interesting vertical threshold level in an
automated, data-driven way. We establish
both consistency and optimal learning rates
for this modification.

1 Introduction

The algorithm DBSCAN, Ester et al. (1996), is among
the clustering methods that are most popular for prac-
titioners, and has been successfully used in a variety
of different applications. Given thresholds ρ > 0 and
δ > 0 it first identifies the samples xi from the dataset
D = (x1, . . . , xn) ∈ Xn for which the balls B(xi, δ)
around xi with radius δ contain at least ρn samples.
The clusters returned by DBSCAN are then the δ-
connected components of the set of identified samples.
Although heuristics do exist for choosing the free pa-
rameters ρ and δ, a rigorous approach for their choice
is an open problem. The goal of this work is to present
a simple modification of DBSCAN, which eliminates
spurious clusters and for which the choice of ρ is data
driven and the choice of δ is deterministic. For this
modification we show that it finds the first interesting
level ρ∗. Moreover, we show both consistency and op-
timal learning rates for the corresponding clusters at
this level.

The above description of DBSCAN shows that DB-
SCAN can be viewed as a modified single density level
set approach based on a moving window estimate ĥ
for the density h of the data-generating distribution.
This estimate is thresholded at the level ρ, so that

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

roughly speaking an estimate of the set {h ≥ ρ} is
considered when determining the connected compo-
nents in the second step. If the set {ĥ ≥ ρ} would
be used as an estimate of {h ≥ ρ}, then the approach
would be a so-called single-level density-based cluster-
ing method. This class of methods goes back to ideas
of Carmichael et al. (1968), Hartigan (1975) and since
then, it has been studied by several, see, e.g., Hartigan
(1981), Cuevas and Fraiman (1997), Rigollet (2007),
Maier et al. (2009), Rinaldo and Wasserman (2010)
and the references therein. Unfortunately, however,
determining the set {ĥ ≥ ρ} and its connected com-
ponents algorithmically is extremely difficult, which
motivates DBSCAN’s strategy of considering the set
D∩{ĥ ≥ ρ} instead. While this approach removes the
algorithmic difficulties, it becomes significantly more
difficult to statistically analyze DBSCAN’s output. To
the best of our knowledge, the most advanced analy-
sis in this respect can again be found in Rinaldo and
Wasserman (2010), where it is shown that, under some
regularity assumptions, the algorithm returns a cer-
tain approximation of the connected components of
{h ≥ ρ}. While this result guarantees that for fixed
level ρ DBSCAN returns an estimate of the desired
clusters, it does not answer the more interesting ques-
tion of how to choose the level ρ.

One way of addressing this question, is hierarchical
clustering, where the hierarchical tree structure of the
connected components for different levels ρ is esti-
mated. We refer to Hartigan (1975), Stuetzle (2003),
Chaudhuri and Dasgupta (2010), Stuetzle and Nu-
gent (2010) for definitions and methods. In partic-
ular, Chaudhuri and Dasgupta (2010) show that in a
weak sense of Hartigan (1981), a modified single link-
age algorithm converges to this tree under some as-
sumptions on the density h. Recently, Kpotufe and
von Luxburg (2011) further improve the analysis of
Chaudhuri and Dasgupta (2010) and establish learn-
ing rates for Hölder-continuous densities h and provide
a method that prunes nearest neighbor cluster trees.

A different approach has been recently taken in Stein-
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wart (2011). Roughly speaking, the goal of that paper
was to design and analyze an algorithm that automat-
ically finds the smallest level ρ∗ for which {h ≥ ρ∗}
has more than one connected component. Here, we
like to stress that the value of ρ∗ is assumed to be
unknown, an assumption we will adopt in this pa-
per. Under a so-called thickness assumption on h, the
author then shows that the algorithm identifies the
corresponding components asymptotically, that is, he
proves consistency. Clearly, by recursively applying
this algorithm, we again get a consistent estimate of
the cluster tree. In this sense, the question considered
in Steinwart (2011) can be viewed as the basic building
block for hierarchical clustering.

Unfortunately, however, the algorithm in Steinwart
(2011) is based on an histogram estimate of h, and
has thus little practical value. In addition, the focus
is more put on showing consistency for a large class of
densities than on obtain learning rates for a restricted
class of distributions. In this paper, we address these
issues by carrying over the analysis of Steinwart (2011)
to a modification of DBSCAN. Roughly speaking, this
modification iteratively considers DBSCAN’s output
for some increasing sequence ρ1, ρ2, . . . of levels and
identifies and removes spurious clusters from this out-
put by a simple strategy that can be efficiently imple-
mented. The algorithm stops as soon as more than one
cluster is identified. Note that the OPTICS algorithm
(Ankerst et al., 1999) implements such an iterative in-
spection of different levels for DBSCAN, and hence
our modification of DBSCAN inherits the algorithmic
advantages of these algorithms, while it also possesses
good statistical guarantees.

At first glance, the paper may appear to be rather sim-
ilar to Steinwart (2011), since it heavily builds upon
the techniques developed there. However, a closer look
reveals that we had to develop quite a few ideas to
the new situation. Let us illustrate this by possibly
the biggest difference to Steinwart (2011): In Stein-

wart (2011), a plug-in approach {ĥ ≥ ρ} based on a

simple histogram density estimator ĥ is taken. Due
to the simple structure of histogram estimates the
connected components of {ĥ ≥ ρ} can then be eas-
ily and efficiently computed. Now, if DBSCAN com-
puted the connected components of {ĥ ≥ ρ} based
on a Parzen-window estimator, then our analysis and
results would indeed be an unsurprising extension of
Steinwart (2011). Unlike for level set estimation,
however, kernel plug-in estimates including Parzen-
window estimates are not algorithmically suitable for
clustering. Indeed, due to overlapping balls around
samples, there may be parts of {ĥ ≥ ρ} that do not
contain samples from the training set D, which in
turn makes it very difficult to identify the connected

components of {ĥ ≥ ρ}. DBSCANs approach to con-
sider the algorithmically treatable set of balls around
D ∩ {ĥ ≥ ρ} addresses this algorithmic issue. On the
downside, however, this approach is generally viewed
as a heuristic with very little statistical justification.
In fact, the only justification in view of clustering so
far seems to be by the already mentioned Rinaldo
and Wasserman (2010, Theorem 17), which however,
needs stronger assumptions—see their equations (28)
and (29)—to obtain a significant looser result in terms
of mollified target clusters and fixed level ρ. Conse-
quently, it seems fair to say that so far the analysis of
DBSCANs heuristic has been an open problem, which
we solved in this paper. However, we like to stress that
without the recent techniques from Steinwart (2011),
this task would have rendered impossible.

The paper is organized as follows. In Section 2, we
present preliminaries about the notions of density level
sets, connectivity, and clusters and collect related tech-
nical results from Steinwart (2011). In Section 3, we
present our clustering algorithm which is a modifica-
tion of DBSCAN and analyze it in Section 4 by proving
its consistency and deriving the rates of convergence.
The proofs of the results that are not provided in the
main text are included in the supplementary material.

2 Preliminaries: Density level sets,
connectivity, and clusters

In this section, we briefly recall all notions related
to the definition and analysis of clusters from Stein-
wart (2011). Furthermore, we collect various technical
yet important results from Steinwart (2011) needed
throughout the paper.

In the following, A △ B denotes the symmetric dif-
ference between two sets A and B. Unless specified
otherwise, we assume throughout the paper that X is
a compact subset of Rd with strictly positive volume.
For x ∈ X , B(x, δ) denotes the closed δ-ball around x
with respect to some metric d such as the Euclidean
or the supremum metric. Given an A ⊂ X , we denote
the closure and interior of A by A and Å, respectively.
Moreover, we write d(x,A) := infx′∈A d(x, x′) for the
distance between some x ∈ X and A. For δ > 0, we
further define the δ-tube around A by

Tδ(A) := {x ∈ X : d(x,A) ≤ δ} .

Note that Tδ(A) is closed. In the following, B(X)
denotes the Borel σ-algebra on X and µ denotes a
scaled version of the Lebesgue measure, where the scal-
ing ensures µ(B(x, δ)) = δd for all x ∈ Rd and all
δ > 0. Furthermore, P is an unknown µ-absolutely
continuous probability measure on B(X). In order to
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avoid most of the technical difficulties arising in Stein-
wart (2011) from the treatment of general densities,
we restrict our considerations to the case where P has
Hölder-continuous µ-density h. This restriction makes
it further possible to extend the analysis of Steinwart
(2011) from consistency to learning rates.

Let us now recall the key concepts required to define
clusters in the sense of Steinwart (2011):

Density level sets. To find a notion of density level
sets that is topologically invariant against different
choices of the density h, Steinwart (2011) defined a
density level set at level ρ ≥ 0 as

Mρ := suppµρ

where suppµρ denotes the support of µρ and µρ is the
measure defined by

µρ(A) := µ(A ∩ {h ≥ ρ}) , A ∈ B(X).

By definition, the sets Mρ are closed. Moreover, note
that since we restrict our considerations to P that
have a (necessary unique) Hölder continuous density h,
the construction above could be replaced by the usual
{h ≥ ρ} without changing our results. However, this
would have required to basically modify most results
from Steinwart (2011) without any new conceptual in-
sight. We therefore decided to keep the definition Mρ,
but readers less interested in topological and measure
theoretical details can safely replace Mρ by {h ≥ ρ}
to get the big picture. The following list recalls some
basic yet important properties of the sets Mρ, ρ ≥ 0,
from Steinwart (2011, Section 2.1):

(a1) Level Sets. {h > ρ} ⊂Mρ ⊂ {h ≥ ρ}.
(a2) Monotonicity. Mρ2 ⊂Mρ1 for all ρ1 ≤ ρ2.

(a3) Regularity. µ(Mρ △ {h ≥ ρ}) = 0.

(a4) Normality. M̄ρ = Ṁρ, where M̄ρ :=
⋃

ρ′>ρMρ′

and Ṁρ :=
⋃

ρ′>ρ M̊ρ′ .

(a5) Open Level Sets. M̄ρ = {h > ρ}.

Connectivity. Recall from topology that a closed
non-empty A ⊂ X is called connected, if, for every
pair A′, A′′ ⊂ A of closed disjoint subsets of A with
A′ ∪ A′′ = A, we have A′ = ∅ or A′′ = ∅. Moreover,
the maximal connected subsets of A are called the con-
nected components of A. These components are closed
and form a partition of A. We denote the set of topo-
logically connected components of A by C(A). Now,
the key idea of Steinwart (2011) is to relate the con-
nected components of different subsets of X . Let us
recall the following two main ingredients of this ap-
proach from Steinwart (2011, Section 2.2):

(b1) Given two closed subsets A ⊂ B of X , there exists
exactly one map ζ : C(A)→ C(B) such that

A′ ⊂ ζ(A′) , A′ ∈ C(A) .

We call ζ the topologically connected compo-
nents relating map (top-CCRM) between A and
B. Sometimes, we write ζA,B := ζ to emphasize
the involved pair (A,B).

(b2) Given three closed subsets A ⊂ B ⊂ C of X , the
top-CCRMs of these sets satisfy

ζA,C = ζB,C ◦ ζA,B .

Clusters. With these preparations we can now recall
the definition of clusters from Steinwart (2011). Note
that we have cleaned this definition from some tech-
nical assumptions that are not necessary since we are
only dealing with continuous densities.

Definition 2.1. Let P be a µ-absolutely continuous
probability measure on X with continuous µ-density
h. Then we say that P can be topologically clustered
between the critical levels ρ∗ ≥ 0 and ρ∗∗ > ρ∗, if, for
all ρ ∈ [0, ρ∗∗], the following conditions hold:

(c1) The set Mρ has either one or two topologically
connected components.

(c2) If |C(Mρ)| = 1, then ρ ≤ ρ∗.

(c3) If |C(Mρ)| = 2, then ρ ≥ ρ∗ and the top-CCRM
ζ : C(Mρ∗∗)→ C(Mρ) is bijective.

Note that the definition above does not exclude
|C(Mρ∗)| = 1, and hence the connected components
of Mρ∗ cannot be used to define clusters. However, for
ρ > ρ∗, each A ∈ C(Mρ) should be a subset of a clus-
ter of P . This idea is used in the following definition,
which defines the clusters of P by a limit for ρց ρ∗.

Definition 2.2. Let P be a µ-absolutely continuous
probability measure on X that can be topologically
clustered between the critical levels ρ∗ and ρ∗∗. For
ρ ∈ (ρ∗, ρ∗∗], we write ζρ : C(Mρ∗∗) → C(Mρ) for the
top-CCRM. Moreover, let A1 and A2 be the topologi-
cally connected components of Mρ∗∗. Then the sets

A∗
i :=

⋃

ρ∈(ρ∗,ρ∗∗]

ζρ(Ai) , i ∈ {1, 2},

are called the topological clusters of P .

3 The Clustering Algorithm

In this section, we present our clustering algorithm
(Algorithm 1) that approximates the optimal level ρ∗

and estimates the corresponding clusters. Since it is
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based on a kernel density estimator, we begin by re-
calling the latter. To this end, let δ > 0 and P be a
probability measure with density h. Then the infinite-
sample kernel density estimator for h is defined as

h̄P,δ(x) := δ−d

∫

Rd

K

(
x− y

δ

)
dP (y), x ∈ Rd, (1)

where K : Rd → R is a bounded measurable function
with

∫
Rd K(x) dµ(x) = 1. Let us now assume that we

have a data set D = (x1, . . . , xn) ∈ Xn. The empirical
kernel density estimator of h is then defined by

h̄D,δ(x) :=
1

nδd

n∑

i=1

K

(
x− xi

δ

)
, x ∈ Rd. (2)

Throughout the paper, we solely consider kernels of
the form K := 1B(0,1), which leads to

K

(
x− y

δ

)
= 1B(x,δ)(y) , x, y ∈ Rd. (3)

In addition, we always assume that the collection
B := {B(x, 1) : x ∈ Rd} of unit balls has a finite VC-
dimension. Examples of such norms include, but are
not limited to, the Euclidean norm (Devroye and Lu-
gosi, 2001, Corollary 4.2) and uniform norm (Devroye
and Lugosi, 2001, Lemma 4.1). The following result
shows that in this case the empirical kernel density
estimator, h̄D,δ uniformly approximates the infinite-
sample kernel density estimator h̄P,δ.

Theorem 3.1. Let P be a probability measure on X.
Then, under the above assumptions, there exists a con-
stant C, such that, for all n ≥ 1, δ > 0 and τ > 0, we
have

Pn

({
D ∈ Xn : ‖h̄D,δ − h̄P,δ‖∞ <

C

nδd
log

C

δ

+

√
C

nδd
log

C

δ
+

τC

nδd
+

C
√
τ√

nδd

})
≥ 1− e−τ .

It is easy to check that, for n ≥ 1, δ ∈ (0, 1), and τ ≥ 1
satisfying nδd ≥ τ and nδd ≥ | log δ|, the estimate of
Theorem 3.1 can be simplified to

Pn

({
D : ‖h̄D,δ−h̄P,δ‖∞ < C′

√
τ | log δ|
nδd

})
≥ 1−e−τ ,

where C′ is a new constant that is independent of n,
δ, and τ .

Our Algorithm will rely on h̄D,δ in the sense that it
estimates the density level set at level ρ by

Mρ,δ := Tδ({x ∈ D : f̂ρ(x) = 1}),

where
f̂ρ := sign(h̄D,δ − ρ).

The following key result, which will make it possible
to adapt the techniques from Steinwart (2011) to our
setting, provides an upper and a lower bound on Mρ,δ

in terms of some true density level sets Mρ+ε+η and
Mρ−ε−η.

Lemma 3.2. Let X ⊂ Rd be compact and P be a µ-
absolutely continuous probability measure on X with a
continuous density h. For η > 0, we define

δη := sup
{
δ > 0 : ∀x, x′ ∈ X with d(x, x′) ≤ 2δ

we have |h(x)− h(x′)| < η
}
. (4)

Moreover, let ε > 0, δ ∈ (0, δη), and D ∈ Xn be a data
set with ‖h̄D,δ − h̄P,δ‖∞ < ε. Then, for all ρ ≥ 0, we
have

Mρ+ε+η ⊂Mρ,δ ⊂Mρ−ε−η.

Note that since X is assumed to be compact, the den-
sity h in Lemma 3.2 is actually uniformly continuous,
and hence we find a δη > 0 for all η > 0. Moreover, the
smoother h is, the larger we can pick δη. For example,
if h is Hölder-continuous with exponent α ∈ (0, 1] and
constant Ch > 0, that is

|h(x) − h(x′)| ≤ Ch d
α(x, x′) (5)

for all x, x′ ∈ X , then an easy calculation shows that
δη ≥ 0.5 (η/Ch)

1/α.

Proof. Let us begin by showing the first inclusion. To
this end, we fix an x ∈ Mρ+ε+η ⊂ {h ≥ ρ + ε + η},
where the inclusion follows from (a1). For all x′ ∈
B(x, 2δ), we then have h(x′) > ρ + ε, i.e., B(x, 2δ) ⊂
{h > ρ+ε} ⊂Mρ+ε, where the second inclusion follows
again from (a1). Let us now suppose that there exists a

sample xi ∈ D such that f̂ρ(xi) = −1 and d(x, xi) ≤ δ.

Then the definition of f̂ρ yields ĥ(xi) < ρ and therefore
we find

δ−d

∫

B(xi,δ)

h dµ = h̄P,δ(xi) < ρ+ ε .

On the other hand, d(x, xi) ≤ δ together with the
already shown B(x, 2δ) ⊂ Mρ+ε implies B(xi, δ) ⊂
Mρ+ε ⊂ {h ≥ ρ + ε} by a simple application of the
triangle inequality and (a1). Therefore, we obtain

δ−d

∫

B(xi,δ)

h dµ ≥ ρ+ ε ,

leading to a contradiction. In other words, for all sam-
ples xi ∈ D, we have f̂ρ(xi) = 1 or d(x, xi) > δ. Let us
assume that we had d(x, xi) > δ for all xi ∈ D. Then
we clearly find

hD,δ(x) =
1

nδd

n∑

i=1

1B(x,δ)(xi) = 0 .
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On the other hand, we have already seen that
B(x, δ) ⊂ B(x, 2δ) ⊂ Mρ+ε ⊂ {h ≥ ρ + ε}. This
yields

h̄P,δ(x) = δ−d

∫

B(x,δ)

h dµ ≥ ρ+ ε

and hence we obtain h̄D,δ(x) > ρ. In other words, we
have found a contradiction, and therefore there does
exist a sample xi ∈ D with d(x, xi) ≤ δ. Our previous
consideration then shows that this sample must satisfy
f̂ρ(xi) = 1, and hence we finally obtain x ∈Mρ,δ.

To show the second inclusion, let us now fix an
x ∈ Mρ,δ. This means that there exists an xi ∈ D

such that ĥ(xi) ≥ ρ and d(x, xi) ≤ δ. This implies
h̄P,δ(xi) > ρ− ε, i.e.,

δ−d

∫

B(xi,δ)

h dµ > ρ− ε .

This means, there exists x′ ∈ B(xi, δ) such that
h(x′) > ρ−ε. The triangle inequality yields d(x, x′) ≤
2δ, and hence we obtain h(x) > ρ − ε − η by the
definition of δη and δ < δη. Using the inclusion
{h > ρ − ε − η} ⊂ Mρ−ε−η from (a1), we then find
x ∈Mρ−ε−η.

Based on the above result, the following theorem re-
lates the topological connected components of our es-
timate, Mρ,δ to the topological connected components
of Mρ+ε+η.

Theorem 3.3. Let X ⊂ Rd be compact and P be a µ-
absolutely continuous probability measure on X with a
continuous density h that can be topologically clustered
between the critical levels ρ∗ and ρ∗∗. For η > 0, we
define δη by (4). Moreover, let ε > 0, δ ∈ (0, δη), and
D ∈ Xn be a data set with ‖h̄D,δ− h̄P,δ‖∞ < ε. Then,
for all ρ ∈ (0, ρ∗∗ − 3ε − 3η], the following disjoint
union holds

C(Mρ,δ) =
{
B′ ∈ C(Mρ,δ) : B

′ ∩Mρ+2ε+2η,δ = ∅
}

∪ ζ(C(Mρ+ε+η)) ,

where ζ : C(Mρ+ε+η)→ C(Mρ,δ) is the top-CCRM.

Proof. Our first goal is to establish the following dis-
joint union:

C(Mρ,δ) =
{
B′ ∈ C(Mρ,δ) \ ζ(C(Mρ+ε+η))

: B′ ∩Mρ+2ε+2η,δ 6= ∅
}

∪
{
B′ ∈ C(Mρ,δ) : B

′ ∩Mρ+2ε+2η,δ = ∅
}

∪ ζ(C(Mρ+ε+η)) . (6)

We begin by showing the auxiliary result

V ′ ∩Mρ+3ε+3η 6= ∅ , V ′ ∈ C(Mρ+ε+η). (7)

To this end, we observe that (c3) yields |C(Mρ∗∗)| = 2,
which implies Mρ∗∗ 6= ∅. Let W ′ and W ′′ be the two
topologically connected components of Mρ∗∗ . Let us
first assume that Mρ+ε+η has exactly one connected
component V ′, i.e. V ′ = Mρ+ε+η. Then ρ ≤ ρ∗∗ −
3ε− 3η implies

∅ 6= Mρ∗∗ ⊂Mρ+3ε+3η = Mρ+ε+η ∩Mρ+3ε+3η

= V ′ ∩Mρ+3ε+3η ,

i.e. we have shown (7). Let us now assume that
Mρ+ε+η has more than one topological connected com-
ponent. Then it has exactly two such components V ′

and V ′′ by (c1). By (c3), we may then assume without
loss of generality that we haveW ′ ⊂ V ′ and W ′′ ⊂ V ′′.
Since ρ ≤ ρ∗∗−3ε−3η impliesMρ∗∗ ⊂Mρ+3ε+3η, these
inclusions yield ∅ 6= W ′ = W ′∩Mρ∗∗ ⊂ V ′∩Mρ+3ε+3η

and ∅ 6= W ′′ = W ′′ ∩Mρ∗∗ ⊂ V ′′ ∩Mρ+3ε+3η. Conse-
quently, we have proved (7) in this case, too.

Using the top-CCRM property V ′ ⊂ ζ(V ′) and the
inclusion Mρ+3ε+3η ⊂ Mρ+2ε+2η,δ shown in Lemma
3.2, we now conclude that B′ ∩Mρ+2ε+2η,δ 6= ∅ for all
B′ ∈ ζ(C(Mρ+ε+η)). This yields

{
B′ ∈ C(Mρ,δ) \ ζ(C(Mρ+ε+η)) : B

′ ∩Mρ+2ε+2η,δ = ∅
}

=
{
B′ ∈ C(Mρ,δ) : B

′ ∩Mρ+2ε+2η,δ = ∅
}
,

and the latter immediately implies (6).

It remains to show that
{
B′ ∈ C(Mρ,δ) \

ζ(C(Mρ+ε+η)) : B′ ∩ Mρ+2ε+2η,δ 6= ∅
}

= ∅ . Let
us assume the converse, that is, there exists some
B′ ∈ C(Mρ,δ) with B′ 6∈ ζ(C(Mρ+ε+η)) and B′ ∩
Mρ+2ε+2η,δ 6= ∅. Since Mρ+2ε+2η,δ ⊂ Mρ+ε+η by
Lemma 3.2, there then exists an x ∈ B′ ∩ Mρ+ε+η.
Let B′′ ∈ C(Mρ+ε+η) be the unique component such
that x ∈ B′′. Then we have x ∈ ζ(B′′) by the top-
CCRM property, i.e. x is contained in a topologi-
cally connected component of Mρ,δ that belongs to
the image of ζ. However, we assumed that x ∈ B′ ∈
C(Mρ,δ) \ ζ(C(Mρ+ε+η)), and hence we have found a
contradiction.

The above result shows that eventually all connected
components B′ of our estimate Mρ,δ of Mρ are
either contained in ζ(C(Mρ+ε+η)) or satisfy B′ ∩
Mρ+2ε+2η,δ = ∅. The latter components are easy to
identify and remove, and hence we can exactly iden-
tify the connected components that are contained in
ζ(C(Mρ+ε+η)). Based on this result, we present Algo-
rithm 1 that scans through the values of ρ, removes the
connected components satisfying B′∩Mρ+2ε+2η,δ = ∅,
and stops as soon as the remaining set of components
ζ(C(Mρ+ε+η)) contains more than one component.

The first step of our analysis shows that, for suffi-
ciently small η > 0, δ > 0, and ε > 0, Algorithm 1
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identifies exactly the connected components B′ that
are contained in ζ(Cτ (Mρ+ε+η)). This is formalized
by the following theorem, which shows that the level
returned by Algorithm 1, ρ∗(D), is close to ρ∗.

Theorem 3.4. Let X ⊂ Rd be compact and P be a µ-
absolutely continuous probability measure on X with a
continuous density h that can be topologically clustered
between the critical levels ρ∗ and ρ∗∗. For η > 0, we
define δη by (4), and we further fix an ε∗ > 0 and
an η∗ > 0 that satisfy ε∗ < (ρ∗∗ − ρ∗)/16 and η∗ <
(ρ∗∗ − ρ∗)/16. Then, for all ε ∈ (0, ε∗], η ∈ (0, η∗],
δ ∈ (0, δη), n ≥ 1, and all data sets D ∈ Xn satisfying
‖h̄D,δ− h̄P,δ‖∞ < ε, the following statements are true:

i) ρ∗(D) ∈ [ρ∗ − ε− η, ρ∗ + ε∗ + η∗ + 2ε+ 2η].

ii) |C(Mρ∗(D)+3ε+3η)| = 2 and the top-CCRM ζ :
C(Mρ∗(D)+3ε+3η) → C(Mρ∗(D)+2ε+2η,δ) is injec-
tive.

iii) Algorithm 1 returns the two connected components
of ζ(C(Mρ∗(D)+3ε+3η)).

iv) All top-CCRMs in the following commutative di-
agram are bijective:

C(Mρ∗∗) C(Mρ∗(D)+ε+η)

C(Mρ∗(D)+3ε+3η)

-
@
@
@
@R �

�
�
��

ζ−,ρ∗∗

ζ+,ρ∗∗ ζ+,−,ρ∗(D)+ε+η

4 Consistency and Rates

In this section, we prove a consistency result and, un-
der additional assumptions, some optimal rates of con-
vergence for Algorithm 1. Before proving the consis-
tency result, we motivate it by first analyzing Theo-
rem 3.4 assuming that we are in the situation of this
theorem. To this end, let A1 and A2 be the topologi-
cally connected components of Mρ∗∗ , V ′

1 and V ′
2 be the

topologically connected components of Mρ∗(D)+3ε+3η,
and B1(D) and B2(D) be the components returned by
Algorithm 1. By Theorem 3.4, we may then assume
without loss of generality that Ai ⊂ V ′

i ⊂ Bi(D) for
i = 1, 2. This yields Ai ⊂ Bi(D) ∩ A∗

i . Consequently,
the returned components Bi(D) contain a chunk of the
desired clusters A∗

i , i = 1, 2. Now, the goal of our con-
sistency result is to show that Bi(D) △ A∗

i actually
becomes arbitrarily small for arbitrarily large n. To
this end, we assume in the following without loss of
generality that Algorithm 1 always returns two com-
ponents, denoted by B1(D) and B2(D). With these
preparation we can now formulate the consistency re-
sult for Algorithm 1.

Algorithm 1 Estimate clusters of a uniformly contin-
uous density using a kernel density estimator

Require: Some δ > 0, η > 0, and ε > 0 with δ < δη.
A dataset D ∈ Xn.

Ensure: An estimate of the topological clusters A∗
1

and A∗
2.

1: Compute the kernel density estimator h̄D,δ.
2: ρ← −ε− η
3: repeat
4: ρ← ρ+ ε+ η
5: Compute f̂ρ(x) = sign(h̄D,δ(x)−ρ) for all x ∈ D.
6: Identify the connected components B′

1, . . . , B
′
M

of Tδ({xi ∈ D : f̂ρ(xi) = 1}) satisfying

B′
j ∩ Tδ({xi ∈ D : f̂ρ+2ε+2η(xi) = 1}) 6= ∅.

7: until M 6= 1
8: Compute f̂ρ+2ε+2η(xi) = sign(h̄D,δ(x)−ρ−2ε−2η)

for all xi ∈ D.
9: Identify the connected components B′

1, . . . , B
′
M of

Tδ({xi ∈ D : f̂ρ+2ε+2η(xi) = 1}) satisfying

B′
j ∩ Tδ({xi ∈ D : f̂ρ+4ε+4η(xi) = 1}) 6= ∅.

10: return ρ and B′
1, . . . , B

′
M .

Theorem 4.1. Let X ⊂ Rd be compact and P be a µ-
absolutely continuous probability measure on X with a
continuous density h that can be topologically clustered
between the critical levels ρ∗ and ρ∗∗. For η > 0, we
define δη by (4), and we further fix strictly positive
sequences (εn), (ηn), and (δn) converging to zero such

that
nδdnε

2
n

| log δn| → ∞ and δn < δηn for all n ≥ 1. For

n ≥ 1, consider Algorithm 1 using the parameters εn,
ηn, and δn. Then, for all ǫ > 0, we have

lim
n→∞

Pn(∆ǫ) = 1 ,

where ∆ǫ :=
{
D ∈ Xn : µ(B1(D) △ A∗

1) + µ(B2(D) △
A∗

2) ≤ ǫ
}
.

Proof. Let us write Aρ∗∗,i, i = 1, 2, for the two topo-
logically connected components of Mρ∗∗ . Moreover,
for ρ ∈ (ρ∗, ρ∗∗], we define Aρ,i := ζρ(Aρ∗∗,i), where
ζρ : C(Mρ∗∗)→ C(Mρ) is the top-CCRM. In addition,
we write Aρ,i := ∅ for ρ > ρ∗∗ and Aρ,i := X for
ρ ≤ ρ∗. Our first goal is to show that

µ(Āρ∗,i \ Ȧρ∗,i) = 0 (8)

for i = 1, 2, where Āρ∗,i and Ȧρ∗,i are defined in (a4).
First note that since P has a continuous µ-density h,
(a4) shows that M̄ρ∗ = Ṁρ∗ . Note that

M̄ρ∗ =
⋃

ρ>ρ∗
Mρ =

⋃

ρ>ρ∗
(Aρ,1 ∪ Aρ,2)
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=
⋃

ρ>ρ∗
Aρ,1 ∪

⋃

ρ>ρ∗
Aρ,2 = Āρ∗,1 ∪ Āρ∗,2 .

Similarly, it can be shown that Ṁρ∗ = Ȧρ∗,1 ∪ Ȧρ∗,2,

and thus Āρ∗,1 ∪ Āρ∗,2 = Ȧρ∗,1 ∪ Ȧρ∗,2. Since Āρ∗,1

and Āρ∗,2 are disjoint and Ȧρ∗,i ⊂ Āρ∗,i for i = 1, 2,

we have Āρ∗,i = Ȧρ∗,i for i = 1, 2 and therefore (8)
follows.

Note that since for any ρ ≥ ρ′ > ρ∗, we have Aρ,i ⊂
Aρ′,i for i = 1, 2, it can be easily shown that

Āρ∗,i =
⋃

ρ>ρ∗

⋂

ε>0

⋂

η>0

Aρ−ε−η,i

=
⋃

ρ>ρ∗

⋃

ε>0

⋃

η>0

Aρ+ε+η,i. (9)

Let us now fix an ǫ > 0. By (8) and (9) there then
exist ηǫ > 0, εǫ > 0, and ρǫ > ρ∗ such that, for all
ε ∈ (0, εǫ], η ∈ (0, ηǫ], ρ ∈ (ρ∗, ρǫ], and i = 1, 2 we
have

µ(Āρ∗,i \Aρ+ε+η,i) ≤ ǫ . (10)

Moreover, (9) shows that, for all ρ > ρ∗, we have

⋂

ε>0

⋂

η>0

Mρ−ε−η ⊂ M̄ρ∗ .

Clearly, this implies
⋂

ε>0

⋂
η>0 Mρ−ε−η \ M̄ρ∗ = ∅.

Consequently, we have

µ(Mρ−ε−η \ M̄ρ∗) ≤ ǫ (11)

for all ρ > ρ∗ and all sufficiently small ε > 0, η > 0.
Without loss of generality, we may thus assume that
(11) holds for all ε ∈ (0, εǫ], η ∈ (0, ηǫ] and all

ρ > ρ∗. We now define ε∗ := min{ ρǫ−ρ∗

16 , ρ∗∗−ρ∗

16 },
η∗ := min{ ρǫ−ρ∗

16 , ρ∗∗−ρ∗

16 }, ε⋆ := min{ε∗, εǫ}, η⋆ :=
min{η∗, ηǫ}. Then, for all sufficiently large n, we
have εn ∈ (0, ε⋆], ηn ∈ (0, η⋆], and by considering
τn := | log δn| in Theorem 3.1 we further see that the
probability Pn of ‖h̄D,δn − h̄P,δn‖∞ < εn converges
to 1 for n → ∞. Let us therefore only consider such
data sets D and parameters satisfying εn ∈ (0, ε⋆] and
ηn ∈ (0, η⋆]. Then our construction ensures that we
can apply Theorem 3.4. In particular, we have

ρ∗ < ρ∗(D) + 2εn + 2ηn ≤ ρ∗ + ε∗ + η∗ + 4εn + 4ηn

≤ ρ∗ + 5ε∗ + 5η∗ ≤ ρǫ ,

and hence (10) and (11) hold for ρ := ρ∗(D)+2εn+2ηn,
i.e.,

µ(Āρ∗,i\Aρ∗(D)+3εn+3ηn,i) ≤ ǫ, (12a)

and

µ(Mρ∗(D)+εn+ηn
\M̄ρ∗) ≤ ǫ. (12b)

Using A∗
i = Āρ∗,i and Aρ∗(D)+3εn+3ηn,i ⊂ Bi(D), we

now obtain

µ
(
A∗

i \Bi(D)
)
= µ

(
Āρ∗,i \Bi(D)

)

≤ µ(Āρ∗,i \Aρ∗(D)+3εn+3ηn,i) ≤ ǫ . (13)

Conversely, using µ(B \ A) = µ(B) − µ(A ∩ B), we
obtain

µ
(
B1(D) \ (A∗

1 ∪ A∗
2)
)

= µ(B1(D))− µ
(
B1(D) ∩ (A∗

1 ∪ A∗
2)
)

≥ µ(B1(D))− µ(B1(D) ∩A∗
1)− µ(B1(D) ∩ A∗

2)

= µ(B1(D) \A∗
1)− µ(B1(D) ∩ A∗

2) .

Since B1(D) ∩ B2(D) = ∅ implies B1(D) ∩ A∗
2 ⊂

A∗
2 \ B2(D) and Theorem 3.3 shows B1(D) ⊂

Mρ∗(D)+εn+ηn
, we can thus conclude that

µ(B1(D) \A∗
1)

≤ µ
(
B1(D) \ (A∗

1 ∪ A∗
2)
)
+ µ(A∗

2 \B2(D))

≤ µ
(
Mρ∗(D)+εn+ηn

\ (A∗
1 ∪ A∗

2)
)
+ µ(A∗

2 \B2(D))

≤ 2ǫ ,

where in the last step we used (12) and (13). Clearly,
we can establish µ(B2(D) \A∗

2) ≤ 2ǫ analogously, and
hence we finally obtain µ(Bi(D) △ A∗

i ) ≤ 3ǫ for i =
1, 2.

Note that the consistency result requires us to know
a minimal smoothness of h in order to ensure that
δn < δηn for all n ≥ 1. For example, we have already
seen around (5) that for Hölder-continuous densities
we know δη, and hence ensuring the above relation is
straightforward. Moreover, for such densities, we can
actually obtain finite samples guarantees, if we addi-
tionally the flat density assumption of Polonik (1995):

Theorem 4.2. Let X ⊂ Rd be compact and P be a µ-
absolutely continuous probability measure on X with a
continuous density h that can be topologically clustered
between the critical levels ρ∗ and ρ∗∗. Furthermore,
assume that h is Hölder-continuous, that is, it satisfies
(5). In addition, assume that there exist constants θ >
0 and c ≥ 0 such that, for all s > 0, we have

µ({|h− ρ∗| ≤ s}) ≤ c sθ. (14)

For some fixed a > 0, τ ≥ 1, and n ≥ 3, we define

εn := ηn := a
√
τ
( logn

n

) α
2α+d

log(logn)

and

δn :=
( logn

n

) 1
2α+d

Suppose that we further have nδdn ≥ max{τ, | log δn|},
a log(logn) ≥ max{C′, 2αChτ

−1/2}, and 16εn ≤ ρ∗∗−
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ρ∗, where C′ is the constant appearing in the simplified
estimate following Theorem 3.1. Then, Algorithm 1
using the parameters εn, ηn, and δn satisfies

Pn
(
∆6·2θcεθn

)
≥ 1− e−τ ,

where ∆6·2θcεθn is the set defined in Theorem 4.1.

Recall that Assumption (14) goes back to Polonik
(1995) and is basically used in every paper dealing with
learning rates for density level set estimation. Inter-
estingly, we do not need this assumption for a range
of values ρ around ρ∗, as one might conjecture con-
sidering the fact that we do estimate ρ∗ as well, but
only for the (unknown) level ρ∗. Furthermore, note
that our algorithm does not need to know the con-
stants ρ∗, c and θ in Assumption (14). Moreover, the
log(log(n)) term in the definition of εn and ηn makes
it possible that the algorithm only needs to know the
Hölder-exponent α but not the Hölder-constant Ch.

Under the assumptions of Theorem 4.2, Algorithm 1
learns, modulo logarithmic factors, the clusters with
rate

n− αθ
2α+d .

In particular, if h is C1, then it is known that we can
pick θ = 1, and hence we obtain the rate n− α

2α+d .
Moreover, modulo logarithmic factors our rates equal

the optimal rates n− αθ
2α+d for plain level set estimation,

obtained by e.g. Rigollet and Vert (2009), and hence
it is obvious that our rates are optimal modulo a loga-
rithmic factor. The fact that we essentially obtain the
same rates as for plain level set estimation is somewhat
remarkable, since a) for clustering the estimation must
be stronger in order to guarantee that the topological
properties are correctly recognized, and b) estimating
the correct level ρ∗ simultaneously may add another
layer of difficulty compared to level set estimation for
fixed level ρ.

Proof. Throughout the proof we use the notations
from the proof of Theorem 4.1. As discussed in (a5),
we have M̄ρ∗ = {h > ρ∗}, and using (a1) we thus we
find, for ρ > ρ∗ and ε, η > 0,

µ(Mρ−ε−η \ M̄ρ∗) = µ(Mρ−ε−η \ {h > ρ∗})
≤ µ({h ≥ ρ− ε− η} \ {h > ρ∗})
= µ({ρ− ε− η ≤ h ≤ ρ∗})
≤ c(ε+ η)θ

and

µ(M̄ρ∗ \Mρ+ε+η) ≤ µ({h > ρ∗} \ {h > ρ+ ε+ η})
= µ({ρ∗ < h ≤ ρ+ ε+ η})
≤ c(ε+ η)θ .

Moreover, we have Āρ∗,i ∩ Aρ,j = ∅ for all ρ > ρ∗

and all i 6= j, and hence we obtain Āρ∗,i \ Aρ+ε+η,i =
M̄ρ∗\Aρ+ε+η,i. With the help of our previous estimate,
this yields

µ(Āρ∗,i \Aρ+ε+η,i) ≤ c(ε+ η)θ ,

and by the monotonicity of the components Aρ+ε+η,i

in ε + η, we hence have established (10) and (11) for
εǫ := ηǫ := 1

2 (ǫ/c)
1/θ, ρǫ := ρ∗ + 16εǫ, and all ε ∈

(0, εǫ], η ∈ (0, ηǫ], and ρ ∈ (ρ∗, ρǫ]. Note that, if 16εǫ ≤
ρ∗∗ − ρ∗, then the quantities in the proof of Theorem
4.1 become ε∗ = εǫ and ε⋆ = εǫ, and analogously, η⋆ =
εǫ. Let us consider ǫ := 2θcεθn. Then we have εn = ε⋆

and ηn = η⋆, and our assumption 16εn ≤ ρ∗∗−ρ∗ thus
guarantees 16εǫ ≤ ρ∗∗−ρ∗. Moreover, our assumption
a log(logn) ≥ 2αChτ

−1/2 ensures δn < δηn . Then,
the proof of Theorem 4.1 shows that, for all data sets
D ∈ Xn with ‖h̄D,δn − h̄P,δn‖∞ < εn, we have

µ(B1(D) △ A∗
1) + µ(B2(D) △ A∗

2) ≤ 6ǫ = 6 · 2θcεθn .

It therefore remains to determine the probability of
such data sets D. To this end, we recall that Theorem
3.1 can be simplified to

Pn

({
D ∈ Xn : ‖h̄D,δn − h̄P,δn‖∞ < C′

√
τ | log δn|

nδdn

})

≥ 1− e−τ .

Furthermore, we have

C′

√
τ | log δn|

nδdn
= C′n− α

2α+d

√
τ | log δn|

(log n)
d

2α+d

≤ C′n− α
2α+d

√
τ logn

(log n)
d

2α+d

= C′√τ
( logn

n

) α
2α+d

≤ εn ,

where in the last step we used the assumption
a log(logn) ≥ C′. Combining all estimates we now
obtain the assertion.

Acknowledgments

Part of the work was done while B. K. S. was visit-
ing I. S. at the Institute for Stochastics and Applica-
tions. B. K. S. wishes to acknowledge support from
the Gatsby Charitable Foundation and the University
of Stuttgart. I. S. thanks Michael Eisermann for fruit-
ful discussions on connectivity.

1097



Bharath K. Sriperumbudur, Ingo Steinwart

References

Ankerst, M., Breunig, M., Kriegel, H.-P., and Sander,
J. (1999). OPTICS: Ordering points to identify
the clustering structure. In ACM SIGMOD inter-
national conference on Management of data, pages
49–60. ACM Press.

Bousquet, O. (2002). A Bennett concentration inequal-
ity and its application to suprema of empirical pro-
cesses. C. R. Math. Acad. Sci. Paris, 334:495–500.

Carmichael, J., George, G., and Julius, R. (1968).
Finding natural clusters. Systematic Zoology,
17:144–150.

Chaudhuri, K. and Dasgupta, S. (2010). Rates of
convergence for the cluster tree. In Lafferty, J.,
Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S.,
and Culotta, A., editors, Advances in Neural Infor-
mation Processing Systems 23, pages 343–351.

Cuevas, A. and Fraiman, R. (1997). A plug-in
approach to support estimation. Ann. Statist.,
25:2300–2312.

Devroye, L. and Lugosi, G. (2001). Combinatorial
Methods in Density Estimation. Springer, New
York.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.
(1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In
Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, pages
226–231. AAAI Press.
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