A Appendix: Remaining Proofs

In this section, we present the proofs of Theorems 3.1 and 3.4.

A.1 Proof of Theorem 3.1

In the following, we quote a version of Talagrand’s inequality due to Bousquet (2002) from Steinwart and Christmann (2008, Theorem 7.5) and a (slightly simplified) bound on the expected supremum of empirical processes indexed by Vapnik-Červonenkis (VC) classes of functions, from Giné and Guillou (2001, Proposition 2.1). Both will be used to prove Theorem 3.1.

Theorem A.1. Let (Z, P) be a probability space and \mathcal{G} be a set of measurable functions from Z to \mathbb{R}. Furthermore, let $B \geq 0$ and $\sigma \geq 0$ be constants such that $\mathbb{E}_P g = 0$, $\mathbb{E}_P g^2 \leq \sigma^2$, and $\|g\|_\infty \leq B$ for all $g \in \mathcal{G}$. For $n \geq 1$, define $G : Z^n \to \mathbb{R}$ by

$$G(z) := \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{j=1}^{n} g(z_j) \right|, \quad z = (z_1, \ldots, z_n) \in Z^n.$$

Then, for all $\tau > 0$, we have

$$P^n\left(\left\{ z \in Z^n : G(z) \geq 4\mathbb{E}_P G + \sqrt{\frac{2\tau\sigma^2}{n}} + \frac{\tau B}{n} \right\} \right) \leq e^{-\tau}.$$

Theorem A.2. Let (Z, P) be a probability space and \mathcal{G} be a set of measurable functions from Z to \mathbb{R}. Furthermore, let $B \geq 0$ and $0 \leq \sigma \leq B$ be constants such that $\mathbb{E}_P g^2 \leq \sigma^2$, and $\|g\|_\infty \leq B$ for all $g \in \mathcal{G}$. Suppose \mathcal{G} is a uniformly bounded VC-class, i.e., there exist positive numbers A and ν such that, for every probability measure P on Z and every $0 < \epsilon \leq B$, the covering numbers satisfy

$$\mathcal{N}(\mathcal{G}, L_2(P), \epsilon) \leq \left(\frac{AB}{\epsilon} \right)^\nu.$$

Then there exists a universal constant C such that G defined as in Theorem A.1 satisfies

$$\mathbb{E}_P G \leq C \left(\frac{\nu B}{n} \log \frac{AB}{\sigma} + \sqrt{\frac{\nu \sigma^2}{n} \log \frac{AB}{\sigma}} \right). \quad (15)$$

Given a measurable $g : \mathbb{R}^d \to \mathbb{R}$ and a $\delta > 0$ we define the function $g_\delta : \mathbb{R}^d \to \mathbb{R}$ by $g_\delta(x) := g(x/\delta)$, $x \in \mathbb{R}^d$. The following lemma, which establishes a stability of covering number bounds under this operation, will also be needed in the proof of Theorem 3.1.

Lemma A.3. Let \mathcal{G} be set of measurable functions $g : \mathbb{R}^d \to \mathbb{R}$ such that there exists a constant $B \geq 0$ with $\|g\|_\infty \leq B$ for all $g \in \mathcal{G}$. For $\delta > 0$, we write $\mathcal{G}_\delta := \{g_\delta : g \in \mathcal{G}\}$. Then, for all $\epsilon \in (0, B]$ and all $\delta > 0$, we have

$$\sup_P \mathcal{N}(\mathcal{G}, L_2(P), \epsilon) = \sup_P \mathcal{N}(\mathcal{G}_\delta, L_2(P), \epsilon),$$

where the suprema are taken over all probability measures P on \mathbb{R}^d.

Proof. We only prove “\leq”, the converse inequality can be shown analogously. Let us fix $\epsilon, \delta > 0$ and a distribution P on \mathbb{R}^d. We define a new distribution P' on \mathbb{R}^d by $P'(A) := \frac{1}{\delta} P(\frac{A}{\delta})$ for all measurable $A \subset \mathbb{R}^d$. Furthermore, let \mathcal{G}' be an ϵ-net of \mathcal{G}_δ with respect to $L_2(P')$. For $\mathcal{G}' := \mathcal{G}'_{1/\delta}$, we then have $|\mathcal{G}'| = |\mathcal{G}'|$, and hence it suffices to show that \mathcal{G}' is an ϵ-net of \mathcal{G} with respect to $L_2(P)$. To this end, we fix a $g \in \mathcal{G}$. Then $g_\delta \in \mathcal{G}_\delta$, and hence there exists an $h' \in \mathcal{G}'$ with $\|g_\delta - h\|_{L_2(P')} \leq \epsilon$. Moreover, we have $h := h_{1/\delta} \in \mathcal{G}'$, and since the definition of P' ensures $\mathbb{E}_{P} g_\delta = \mathbb{E}_{P'} h'$ for all measurable $f : \mathbb{R}^d \to [0, \infty)$, we obtain

$$\|g - h\|_{L_2(P)} = \|g_\delta - h\|_{L_2(P')} = \|g_\delta - h'\|_{L_2(P')} \leq \epsilon,$$

i.e. \mathcal{G}' is an ϵ-net of \mathcal{G} with respect to $L_2(P)$.

We further need the following result, which is a reformulation of van der Vaart and Wellner (1996, Theorem 2.6.4).

Theorem A.4. Let A be a set of subsets of Z that has finite VC-dimension V. Then the corresponding set of indicator functions $\mathcal{G} := \{1_A : A \in A\}$ is a uniformly bounded VC-class and the corresponding VC-characteristics A and ν only depend on V.

With these preparation we are now able to establish the following generalization of Theorem 3.1. Applying this generalization to K of the form (3) immediately proves Theorem 3.1.

Proposition A.5. Let P be a probability measure on \mathbb{R}^d with a bounded Lebesgue density h and K be a real-valued function on X such that $K \in L_\infty(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$. Suppose that

$$\mathcal{F} := \{ K(x - \cdot) : x \in X \}$$

is a uniformly bounded VC-class. Then, there exists a positive constant C only depending on K, h and VC-characteristics A and ν of \mathcal{F} such that, for all $n \geq 1$, $\delta > 0$, and $\tau > 0$ we have

$$P^n\left(\left\{ x \in X^n : \left\| \tilde{h}_{K, \epsilon, \tau} - h_{K, \epsilon, \tau} \right\|_\infty < \frac{C}{n^d} \log \frac{C}{\delta} \right. \right.$$

$$\left. + \frac{C}{n^d} \log \frac{C}{\delta} + \frac{C}{n^d} \log \frac{C}{\sqrt{n^d}} \right) \geq 1 - e^{-\tau}.$$
Proof. Let us assume without loss of generality that \(\|f\|_\infty \leq 1 \). We define \(k_{x,\delta} := \delta^{-d} K(x, y) \) and \(f_{x,\delta} := k_{x,\delta} - E P k_{x,\delta} \). Then it is easy to check that

\[
E P f_{x,\delta}^2 = 0 \quad \text{and} \quad \|f_{x,\delta}\|_\infty \leq 2\delta^{-d} \quad \forall x \in X \quad \text{and} \quad \delta > 0.
\]

Moreover, we have

\[
E P f_{x,\delta}^2 \leq \delta^{-d} \|K\|_2^2 \int K^2(\frac{x - y}{\delta}) \, dy \leq \delta^{-d} \|h\|_\infty \|K\|_2^2
\]

for all \(x \in X \) and \(\delta > 0 \), where the norm \(\|K\|_2 \) is with respect to the Lebesgue measure on \(\mathbb{R}^d \). In addition, we have

\[
\frac{1}{n} \sum_{i=1}^{n} f_{x,\delta}(x_i) = \bar{h}_{D,\delta}(x) - \bar{h}_{P,\delta}(x),
\]

where \(\bar{h}_{P,\delta} \) and \(\bar{h}_{D,\delta} \) are defined in (1) and (2) respectively. Applying Theorem A.1 to \(\mathcal{G} := \{f_{x,\delta} : x \in \mathbb{R}^d\} \), we hence obtain, for all \(\delta > 0 \), \(\tau > 0 \), and \(n \geq 1 \), that

\[
\|\bar{h}_{D,\delta} - \bar{h}_{P,\delta}\|_\infty < 4E P^n \|h_{D,\delta} - h_{P,\delta}\|_\infty + \frac{2\sqrt{2\tau}}{n^d\delta} \leq 2\sqrt{\frac{2\tau}{n^d\delta}} + \frac{2\sqrt{2\tau}}{n^d\delta} \tag{16}
\]

holds with probability \(P^n \) not smaller than \(1 - e^{-\tau} \). It thus remains to bound the term \(E P^n \|h_{D,\delta} - h_{P,\delta}\|_\infty \).

Note that since \(\mathcal{F} \) is a uniformly bounded VC-class, so is \(\mathcal{F} := \{f_{x,\delta} : f \in \mathcal{F}, \alpha \in [-1, 1]\} \); i.e. there exist positive numbers \(A \) and \(\nu \) such that

\[
\sup_{P} \mathcal{N}(\mathcal{F}, L_2(P), \epsilon) \leq \left(\frac{2A}{\nu} \right)^\nu
\]

for all \(0 < \epsilon < 2 \). For \(\delta > 0 \), we further have \(\delta^d \mathcal{G} \subset \mathcal{F}_\delta \), and hence Lemma A.3 implies

\[
\mathcal{N}(\delta^d \mathcal{G}, L_2(P), \epsilon) \leq \mathcal{N}(\mathcal{F}_\delta, L_2(P), \epsilon) \leq \left(\frac{2A}{\nu} \right)^\nu
\]

for all probability measures \(P \) on \(\mathbb{R}^d \) and all \(0 < \epsilon < 2 \).

Now, our very first estimates show that every \(g \in \mathcal{G} := \delta^d \mathcal{G} \) satisfies \(\|g\|_\infty \leq 2 \) and \(E P g^2 \leq \delta^d \|h\|_\infty \|K\|_2^2 \), and hence Theorem A.2 yields

\[
E P^n \sup_{g \in \mathcal{G}} \left\{ \frac{1}{n} \sum_{j=1}^{n} g(X_j) \right\} \leq C \left(\frac{2\nu}{n} \log \frac{2A}{\sqrt{\delta^d \|h\|_\infty \|K\|_2^2}} \right) \quad \text{and} \quad \left(\frac{2\nu}{n} \log \frac{2A}{\sqrt{\delta^d \|h\|_\infty \|K\|_2^2}} \right)
\]

Multiplying both sides by \(\delta^{-d} \), we obtain

\[
E P^n \|h_{D,\delta} - h_{P,\delta}\|_\infty \leq C \left(\frac{2\nu}{n\delta^d} \log \frac{2A}{\sqrt{\delta^d \|h\|_\infty \|K\|_2^2}} \right)
\]

which, when used in (16), yields the result.

\[\square\]
the stopping criterion of Algorithm 1 is satisfied, that is, $\rho^*(D) \leq \rho^* + \varepsilon^* + \eta^* + 2\varepsilon + 2\eta$.

ii). Theorem 3.3 shows that in its last loop Algorithm 1 identifies exactly the topologically connected components of $M_{\rho^*(D),\delta}$ that belong to the set $\zeta_\varepsilon(C(M_{\rho^*(D)+\varepsilon+\eta}))$, where $\zeta_\varepsilon : C(M_{\rho^*(D)+\varepsilon+\eta}) \to C(M_{\rho^*(D),\delta})$ is the top-CCRM. Moreover, since Algorithm 1 stops at $\rho^*(D)$, we have $|\zeta_\varepsilon(C(M_{\rho^*(D)+\varepsilon+\eta}))| \neq 1$ and thus $|C(M_{\rho^*(D)+\varepsilon+\eta})| \neq 1$. From $\rho^*(D) + \varepsilon + \eta \leq \rho^{**}$ and (c_1) we thus conclude that $|C(M_{\rho^*(D)+\varepsilon+\eta})| = 2$. For later purposes, note that the latter implies the injectivity of ζ_ε. In addition, since $|C(M_{\rho^*(D)+\varepsilon+\eta})| = 2$, (c_3) yields $\zeta_{+,\rho^*(D)+\varepsilon+\eta} : C(M_{\rho^*}) \to C(M_{\rho^*(D)+\varepsilon+\eta})$ is bijective. Since $\rho^*(D) + 3\varepsilon + 3\eta > \rho^*$, it follows from (c_1)–(c_3) that we have $\zeta_{+,\rho^*(D)+\varepsilon+\eta} : C(M_{\rho^*}) \to C(M_{\rho^*(D)+3\varepsilon+3\eta})$ is bijective. Using the composition property of top-CCRMs in (b_2), we obtain that $\zeta_{+,\rho^*(D)+\varepsilon+\eta} : C(M_{\rho^*(D)+3\varepsilon+3\eta}) \to C(M_{\rho^*(D)+\varepsilon+\eta})$ is bijective, and hence $|C(M_{\rho^*(D)+3\varepsilon+3\eta})| = 2$. Let us now consider the following commutative diagram:

\[
\begin{array}{ccc}
C(M_{\rho^*(D)+3\varepsilon+3\eta}) & \xrightarrow{\zeta_{+,\rho^*(D)+\varepsilon+\eta}} & C(M_{\rho^*(D)+\varepsilon+\eta}) \\
\zeta_\varepsilon \downarrow & & \downarrow \zeta_\varepsilon \\
C(M_{\rho^*(D)+2\varepsilon+2\eta,\delta}) & \xrightarrow{\zeta_f} & C(M_{\rho^*(D),\delta})
\end{array}
\]

where again, all occurring maps are the top-CCRMs between the respective sets. Now we have already shown that ζ_ε is injective and that $\zeta_{+,\rho^*(D)+\varepsilon+\eta}$ is bijective. Consequently, ζ_ε is injective.

iii). Follows from Theorem 3.3 and $\rho^*(D) + 2\varepsilon + 2\eta \leq \rho^{**} - 3\varepsilon - 3\eta$.

iv). Since $\rho^*(D) + 3\varepsilon + 3\eta > \rho^*(D) + \varepsilon + \eta > \rho^*$, by (c_1)–(c_3), we see that the maps ζ_{-,ρ^*} and ζ_{+,ρ^*} are bijective. Therefore $\zeta_{+,\rho^*(D)+\varepsilon+\eta}$ is bijective and the diagram follows. \[\square\]