A Appendix: Remaining Proofs

In this section, we present the proofs of Theorems 3.1 and 3.4.

A.1 Proof of Theorem 3.1

In the following, we quote a version of Talagrand's inequality due to Bousquet (2002) from Steinwart and Christmann (2008, Theorem 7.5) and a (slightly simplified) bound on the expected suprema of empirical processes indexed by Vapnik-Červonenkis (VC) classes of functions, from Giné and Guillou (2001, Proposition 2.1). Both will be used to prove Theorem 3.1.

Theorem A.1. Let (Z, P) be a probability space and \mathcal{G} be a set of measurable functions from Z to \mathbb{R} . Furthermore, let $B \geq 0$ and $\sigma \geq 0$ be constants such that $\mathbb{E}_P g = 0$, $\mathbb{E}_P g^2 \leq \sigma^2$, and $\|g\|_{\infty} \leq B$ for all $g \in \mathcal{G}$. For $n \geq 1$, define $G : Z^n \to \mathbb{R}$ by

$$G(z) := \sup_{g \in \mathfrak{S}} \left| \frac{1}{n} \sum_{j=1}^{n} g(z_j) \right|, \ z = (z_1, \dots, z_n) \in Z^n.$$

Then, for all $\tau > 0$, we have

$$P^n\left(\left\{z \in Z^n : G(z) \ge 4\mathbb{E}_{P^n}G + \sqrt{\frac{2\tau\sigma^2}{n}} + \frac{\tau B}{n}\right\}\right) \le e^{-\tau}.$$

Theorem A.2. Let (Z, P) be a probability space and \mathcal{G} be a set of measurable functions from Z to \mathbb{R} . Furthermore, let $B \ge 0$ and $0 \le \sigma \le B$ be constants such that $\mathbb{E}_P g^2 \le \sigma^2$, and $||g||_{\infty} \le B$ for all $g \in \mathcal{G}$. Suppose \mathcal{G} is a uniformly bounded VC-class, i.e., there exist positive numbers A and ν such that, for every probability measure P on Z and every $0 < \epsilon \le B$, the covering numbers satisfy

$$\mathcal{N}(\mathfrak{G}, L_2(P), \epsilon) \le \left(\frac{AB}{\epsilon}\right)^{\nu}.$$

Then there exists a universal constant C such that G defined as in Theorem A.1 satisfies

$$\mathbb{E}_{P^n}G \le C\left(\frac{\nu B}{n}\log\frac{AB}{\sigma} + \sqrt{\frac{\nu\sigma^2}{n}\log\frac{AB}{\sigma}}\right).$$
 (15)

Given a measurable $g : \mathbb{R}^d \to \mathbb{R}$ and a $\delta > 0$ we define the function $g_{\delta} : \mathbb{R}^d \to \mathbb{R}$ by $g_{\delta}(x) := g(x/\delta), x \in \mathbb{R}^d$. The following lemma, which establishes a stability of covering number bounds under this operation, will also be needed in the proof of Theorem 3.1.

Lemma A.3. Let \mathcal{G} be set of measurable functions $g: \mathbb{R}^d \to \mathbb{R}$ such that there exists a constant $B \geq 0$ with $\|g\|_{\infty} \leq B$ for all $g \in \mathcal{G}$. For $\delta > 0$, we write

 $\mathfrak{G}_{\delta} := \{g_{\delta} : g \in \mathfrak{G}\}.$ Then, for all $\epsilon \in (0, B]$ and all $\delta > 0$, we have

$$\sup_{P} \mathcal{N}(\mathfrak{G}, L_2(P), \epsilon) = \sup_{P} \mathcal{N}(\mathfrak{G}_{\delta}, L_2(P), \epsilon),$$

where the suprema are taken over all probability measures P on \mathbb{R}^d .

Proof. We only prove " \leq ", the converse inequality can be shown analogously. Let us fix $\epsilon, \delta > 0$ and a distribution P on \mathbb{R}^d . We define a new distribution P' on \mathbb{R}^d by $P'(A) := P(\frac{1}{\delta}A)$ for all measurable $A \subset \mathbb{R}^d$. Furthermore, let \mathcal{C}' be an ϵ -net of \mathcal{G}_{δ} with respect to $L_2(P')$. For $\mathcal{C} := \mathcal{C}'_{1/\delta}$, we then have $|\mathcal{C}| = |\mathcal{C}'|$, and hence it suffices to show that \mathcal{C} is an ϵ -net of \mathcal{G} with respect to $L_2(P)$. To this end, we fix a $g \in \mathcal{G}$. Then $g_{\delta} \in \mathcal{G}_{\delta}$, and hence there exists an $h' \in \mathcal{C}'$ with $||g_{\delta} - h'||_{L_2(P')} \leq \epsilon$. Moreover, we have $h := h'_{1/\delta} \in \mathcal{C}$, and since the definition of P' ensures $\mathbb{E}_{P'}f_{\delta} = \mathbb{E}_P f$ for all measurable $f : \mathbb{R}^d \to [0, \infty)$, we obtain

$$||g - h||_{L_2(P)} = ||g_{\delta} - h_{\delta}||_{L_2(P')} = ||g_{\delta} - h'||_{L_2(P')} \le \epsilon,$$

i.e. \mathcal{C} is an ϵ -net of \mathcal{G} with respect to $L_2(P)$.

We further need the following result, which is a reformulation of van der Vaart and Wellner (1996, Theorem 2.6.4).

Theorem A.4. Let \mathcal{A} be a set of subsets of Z that has finite VC-dimension V. Then the corresponding set of indicator functions $\mathcal{G} := \{\mathbf{1}_A : A \in \mathcal{A}\}$ is a uniformly bounded VC-class and the corresponding VCcharacteristics A and ν only depend on V.

With these preparation we are now able to establish the following generalization of Theorem 3.1. Applying this generalization to K of the form (3) immediately proves Theorem 3.1.

Proposition A.5. Let P be a probability measure on \mathbb{R}^d with a bounded Lebesgue density h and K be a realvalued function on X such that $K \in L_{\infty}(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$. Suppose that

$$\mathcal{F} := \{ K \left(x - \cdot \right) \, : \, x \in X \}$$

is a uniformly bounded VC-class. Then, there exists a positive constant C only depending on K, h and VC-characteristics A and ν of \mathcal{F} such that, for all $n \geq 1$, $\delta > 0$, and $\tau > 0$ we have

$$P^{n}\left(\left\{D \in X^{n} : \|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_{\infty} < \frac{C}{n\delta^{d}}\log\frac{C}{\delta} + \sqrt{\frac{C}{n\delta^{d}}\log\frac{C}{\delta}} + \frac{\tau C}{n\delta^{d}} + \frac{\tau C}{\sqrt{n\delta^{d}}}\right\}\right) \geq 1 - e^{-\tau}.$$

Proof. Let us assume without loss of generality that $||K||_{\infty} \leq 1$. We define $k_{x,\delta} := \delta^{-d}K\left(\frac{x-\cdot}{\delta}\right)$ and $f_{x,\delta} := k_{x,\delta} - \mathbb{E}_P k_{x,\delta}$. Then it is easy to check that $\mathbb{E}_P f_{x,\delta} = 0$ and $||f_{x,\delta}||_{\infty} \leq 2\delta^{-d}$ for all $x \in X$ and $\delta > 0$. Moreover, we have

$$\mathbb{E}_P f_{x,\delta}^2 \leq \mathbb{E}_P k_{x,\delta}^2 = \delta^{-2d} \int_{\mathbb{R}^d} K^2 \left(\frac{x-y}{\delta}\right) h(y) \, dy$$

$$\leq \delta^{-d} \|h\|_{\infty} \|K\|_2^2$$

for all $x \in X$ and $\delta > 0$, where the norm $||K||_2$ is with respect to the Lebesgue measure on \mathbb{R}^d . In addition, we have

$$\frac{1}{n}\sum_{i=1}^{n} f_{x,\delta}(x_i) = \bar{h}_{D,\delta}(x) - \bar{h}_{P,\delta}(x),$$

where $\bar{h}_{P,\delta}$ and $\bar{h}_{D,\delta}$ are defined in (1) and (2) respectively. Applying Theorem A.1 to $\mathcal{G} := \{f_{x,\delta} : x \in \mathbb{R}^d\},\$ we hence obtain, for all $\delta > 0, \tau > 0$, and $n \ge 1$, that

$$\|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_{\infty} < 4\mathbb{E}_{P^n} \|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_{\infty} + \frac{2\tau}{n\delta^d} + \sqrt{\frac{2\tau \|h\|_{\infty} \|K\|_2^2}{n\delta^d}}$$
(16)

holds with probability P^n not smaller than $1 - e^{-\tau}$. It thus remains to bound the term $\mathbb{E}_{P^n} \|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_{\infty}$. Note that since \mathcal{F} is a uniformly bounded VC-class, so is $\tilde{\mathcal{F}} := \{f - a : f \in \mathcal{F}, a \in [-1, 1]\}$, i.e. there exist positive numbers A and ν such that

$$\sup_{P} \mathcal{N}\big(\tilde{\mathcal{F}}, L_2(P), \epsilon\big) \le \left(\frac{2A}{\epsilon}\right)^{\nu}$$

for all $0 < \epsilon \leq 2$. For $\delta > 0$, we further have $\delta^d \mathcal{G} \subset \tilde{\mathcal{F}}_{\delta}$, and hence Lemma A.3 implies

$$\mathcal{N}\left(\delta^{d}\mathfrak{G}, L_{2}(P), \epsilon\right) \leq \mathcal{N}(\tilde{\mathfrak{F}}_{\delta}, L_{2}(P), \epsilon) \leq \left(\frac{2A}{\epsilon}\right)^{\nu},$$

for all probability measures P on \mathbb{R}^d and all $0 < \epsilon \leq 2$. Now, our very first estimates show that every $g \in \tilde{\mathfrak{G}} := \delta^d \mathfrak{G}$ satisfies $\|g\|_{\infty} \leq 2$ and $\mathbb{E}_P g^2 \leq \delta^d \|h\|_{\infty} \|K\|_2^2$, and hence Theorem A.2 yields

$$\mathbb{E}_{P^n} \sup_{g \in \tilde{\mathcal{G}}} \left| \frac{1}{n} \sum_{j=1}^n g(X_j) \right| \le C \left(\frac{2\nu}{n} \log \frac{2A}{\sqrt{\delta^d \|h\|_{\infty} \|K\|_2^2}} + \sqrt{\frac{\nu \delta^d \|h\|_{\infty} \|K\|_2^2}{n} \log \frac{2A}{\sqrt{\delta^d \|h\|_{\infty} \|K\|_2^2}}} \right).$$

Multiplying both sides by δ^{-d} , we obtain

$$\mathbb{E}_{P^{n}} \|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_{\infty} \leq C \left(\frac{2\nu}{n\delta^{d}} \log \frac{2A}{\sqrt{\delta^{d}} \|h\|_{\infty} \|K\|_{2}^{2}} + \sqrt{\frac{\nu \|h\|_{\infty} \|K\|_{2}^{2}}{n\delta^{d}} \log \frac{2A}{\sqrt{\delta^{d}} \|h\|_{\infty} \|K\|_{2}^{2}}} \right),$$

which, when used in (16), yields the result.

A.2 Proof of Theorem 3.4

Proof of Theorem 3.4. i). Let $D \in X^n$ be a dataset such that $\|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_{\infty} < \varepsilon$. Moreover, let $\rho \ge 0$ be the current level that is considered by Algorithm 1. Then, Theorem 3.3 shows that, for $\rho \in [0, \rho^{**} - 3\varepsilon - 3\eta]$, Algorithm 1 identifies exactly the topologically connected components of $\mathcal{M}_{\rho,\delta}$ in its loop that belong to the set $\zeta(\mathcal{C}(M_{\rho+\varepsilon+\eta}))$, where $\zeta : \mathcal{C}(M_{\rho+\varepsilon+\eta}) \to \mathcal{C}(\mathcal{M}_{\rho,\delta})$ is the top-CCRM. In the following, we thus consider the set $\zeta(\mathcal{C}(M_{\rho+\varepsilon+\eta}))$ for $\rho \in [0, \rho^{**} - 3\varepsilon - 3\eta]$.

Let us first consider the case $\rho \in [0, \rho^* - \varepsilon - \eta)$. Then, (c₁) and (c₃) together with the assumed $\rho + \varepsilon + \eta < \rho^*$ show $|\mathcal{C}(M_{\rho+\varepsilon+\eta})| = 1$. This yields $|\zeta(\mathcal{C}(M_{\rho+\varepsilon+\eta}))| = 1$, and hence Algorithm 1 does not stop. Consequently, we have $\rho^*(D) \ge \rho^* - \varepsilon - \eta$.

Let us now consider the case $\rho \in [\rho^* + \varepsilon^* + \eta^* + \varepsilon + \eta, \rho^* + \varepsilon^* + \eta^* + 2\varepsilon + 2\eta]$. Then we first note that Algorithm 1 actually inspects such an ρ , since it iteratively inspects all $\rho = i\varepsilon + i\eta$, $i = 0, 1, \ldots$, and the width of the interval above is $\varepsilon + \eta$. Moreover, our assumptions on ε^* , η^* , ε and η guarantee $\rho^* + \varepsilon^* + \eta^* + 2\varepsilon + 2\eta \leq \rho^{**} - 3\varepsilon - 3\eta$ and hence we have $\rho \in [\rho^* + \varepsilon^* + \eta^* + \varepsilon + \eta, \rho^{**} - 3\varepsilon - 3\eta]$. Let us write $\zeta_+ : \mathcal{C}(M_{\rho^{**}}) \to \mathcal{C}(M_{\rho+\varepsilon+\eta}), \zeta_- : \mathcal{C}(M_{\rho+\varepsilon+\eta}) \to \mathcal{C}(M_{\rho-\varepsilon-\eta})$, and $\zeta_{+,-} : \mathcal{C}(M_{\rho+\varepsilon+\eta}) \to \mathcal{C}(M_{\rho-\varepsilon-\eta})$ for the top-CCRMs between the involved sets. Using the composition property of top-CCRMs in (b_2) , we then obtain the following diagram:

Moreover, we have $\rho - \varepsilon - \eta \ge \rho^* + \varepsilon^* + \eta^* > \rho^*$ and $\rho + \varepsilon + \eta > \rho^*$, and hence (c_1) and (c_2) show that $|\mathcal{C}(M_{\rho-\varepsilon-\eta})| = 2$ and $|\mathcal{C}(M_{\rho+\varepsilon+\eta})| = 2$. Consequently, (c_3) ensures that the maps ζ_+ and ζ_- are bijective. Consequently, $\zeta_{+,-}$ is bijective. Let us further consider the top-CCRM $\zeta' : \mathcal{C}(\mathcal{M}_{\rho,\delta}) \to \mathcal{C}(M_{\rho-\varepsilon-\eta})$. Then the composition property of top-CCRMS in (b_2) —yields another diagram:

Since $\zeta_{+,-}$ is bijective, we then find that ζ is injective, and since we have already seen that $M_{\rho+\varepsilon+\eta}$ has two top-connected components, we conclude that $\zeta(\mathcal{C}(M_{\rho+\varepsilon+\eta}))$ contains two elements. Consequently,

the stopping criterion of Algorithm 1 is satisfied, that is, $\rho^*(D) \leq \rho^* + \varepsilon^* + \eta^* + 2\varepsilon + 2\eta$.

ii). Theorem 3.3 shows that in its last loop Algorithm 1 identifies exactly the topologically connected components of $\mathcal{M}_{\rho^*(D),\delta}$ that belong to the set $\zeta_{\varepsilon}(\mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta}))$, where $\zeta_{\varepsilon}: \mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta}) \to$ $\mathcal{C}(\mathcal{M}_{\rho^*(D),\delta})$ is the top-CCRM. Moreover, since Algorithm 1 stops at $\rho^*(D)$, we have $|\zeta_{\varepsilon}(\mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta}))| \neq$ 1 and thus $|\mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta})| \neq 1$. From $\rho^*(D) +$ $\varepsilon + \eta \leq \rho^{**}$ and (c_1) we thus conclude that $|\mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta})| = 2$. For later purposes, note that the latter implies the injectivity of ζ_{ε} . In addition, since $|\mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta})| = 2$, (c_3) yields $\zeta_{-,\rho^*(D)+\varepsilon+\eta}$: $\mathcal{C}(M_{\rho^{**}}) \to \mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta})$ is bijective. Since $\rho^*(D) + \varepsilon$ $3\varepsilon + 3\eta > \rho^*$, it follows from $(c_1)-(c_3)$ that we have $\zeta_{+,\rho^*(D)+\varepsilon+\eta}$: $\mathcal{C}(M_{\rho^{**}}) \to \mathcal{C}(M_{\rho^*(D)+3\varepsilon+3\eta})$ is bijective. Using the composition property of top-CCRMS in (b_2) , we obtain that $\zeta_{+,-,\rho^*(D)+\varepsilon+\eta}$: $\mathcal{C}(M_{\rho^*(D)+3\varepsilon+3\eta}) \to \mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta})$ is bijective, and hence $|\mathcal{C}(M_{\rho^*(D)+3\varepsilon+3\eta})| = 2$. Let us now consider the following commutative diagram:

$$\begin{array}{c|c} \mathcal{C}(M_{\rho^*(D)+3\varepsilon+3\eta}) \xrightarrow{\zeta_{+,-,\rho^*(D)+\varepsilon+\eta}} \mathcal{C}(M_{\rho^*(D)+\varepsilon+\eta}) \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ \zeta_{3\varepsilon} \\ \mathcal{C}(\mathcal{M}_{\rho^*(D)+2\varepsilon+2\eta,\delta}) \xrightarrow{\zeta_f} \mathcal{C}(\mathcal{M}_{\rho^*(D),\delta}) \end{array}$$

where again, all occurring maps are the top-CCRMs between the respective sets. Now we have already shown that ζ_{ε} is injective and that $\zeta_{+,-,\rho^*(D)+\varepsilon+\eta}$ is bijective. Consequently, $\zeta_{3\varepsilon}$ is injective.

iii). Follows from Theorem 3.3 and $\rho^*(D) + 2\varepsilon + 2\eta \le \rho^{**} - 3\varepsilon - 3\eta$.

iv). Since $\rho^*(D) + 3\varepsilon + 3\eta > \rho^*(D) + \varepsilon + \eta > \rho^*$, by $(c_1)-(c_3)$, we see that the maps $\zeta_{-,\rho^{**}}$ and $\zeta_{+,\rho^{**}}$ are bijective. Therefore $\zeta_{+,-,\rho^*(D)+\varepsilon+\eta}$ is bijective and the diagram follows.