Flexible Martingale Priors for Deep Hierarchies

A Converse to Doob’s Theorem

Theorem 2.3. Consider any completely exchangeable
model where the data lie in a Polish space X. Then
there exists latent parameters 6, € O, a function f :
© — [0,1)N, and distributions G and H such that 0, |

91’(“) ~ G(GU)7 ]E[f(gv) ‘ ep(q))} = f(op(v)), and X |
[0(X), 0, ) Yoo ~ H ( Tim f(6,x)))

Recall that a Polish space is a completely metrizable
separable space.

Proof of Theorem 2.3. Our strategy will be to find
a countable collection of bounded statistics that
uniquely determine any probability distribution over
X, then augment the original latent variables at each
node v with this collection. We will then show that
these statistics form a martingale, and that their limit
determines the conditional distribution of X given the
latent parameters on its path.

First, we show that there exist a countable collection
C of measurable subsets S of X such that knowing
P,[X € S] for all S € C completely determines any
probability distribution p over X. Indeed, if X is Pol-
ish then the space D of probability measures on X is
also Polish in the topology generated by sets of the
form Usqp == {p | @« < Pp[X € S] < b}. In particu-
lar, since D is a separable metric space, it is second-
countable. Let B be any countable base, and note
that every member Uy of B is second countable and
hence Lindelof, so that we can find a countable col-
lection of the Ug 4 that exactly covers Uy. Unioning
over all the Uy in B gives us a countable basis B’ con-
sisting of sets of the form Ug 4. We then claim that
C:={S5|Usqp € B'} is the desired collection of mea-
surable sets. Indeed, suppose that p and q are two dis-
tributions in ID. Since D is Hausdorff, there exists some
Us,ab € B' such that p € Ug o and g & Us,qp, which
in particular implies that P,[X € S| # P,[X € S].
Taking the converse, if Pp[X € S] = Py[X € 5] for all
S € C, then p = ¢, and hence knowing P,[X € 5] for
all S € C completely determines p.

Now let ¢, be equal to the countable tuple (P[X € S |
X € Subtree(v)])sec, and let ¢, be the original latent
parameter at v in 7. By the Markov property, v, de-
termines ¢,,, so if we let 8, = (¢y, 1, ), then 6, is statis-
tically equivalent to the original latent parameter 1),,.
Since by assumption there exists a fixed conditional
distribution Gg for 1, | ¥y (., there also exists a fixed
conditional distribution G for 6, | 6,(,). On the other
hand, if we let f(6,) = ¢, then f is clearly bounded
(since all its coordinates are probabilities and thus lie
n [0,1]), and is a martingale since E[P[X € S | X €
Subtree(v)] | 6 =P[X € S| X € Subtree(p(v))].

p(v) }

Finally, let H(6,) be the unique distribution de-
fined by ¢,. To finish the proof, we need to show

that H ( li_>m 0y, (x)) is the distribution of X |
n (o)

{wn(X), %y, (x)}n0- In other words, we need to
show that P[X € S | {vn(X), %, (x)}] is equal to
li_>m PIX € S | vy (X),0,,(x)] for all S € C. This fol-
lows directly from Levy’s zero-one law, which states
that if F, is the minimal o-algebra generated by
a filtration Fp, Fi,... of a probability space, then
klim E[Z | Fy] = E[Z | Fx] almost surely for any ran-
—00

dom variable Z (in our case Z is the indicator for the
event that X € S). So the 6, are indeed the desired
set of latent variables, and the proof is complete. [

B Statistics of Beta and Gamma
Functions

Lemma B.1. Let d, ~
Gamma(f,, 1), ant1 = a, +dy, and Byt
Then E [ St ] =

Ant+1+Pnt1

Gamma(ay,, 1), e, ~
= Bn +en.

(6273
an+Bn "

Proof. We first note that if d and e are independent
and distributed as Gamma(a, 1) and Gamma(s,1),
then the conditional distribution of d given that d+e =
sis equal to s Beta(a, ) (the proof is a straightforward
calculation of probability densities). Then we have
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Qi

an + Bn

=E; -Edn [ | dp ~ SBeta(anvﬁn):H
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Lemma B.2. If X ~ Beta(a,3), then E[log(X)] =
Y(a) — (o + B), where 1 is the digamma function
defined by ¥(x) = % log Gamma(x).

Proof. Let F(a) = [ (fo a1 I)B_llog(m)da:) da.
dF

Then by the fundamental theorem of calculus, - =
fol 22711 — )%~ log(z)dz = Beta(a

, B)E[log(X)].
We claim that F'(a) = Beta(a, 8). Indeed, we have
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Fla)= /a /01 24711 — 2)PLlog(z)drda

o0
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:/ (1—35)’8_1/ 2% og(x)dadx
0

oo

:/O (1—:5)5_1 (x&_lﬁo) dx
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= Beta(a, 8)

Then it follows that

% Beta(a, )

E[log(X)] = Beta(a, f)

= % log Beta(a, )

= % (log Gamma(a) — log Gamma(a + )

= ¥(a) = ¢(a+b),

which proves the lemma. O

C Properties of Hierarchical Beta
Processes

In this section, we prove Lemma 4.1, and make some
additional calculations regarding the hierarchical beta
process model that will be useful for inference. We
deal with inference itself in the next section. We let X
denote a data point, X; denote the [th coordinate of
X, and 6,, denote the parameter at the node at depth
n in the path corresponding to X. We also let 6,
denote the Ith coordinate of 6,,.

Lemma 4.1. The marginal distribution of X | (X €

Subtree(v), 0,.)) is equal to Bernoulli(),(,). Further-

more, X | (X € Subtree(v), 8, ,)) is independent of Y’
for any Y ¢& Subtree(v).

Proof of Lemma 4.1. Since X; € {0,1}, we have
PIX; = 1] Opw)) = E[X; | Op()], hence X; | O, ~
Bernoulli(E[Xl | Hp(v)]) But

E[X, | Op0)] = E [Bernouui (nlgrolo am(X)) | ap(v)}

= Bernoulli (E [ li_>m 01 (X) | ‘gp(v)D
n o0
= Bernoulli(6,(),1),

where the last step uses the martingale property.3
This proves that X | (X € Subtree(v),0,.)) is

3In fact, we need something stronger, since the expec-

Bernoulli(6,,(,))-distributed. The conditional indepen-
dence property then follows from the fact that the joint
distribution satisfies the Markov property for the tree
T. O

Our next lemma is useful for determining the proba-
bility that a new datum Y would be generated given
that it lies in the subtree corresponding to an existing
datum X.

Lemma C.1. For any depth n > 0, and any m > n,
we have

E[6n | 6, X] =
(le)m_n O X, =0
1= ()" -0 Xi=1

Furthermore, if Y is another datum and the least com-
mon ancestor of X andY is at a depth d > n, then

PlY; =1 6,,X] =
d—n

(z5)  On X, =0
d—n

17(;1) 1—6,1) : X;=1

Proof of Lemma C.1. By Lemma 4.1, P[X; =1 6;] =
0;, for any i. Then, by the conjugacy of the Beta
distribution, 6,41, | 6;, X ~ Beta(ct;; +1 — X;,c(1 —
;1) + X;). It follows that

Efit1,

0;, X] =

(z51) 00
1= () (1= 00)

X, =0
X, =1

Iteratively applying this relation yields the first part of
the lemma. The second part of the lemma then follows
by applying Lemma 4.1 to see that

PY,=1|6,,X] = E[PY;=1]04:]|6n,X]
= E[fa; | 0n,X]
and then applying the first part of the lemma. O

Lemma C.2. Asin Lemma C.1, let d be the depth of
the least common ancestor of X and Y. Then, for any

tation of a limit does not necessarily equal the limit of the
expectation, as can be seen in Example 2 of Section 2.3.
However, if the random variables involved are uniformly
integrable, then a stronger version of Theorem 2.1 implies
that the limit of the expectation is indeed equal to the ex-
pectation of the limit. Since the 6,,; are bounded, they are
uniformly integrable.
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n < d, we have the following relations:

0n+1,l | (enaXl 7£ YE) ~

Beta(ct,,; +1,¢(1 —0,,) + 1)
Ont1, | (GnaXl =Y =0)~
Beta(cf,; + 2,¢(1 — 0,
o +w2 (cOn, ( 1)
Beta(cl 1,¢(1 -6 1
+ w1+w2 eta(chn, + 1, ¢( i) +1)
9n+1,l | (enaXl =Y = 1) ~
w3
Beta(cl, ;,c(1 — 0, 2
w3+W4 eta(clp 1, ¢ 1) +2)
+ Beta(ctp, +1,¢(1 —60p) + 1),
w3 —|—w4 ( : a 2 )
where
w1 = C(]. — en’l) + 1
c d—n—1
= b |1—
w2 nl < <c+ 1> >
w3 = Cen,l + 1
d—n—1
wi = =0, (1- (=5
4 ™ c+1 '

Proof of Lemma C.2. We will prove the assertion
when X; = 0, since the argument when X; = 1 is
identical. For brevity, we will drop the subscript of [

d—n—1
on @, X, and Y. Also, we let r := ( < ) . Then

c+1
by Bayes’ rule, we have:
p(9n+1 | 9717X = O7Y = 1)
xp(Y =1]60p41,X =0)p(X =0 0p11)p(0nt1 | 0n)
X 70p+1 X (1 — 0,11) X Beta(bp41;cn, c(1 —6,))
o Beta(0,,;cl, + 1,¢(1 —6,) + 1).
Here we applied Lemma C.1 to compute p(Y = 1 |

0n+1,X = 0), and we applied Lemma 4.1 to compute
p(X =0/]0n1).

We now turn to the case when Y = 0. Then, using
Lemmas 4.1 and C.1 in the same way, we have

p(Ons1] 65, X =0,Y =0)
xp(Y =0[0p41, X =0)p(X
X [1=rOnq1] X (1= 0pt1)

x Beta(0,41; ¢, c(1 —6,))
x [1 = 76,41]

x Beta(0n11; cOpn,c(1 —0,) + 1)
o [(1 = Ont1) + (1= 7) Opp1]

x Beta(fp11; cOn, c(1 —0,) + 1)
x (e(1 —6,) + 1) Beta(fp11; ¢y, c(1 — 6,) + 2)

+ cb, (1 —7)Beta(fp41;¢0n + 1,¢(1 —0,) + 1),

=01 0n41)p(Ons1 | 0n)

where the extra terms in the last expression come from
the fact that Beta(-; cf,, c(1—0,)+2) and Beta(-; ¢, +
1,¢(1—6,,)+1) have different normalization constants.

O

D Inference for Hierarchical Beta
Processes

Adding a Data Point

When we add a data point Y, there are two cases to
consider. First, we can add Y as a new child of an
internal node v (this happens if the CRP at that node
creates a new table), or we can add Y to the subtree
represented by a leaf w containing a datum X. Let
Z1(Y,v) denote the probability that a new node of T’
is generated as a child of v and creates the datum Y,
and let Z5(Y, w, k) denote the probability that a datum
first branches from the path of X k levels below w, and
that the resulting datum is Y.

Let the path to v be given by wvg,v1,...,v, with
v, = v, and let Size(u) denotes the number of data
in Subtree(u). Also let 6 denote the parameter at v.
Then we can calculate Z1 (Y, v) as the probability that
a datum follows the path to v, times the probability
that a child of v would be equal to Y.

Z1(Y,v) =

—1
vy Size( le Heyl o) vi
v+ Size(v) Slze (vi) +

Calculating Z5(Y,v,d) is a bit trickier. Let us adopt
notation similar to before, except with 6 denoting the
parameter at p(w) and wo, ..., w, denoting the path
to w. We can compute the probability that the path
of a datum goes through w in the same way as before.
Then we can use Lemma C.1 to compute the proba-
bility of Y given that X and Y first split into unique
subtrees at exactly k levels deeper than w. Letting

k
r= (ﬁ) , the joint probability is given by

Zo(Y,w, k) =

1 = Size(w;11) 1\~
v + Size(w) - Size(w;) + 1+v) 144

< [ rogtp—re) "
1:X;=0

< J[ n-ra-e)"ra—-o).
1:X;=1

The function Zs(Y,w, k) is a product of log-concave
factors in k, and is therefore itself log-concave. We
can thus find a rejection sampler with a constant ac-
ceptance rate of at least 0.25 (Leydold, 2003), and
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Figure 4: Illustration of how the tree is represented
and modified by the inference algorithm. Top: X is
a datum and thus corresponds to one of the leaves in
the tree 7’. In the original tree 7, X corresponds
to the infinite path represented by the dashed nodes.
However, since no other data lie in that subtree, we
ignore all of the dashed nodes when moving from 7T
to 7'. Bottom: now a new datum Y is added to the
same subtree as X. The paths of X and Y first diverge
three levels below the old position of X. As a conse-
quence, three new internal nodes needed to be created,
and then X and Y are placed as the two children of
the deepest of these nodes. If Y were to be removed
from the tree, then these extra nodes would need to
be removed and X would return to its old position.

compute the normalization constant Zg(Y, w) of the
enveloping function.

Now, to perform incremental Gibbs sampling, we add
a data point to an internal node with probability pro-
portional to Z1 (Y, v), and we attempt to expand an ex-
ternal node with probability proportional to Zy(Y,w).
In the case that we try to expand an external node, we
perform rejection sampling to determine what depth
the two data points should branch at. If the sampler
rejects, then we reject the Gibbs proposal, otherwise
we insert the new data point at the given depth. We
then need to sample all of the parameters at all of
the newly created internal nodes, which can be done
starting at the top and working iteratively towards the
bottom using Lemma C.2.

Resampling Parameters

Resampling an internal parameter is straightforward
in theory, since the conditional distribution over a pa-
rameter given its parent and children is log-concave
(it is proportional to the product of several beta and
Bernoulli densities). However, as noted before, there
exist numerical issues when parameters are too close to
either 0 or 1. We deal with this problem by assuming
that we cannot distinguish between numbers that are
less than some distance € from 0 or 1. If we see such a
number, we treat it as having a censored value (so it
appears for instance as P[f < €] in the likelihood). A
straightforward calculation shows that

By < €| O] & o
vl <€ (v),1] = )
: Op(v).1
and similarly
RICENEE

]P)[gv’l >1—¢ | ep(v)J] I~ m
p(v),

With this strategy for dealing with the numerical is-
sues, we now turn to the actual sampling algorithm.

The 6,; can be dealt with independently for different
values of [, so we will restrict our attention to a fixed
value of [. Suppose that 6 is the parameter we want
to sample, 0y is the value of its parent, 64,...,0,, are
the values of its children that are internal nodes, and

X1,...,X, are the values of its children that are ex-
ternal nodes. Let a =%, X;and b=>""_ 1 - X;.

Then, letting Beta(«, 8) denote the normalization con-
stant of a beta distribution, the likelihood for 6 is given
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by

p(0 | 6o, {0: 121, {X;}]_1) o
9c90+a—1 (1 _ 0)0(1—90)+b—1

?9*1 _ p.e(1-6)—1

« H 91B (1 ; 91)1 ;

ie<0;<1—¢ eta(cf), c(1 - 0))

650

X H -

7:0;<e
y 6c(179)

i:0;>1—e€ C(l o 9)

One can check that this function is either (i) log-
concave, (ii) has infinite density at 6 = 0, or (iii) has
infinite density at # = 1. In the first case, we can sam-
ple from it efficiently (Leydold, 2003). In the second
case, 0 is very likely to be less than €; since our sampler
treats all numbers in the interval [0, €) equivalently, we
can arbitrarily set 6 to 0. Similarly, in the third case,
we can set 6 to 1.

As a final note, we note that while this correction
avoids the numerical issues of the sampler in (Thibaux,
2008), there is no longer any guarantee that the sam-
pler converges to the true posterior distribution. While
it might be somewhat desirable to obtain a character-
ization of the stationary distribution of this sampler,
the real moral of the above is probably that the hierar-
chical beta process as it is currently formulated is not
suitable for deep hierarchies. An interesting direction
of future work would be to reformulate the HBP such
that it is well-behaved even for infinitely deep hierar-
chies.



