
Consistency and Rates for Clustering with DBSCAN

A Appendix: Remaining Proofs

In this section, we present the proofs of Theorems 3.1
and 3.4.

A.1 Proof of Theorem 3.1

In the following, we quote a version of Talagrand’s in-
equality due to Bousquet (2002) from Steinwart and
Christmann (2008, Theorem 7.5) and a (slightly sim-
plified) bound on the expected suprema of empirical
processes indexed by Vapnik-C̆ervonenkis (VC) classes
of functions, from Giné and Guillou (2001, Proposition
2.1). Both will be used to prove Theorem 3.1.

Theorem A.1. Let (Z, P ) be a probability space and
G be a set of measurable functions from Z to R. Fur-
thermore, let B ≥ 0 and σ ≥ 0 be constants such that
EP g = 0, EP g

2 ≤ σ2, and ‖g‖∞ ≤ B for all g ∈ G.
For n ≥ 1, define G : Zn → R by

G(z) := sup
g∈G
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, z = (z1, . . . , zn) ∈ Zn.

Then, for all τ > 0, we have
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Theorem A.2. Let (Z, P ) be a probability space and G

be a set of measurable functions from Z to R. Further-
more, let B ≥ 0 and 0 ≤ σ ≤ B be constants such that
EP g

2 ≤ σ2, and ‖g‖∞ ≤ B for all g ∈ G. Suppose G

is a uniformly bounded VC-class, i.e., there exist pos-
itive numbers A and ν such that, for every probability
measure P on Z and every 0 < ǫ ≤ B, the covering
numbers satisfy

N (G, L2(P ), ǫ) ≤
(

AB

ǫ

)ν

.

Then there exists a universal constant C such that G
defined as in Theorem A.1 satisfies
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. (15)

Given a measurable g : Rd → R and a δ > 0 we define
the function gδ : Rd → R by gδ(x) := g(x/δ), x ∈ R

d.
The following lemma, which establishes a stability of
covering number bounds under this operation, will also
be needed in the proof of Theorem 3.1.

Lemma A.3. Let G be set of measurable functions
g : Rd → R such that there exists a constant B ≥ 0
with ‖g‖∞ ≤ B for all g ∈ G. For δ > 0, we write

Gδ := {gδ : g ∈ G}. Then, for all ǫ ∈ (0, B] and all
δ > 0, we have

sup
P
N (G, L2(P ), ǫ) = sup

P
N (Gδ, L2(P ), ǫ) ,

where the suprema are taken over all probability mea-
sures P on R

d.

Proof. We only prove “≤”, the converse inequality can
be shown analogously. Let us fix ǫ, δ > 0 and a distri-
bution P on R

d. We define a new distribution P ′ on
R

d by P ′(A) := P (1δA) for all measurable A ⊂ R
d.

Furthermore, let C′ be an ǫ-net of Gδ with respect
to L2(P

′). For C := C′
1/δ, we then have |C| = |C′|,

and hence it suffices to show that C is an ǫ-net of G
with respect to L2(P ). To this end, we fix a g ∈ G.
Then gδ ∈ Gδ, and hence there exists an h′ ∈ C′ with
‖gδ − h′‖L2(P ′) ≤ ǫ. Moreover, we have h := h′

1/δ ∈ C,

and since the definition of P ′ ensures EP ′fδ = EP f for
all measurable f : Rd → [0,∞), we obtain

‖g − h‖L2(P ) = ‖gδ − hδ‖L2(P ′) = ‖gδ − h′‖L2(P ′) ≤ ǫ,

i.e. C is an ǫ-net of G with respect to L2(P ).

We further need the following result, which is a refor-
mulation of van der Vaart and Wellner (1996, Theorem
2.6.4).

Theorem A.4. Let A be a set of subsets of Z that
has finite VC-dimension V . Then the corresponding
set of indicator functions G := {1A : A ∈ A} is a uni-
formly bounded VC-class and the corresponding VC-
characteristics A and ν only depend on V .

With these preparation we are now able to establish
the following generalization of Theorem 3.1. Applying
this generalization to K of the form (3) immediately
proves Theorem 3.1.

Proposition A.5. Let P be a probability measure on
R

d with a bounded Lebesgue density h and K be a real-
valued function on X such that K ∈ L∞(Rd)∩L2(R

d).
Suppose that

F := {K (x− ·) : x ∈ X}

is a uniformly bounded VC-class. Then, there exists a
positive constant C only depending on K, h and VC-
characteristics A and ν of F such that, for all n ≥ 1,
δ > 0, and τ > 0 we have
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Proof. Let us assume without loss of generality that
‖K‖∞ ≤ 1. We define kx,δ := δ−dK

(

x−·
δ

)

and
fx,δ := kx,δ − EP kx,δ. Then it is easy to check that
EP fx,δ = 0 and ‖fx,δ‖∞ ≤ 2δ−d for all x ∈ X and
δ > 0. Moreover, we have

EP f
2
x,δ ≤ EP k

2
x,δ = δ−2d

∫

Rd

K2

(

x− y

δ

)

h(y) dy

≤ δ−d‖h‖∞‖K‖22
for all x ∈ X and δ > 0, where the norm ‖K‖2 is with
respect to the Lebesgue measure on R

d. In addition,
we have

1

n

n
∑

i=1

fx,δ(xi) = h̄D,δ(x)− h̄P,δ(x),

where h̄P,δ and h̄D,δ are defined in (1) and (2) respec-
tively. Applying Theorem A.1 to G := {fx,δ : x ∈ R

d},
we hence obtain, for all δ > 0, τ > 0, and n ≥ 1, that

‖h̄D,δ − h̄P,δ‖∞ < 4EPn‖h̄D,δ − h̄P,δ‖∞ +
2τ

nδd

+
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2τ‖h‖∞‖K‖22
nδd

(16)

holds with probability Pn not smaller than 1−e−τ . It
thus remains to bound the term EPn‖h̄D,δ − h̄P,δ‖∞.
Note that since F is a uniformly bounded VC-class, so
is F̃ := {f − a : f ∈ F, a ∈ [−1, 1]}, i.e. there exist
positive numbers A and ν such that

sup
P
N
(

F̃, L2(P ), ǫ
)

≤
(

2A

ǫ

)ν

for all 0 < ǫ ≤ 2. For δ > 0, we further have δdG ⊂ F̃δ,
and hence Lemma A.3 implies

N
(

δdG, L2(P ), ǫ
)

≤ N (F̃δ, L2(P ), ǫ) ≤
(

2A

ǫ

)ν

,

for all probability measures P on R
d and all 0 < ǫ ≤ 2.

Now, our very first estimates show that every g ∈ G̃ :=
δdG satisfies ‖g‖∞ ≤ 2 and EP g

2 ≤ δd‖h‖∞‖K‖22, and
hence Theorem A.2 yields

EPn sup
g∈G̃
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Multiplying both sides by δ−d, we obtain

EPn‖h̄D,δ − h̄P,δ‖∞ ≤ C
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which, when used in (16), yields the result.

A.2 Proof of Theorem 3.4

Proof of Theorem 3.4. i). Let D ∈ Xn be a dataset
such that ‖h̄D,δ − h̄P,δ‖∞ < ε. Moreover, let ρ ≥ 0
be the current level that is considered by Algorithm 1.
Then, Theorem 3.3 shows that, for ρ ∈ [0, ρ∗∗−3ε−3η],
Algorithm 1 identifies exactly the topologically con-
nected components of Mρ,δ in its loop that belong
to the set ζ(C(Mρ+ε+η)), where ζ : C(Mρ+ε+η) →
C(Mρ,δ) is the top-CCRM. In the following, we thus
consider the set ζ(C(Mρ+ε+η)) for ρ ∈ [0, ρ∗∗−3ε−3η].
Let us first consider the case ρ ∈ [0, ρ∗− ε− η). Then,
(c1) and (c3) together with the assumed ρ+ε+η < ρ∗

show |C(Mρ+ε+η)| = 1. This yields |ζ(C(Mρ+ε+η))| =
1, and hence Algorithm 1 does not stop. Consequently,
we have ρ∗(D) ≥ ρ∗ − ε− η.

Let us now consider the case ρ ∈ [ρ∗+ε∗+η∗+ε+η, ρ∗+
ε∗+η∗+2ε+2η]. Then we first note that Algorithm 1
actually inspects such an ρ, since it iteratively inspects
all ρ = iε + iη, i = 0, 1, . . . , and the width of the
interval above is ε+ η. Moreover, our assumptions on
ε∗, η∗, ε and η guarantee ρ∗+ε∗+η∗+2ε+2η ≤ ρ∗∗−
3ε−3η and hence we have ρ ∈ [ρ∗+ε∗+η∗+ε+η, ρ∗∗−
3ε − 3η]. Let us write ζ+ : C(Mρ∗∗) → C(Mρ+ε+η),
ζ− : C(Mρ∗∗)→ C(Mρ−ε−η), and ζ+,− : C(Mρ+ε+η)→
C(Mρ−ε−η) for the top-CCRMs between the involved
sets. Using the composition property of top-CCRMs
in (b2), we then obtain the following diagram:

C(Mρ∗∗) C(Mρ−ε−η)

C(Mρ+ε+η)

-
@
@
@
@R �

�
�
��

ζ−

ζ+ ζ+,−

Moreover, we have ρ− ε− η ≥ ρ∗ + ε∗ + η∗ > ρ∗ and
ρ + ε + η > ρ∗, and hence (c1) and (c2) show that
|C(Mρ−ε−η)| = 2 and |C(Mρ+ε+η)| = 2. Consequently,
(c3) ensures that the maps ζ+ and ζ− are bijective.
Consequently, ζ+,− is bijective. Let us further
consider the top-CCRM ζ′ : C(Mρ,δ) → C(Mρ−ε−η).
Then the composition property of top-CCRMS in
(b2)—yields another diagram:

C(Mρ+ε+η) C(Mρ−ε−η)

C(Mρ,δ)

-
@
@
@
@R �

�
�
��

ζ+,−

ζ ζ′

Since ζ+,− is bijective, we then find that ζ is injective,
and since we have already seen that Mρ+ε+η has
two top-connected components, we conclude that
ζ(C(Mρ+ε+η)) contains two elements. Consequently,
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the stopping criterion of Algorithm 1 is satisfied, that
is, ρ∗(D) ≤ ρ∗ + ε∗ + η∗ + 2ε+ 2η.

ii). Theorem 3.3 shows that in its last loop Al-
gorithm 1 identifies exactly the topologically con-
nected components of Mρ∗(D),δ that belong to the
set ζε(C(Mρ∗(D)+ε+η)), where ζε : C(Mρ∗(D)+ε+η) →
C(Mρ∗(D),δ) is the top-CCRM. Moreover, since Algo-
rithm 1 stops at ρ∗(D), we have |ζε(C(Mρ∗(D)+ε+η))| 6=
1 and thus |C(Mρ∗(D)+ε+η)| 6= 1. From ρ∗(D) +
ε + η ≤ ρ∗∗ and (c1) we thus conclude that
|C(Mρ∗(D)+ε+η)| = 2. For later purposes, note that
the latter implies the injectivity of ζε. In addition,
since |C(Mρ∗(D)+ε+η)| = 2, (c3) yields ζ−,ρ∗(D)+ε+η :
C(Mρ∗∗)→ C(Mρ∗(D)+ε+η) is bijective. Since ρ

∗(D) +
3ε + 3η > ρ∗, it follows from (c1)–(c3) that we
have ζ+,ρ∗(D)+ε+η : C(Mρ∗∗) → C(Mρ∗(D)+3ε+3η) is
bijective. Using the composition property of top-
CCRMS in (b2), we obtain that ζ+,−,ρ∗(D)+ε+η :
C(Mρ∗(D)+3ε+3η) → C(Mρ∗(D)+ε+η) is bijective, and
hence |C(Mρ∗(D)+3ε+3η)| = 2. Let us now consider the
following commutative diagram:

C(Mρ∗(D)+3ε+3η) C(Mρ∗(D)+ε+η)

C(Mρ∗(D)+2ε+2η,δ) C(Mρ∗(D),δ)

-

? ?
-

ζ+,−,ρ∗(D)+ε+η

ζ3ε ζε

ζf

where again, all occurring maps are the top-CCRMs
between the respective sets. Now we have already
shown that ζε is injective and that ζ+,−,ρ∗(D)+ε+η is
bijective. Consequently, ζ3ε is injective.

iii). Follows from Theorem 3.3 and ρ∗(D)+ 2ε+2η ≤
ρ∗∗ − 3ε− 3η.

iv). Since ρ∗(D) + 3ε+ 3η > ρ∗(D) + ε + η > ρ∗, by
(c1)–(c3), we see that the maps ζ−,ρ∗∗ and ζ+,ρ∗∗ are
bijective. Therefore ζ+,−,ρ∗(D)+ε+η is bijective and the
diagram follows.


