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Abstract

Can we learn a sparse graph from observ-
ing the value of a few random cuts? This
and more general problems can be reduced
to the challenge of learning set functions
known to have sparse Fourier support con-
tained in some collection P. We prove that
if we choose O(k log4 |P|) sets uniformly at
random, then with high probability, observing
any k-sparse function on those sets is suffi-
cient to recover that function exactly. We
further show that other properties, such as
symmetry or submodularity imply structure
in the Fourier spectrum, which can be ex-
ploited to further reduce sample complexity.
One interesting special case is that it suffices
to observe O(|E| log4 (|V |)) values of a cut
function to recover a graph. We demonstrate
the effectiveness of our results on two real-
world reconstruction problems: graph sketch-
ing and obtaining fast approximate surrogates
to expensive submodular objective functions.

1 Introduction

Suppose we wish to sketch the evolution of a massive
network: We are given a sequence of networks, where
between each step, only few edges get added or removed.
Can we compute a small number of statistics, which al-
low, in hindsight, to reconstruct which edges got added
or removed, without storing the entire network? In this
paper, we show that this is possible, by observing and
storing a small number of random cuts and their values.

Formally, we consider the problem of learning a set
function f (mapping subsets of some finite set V of
size n to the real numbers) by observing its value on a
few sets. Without observing any structure, we clearly
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need an exponential (in |V |) number of observations to
approximate the function well over all sets, so we need
an appropriate regularity condition. In this paper, we
consider the situation where f is smooth in the sense of
having a decaying Fourier (Hadamard-Walsh) spectrum.
One natural example of this is the cut function of
a (possibly directed) graph, or generalized additively
independent (GAI) functions (Fishburn, 1967), that
decompose into a sum of local terms.

By leveraging recent results from sparse recovery (Ver-
shynin, 2010), we show that if the function is sparse
in the Fourier domain, having at most k nonzero coef-
ficients, and support contained in a known collection
P of size p, then it is possible to efficiently recover
the function exactly from very few samples. In partic-
ular, suppose we pick O(k log4 (p)) sets uniformly at
random. Then with very high probability (over this
random choice), observing the values of the function
on these sets is sufficient to exactly reconstruct it.

Besides decaying Fourier spectrum, many set functions
encountered in practice satisfy additional properties.
In particular, we consider submodular functions, which
form a natural discrete analogue of convex functions
(Lovasz, 1983). Submodularity is satisfied by numerous
set functions encountered in practice, such as the cut
function in graphs (Schrijver, 2004), entropy (Kelmans
& Kimelfeld, 1980), mutual information (Krause, Singh,
& Guestrin, 2008) etc. The problem of learning sub-
modular functions has received considerable attention
recently (Goemans, Harvey, Iwata, & Mirrokni, 2009;
Balcan & Harvey, 2011). However, approximating a
submodular function by a factor better than

√
n/ log n

uniformly over all sets requires an exponential number
of function evaluations, even if those can be adaptively
chosen (Goemans et al., 2009). We show that submod-
ularity implies certain structure in the Fourier domain,
which can be exploited to reduce the number of required
samples even further.

Besides allowing to sketch the evolution of large graphs
by observing the value of a few random cuts, as men-
tioned above, our results show that practically relevant
set functions, such as certain valuation functions, a
fundamental concept in economics capturing substi-
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tutability of certain products, can be efficiently learned
from few examples. Another natural application is in
speeding up submodular optimization: Standard algo-
rithms assume that the function f is presented by an
oracle, which evaluates f on any set. In general, evalu-
ating f can be very costly (requiring the solution of a
large linear system, or perform large-scale simulations).
In such a setting, if f is Fourier-sparse, we can approxi-
mate it compactly using a small number of random sets,
and then optimize the compact representation instead.

In summary, our main contributions are:

• We show that it is possible to learn Fourier k-
sparse set functions exactly using O(k log4 (p))
random samples. This reconstruction is robust
to noise.

• We show that properties such as symmetry and
submodularity of f imply structure in the Fourier
domain, which can be exploited to obtain further
reduction in sample complexity.

• We demonstrate our algorithm on a problem of
sketching the evolution of a graph, and on approx-
imate submodular optimization.

2 Background

Throughout this paper, we refer to a finite ground set
V of cardinality n. We will use the letters A,B,C
for subsets of V , and the letters s, t for elements of
V . Also we use the shorthand A + s := A ∪ {s} and
s+ t := {s, t}.
We consider real-valued set functions, i.e., functions
mapping subsets of V to the reals, f : 2V → R. Let H
be the space of all such functions, with corresponding
inner product: 〈f, g〉 := 2−n

∑
A∈2V f(A)g(A). Sup-

pose we are given the value of f on a number of m
subsets A1, . . . , Am ⊆ V . For now, let us assume these
observations are noise free – we will relax this condition
later. Under what conditions can we hope to recover
f ∈ H? Clearly, without any assumptions about f , we
need an exponential number (in n) of samples in order
to obtain exact reconstruction. However, if f is smooth
in some way, we may hope to do better. Similar as for
continuous functions, a natural smoothness condition
is decaying Fourier spectrum.

The Fourier transform on set functions. Set
functions can equivalently be represented as real-valued
functions of boolean vectors, known as pseudoboolean
functions. Just as the set of boolean vectors {0, 1}n
forms the commutative group Zn

2 under addition mod-
ulo 2, the power set 2V forms an equivalent group under
the operation of symmetric set difference: A 	 B :=

(A \B)∪ (B \A). So the space H has a natural Fourier
(also called Hadamard-Walsh) basis, and in our set func-
tion notation the corresponding Fourier basis vectors
are:

ψB(A) := (−1)|A∩B|.

We denote the Fourier transform:

f̂(B) := 〈f, ψB〉 = 2−n
∑

A∈2V
f(A)(−1)|A∩B|.

Note that the sum in this definition has exponentially
many terms, so it is not practical to evaluate directly.
As with any orthonormal basis, we have a reconstruc-
tion formula: f(A) =

∑
B∈2V f̂(B)ψB(A).

The Fourier support of a set function is the collection
of subsets with nonzero Fourier coefficient: Supp[f̂ ] :=

{B ∈ 2V : f̂(B) 6= 0}. Given a collection of subsets

P ⊆ 2V , let HP := {f ∈ H : Supp[f̂ ] ⊆ P} be the
subspace with Fourier support contained in P. We
assume we have some a priori knowledge about the
Fourier support which gives a natural choice for P . We
discuss this in further detail in Section 4, but for now
assume P is some known collection of polynomial size.
One illustrative example is the collection of sets of size d
or less: Pd := {B ⊆ V : |B| ≤ d}. As it is particularly
important, we denote this function space, consisting of
all functions of order d or less, by the symbol Hd. The
number of free parameters is p =

∑d
l=0

(
n
l

)
, which is

not too large when d = 2.

Now with P fixed, suppose we restrict ourselves to
f ∈ HP . Can we recover f with a subexponential
number of samples? In the next section, we show that if
the Fourier support is small, then this is indeed possible,
by leveraging recent results from sparse reconstruction.

3 Conditions for Recovery

Since a set function is uniquely determined by its
Fourier transform, recovering a Fourier-sparse func-
tion can be thought of as recovery of a sparse vector in
R2n . For large n, even representing such vectors will
be intractable. However, if we know that the Fourier
support of a function is contained in P, then instead
we treat f̂ as a sparse vector in Rp. We will show that
it is possible to uniquely recover any f ∈ HP with
|Supp[f̂ ]| ≤ k by observing the values fM (with high
probability over the choice of measurement sets M),
provided that

m = O(k log4(p)).

Matrix vector notation. In the problems that we
consider, we observe the function f evaluated on sets
from a measurement collection M = {Ai} of size m.
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We arrange these measurements in a vector fM ∈ Rm,
where fM[i] := f(Ai) for i = 1 . . .m. Note the bold
typeface used to distinguish vectors from set functions.
Furthermore, we will assume that the Fourier support
is contained in a known potential support collection
P = {Bj} of size p. We denote f̂P ∈ Rp for the
the corresponding vector of Fourier coefficients, where
f̂P [j] := f̂(Bj) for j = 1 . . . p. Lastly, we denote ΨM,P
for the m× p matrix which relates the two vectors,

ΨM,P [i, j] := ψBj
(Ai) = (−1)|Ai∩Bj |. (3.1)

Then for f ∈ HP we have:

fM = ΨM,P f̂P . (3.2)

So recovery of f is equivalent to recovery of a sparse
vector from linear measurements.

Restricted Isometry. The problem of finding a k-
sparse vector from an underdetermined linear system
has received significant attention in the context of
compressive sensing (Candes, Romberg, & Tao, 2006;
Donoho, 2006). A sufficient condition for recovery
is that the sensing matrix satisfies a key property,
the Restricted Isometry Property (RIP). In order to
ensure that our measurement matrix ΨM,P satisfies
this property, we simply choose the measurement sets
M = {A1, . . . , Am} uniformly at random. Then, as
we will see below, results in random matrix theory
imply that with high probability (for any fixed P), the
measurement matrix indeed satisfies RIP. This insight
opens up a vast collection of tools from compressive
sensing for the purpose of recovering set functions.

Define the kth restricted isometry constant δk for a
matrix Φ as:

δk(Φ) := min{δ : ∀x,Supp[x] ≤ k
(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2} (3.3)

So if δk(Φ) is small, then Φ acts approximately as an
isometry on k-sparse vectors. An easy consequence
of this definition is that the linear measurement vec-
tor y = Φx0 uniquely determines any k-sparse x0 iff
δ2k < 1. Furthermore, with a stronger assumption
on the isometry constants, the original vector can be
recovered by solving a convex optimization problem:

min
x∈Rp

‖x‖1, Φx = y (3.4)

Originally, Candes and Tao (2005) showed that Equa-
tion 3.4 recovers any k-sparse x0 if δ3k + 3δ4k < 2,
but this condition has been weakened several times,
most recently by Foucart (2010), who gives the con-
dition δ2k (Φ) < 3/(4 +

√
6) ≈ .465. Furthermore, as

discussed below, this result can be generalized to noisy
measurements.

Main Reconstruction Result As discussed above,
RIP is a very powerful property, but it is not easy
to check that any given matrix satisifies it. In fact,
most constructions are based on choosing measure-
ments with randomness and then calculating the like-
lihood of RIP. Perhaps the simplest such case is for
random matrices with independent subgaussian entries.
However, in our case, we are randomly sampling rows
from an orthonormal matrix with bounded entries. For-
tunately, as shown by Rudelson and Vershynin (2008)
and Vershynin (2010), even in this setting, as long
as m = O(k log4(p)), the expectation of the kth RIP
constant is small. More recently, Rauhut (2010) demon-
strated that RIP for such matrices holds with high prob-
ability. Our result below is essentially Theorem 4.4 of
Rauhut (2010) as applied to our case of set functions.

Theorem 1 For a fixed collection P = {Bj}pj=1 ⊂ 2V ,
suppose a measurement collection M = {Ai}mi=1 ⊂
2V is chosen by selecting the sets Ai uniformly at
random. Define the matrix ΨM,P ∈ Rm×p as
in Equation 3.1. Then there exist universal con-
stants C1, C2 > 0 such that if k ≤ p/2, and m ≥
max(C1k log4(p), C2k log(1/δ)), except for an event of
probability no more than δ, the following holds for all
f ∈ HP :

For any noise level η ≥ 0 and any noisy vector
of measurements y ∈ Rm within that noise level:
‖y − fM‖2 ≤ η, suppose g ∈ HP has Fourier
transform vector ĝP ∈ Rp given by :

ĝP = arg min
x∈Rp

‖x‖1, ‖y −ΨM,Px‖2 ≤ η. (3.5)

Then the following bound holds for some universal con-
stants C3, C4:

‖f − g‖2 ≤
C3√
k
µk(f̂) +

C4√
m
η, (3.6)

where the quantity µk(·) is defined as the `1 error of
the best k-sparse approximation.

µk(x) := min
Supp(z)≤k

‖x− z‖1 (3.7)

In particular, if f̂P is k-sparse and η = 0, then g = f .

Therefore, we obtain a strong guarantee for efficiently
(using convex optimization) learning Fourier-sparse set
functions, robust against measurement noise. Note
that, up to log factors, this matches lower bounds of
Choi, Jung, and Kim (2011), who show that Ω(k log n)
measurements are necessary for recovery of a k sparse
function in Hd with d fixed.

4 Classes of Set Functions

In general p is superlinear in n, so even though Eq. 3.4
is equivalent to a Linear Program, it will not necessarily
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lead to an efficient recovery algorithm. In the extreme
case, if P = 2V , then even calculating a single matrix-
vector product ΨT

M,Py is difficult. So even though the
recovery guarantees of Theorem 1 apply to arbitrary
collections P, we need to make some further assump-
tions about our function to get a practical algorithm
for recovery.

Symmetric functions. One natural structural
property, obeyed by set functions commonly arising in
practice, is symmetry. That is, for all sets A it holds
that f(A) = f(V \A). Examples of functions satisfying
this property are the cut function in undirected graphs,
as well as the mutual information, both considered
in our experiments (Section 6). It turns out that
symmetry already implies interesting structure in the
Fourier domain:

Proposition 2 Let f be a symmetric set function.
Then for all sets B of odd cardinality, it holds that
f̂(B) = 0.

Therefore, symmetry already implies that we can
restrict P only to sets of odd cardinality.

Low order functions. Let Hd := {f ∈ H : ∀|B| >
d, f̂(B) = 0} be the subspace of dth order functions,
so called because when written as pseudoboolean func-
tions, they are order d polynomials. Equivalently, these
are functions that can be decomposed as a sum of func-
tions each of which depend on at most d elements:
f =

∑
|Bi|≤d gi(A ∩Bi).

Many set functions f are low-order, or well-
approximated by a low-order function. Recovery of an
order 1 function is equivalent to classical compressed
sensing with a Bernoulli measurement matrix1. Recov-
ery of a symmetric order 2 function can be thought
of recovering a graph from values of a cut function, a
problem which received considerable interest, partly
due to several problems arising in computational bi-
ology (Alon, Beigel, Kasif, Rudich, & Sudakov, 2004;
Grebinski & Kucherov, 2000; Choi & Kim, 2010). We
can see the correspondance as follows: given a weighted
undirected graph G = (V,E,w), define the symmetric
cut function:

φG(A) :=
∑

s∈A,t∈V \A
w(s, t). (4.1)

Then the Fourier transform can be computed explicity:

φ̂G(B) =





1
2

∑
s,t∈V w(s, t), B = ∅

− 1
2w(s, t), B = s+ t

0, otherwise

(4.2)

1if we ignore the constant offset f(∅)

Hence there is a simple linear correspondence between
weights of G and the 2nd order Fourier coefficients of
φG. Clearly this correspondence works in reverse, i.e.,
given any symmetric 2nd order function f , there is a
unique graph G such that f(A) − f(∅) = φG(A). In
the general case, functions in Hd can be thought of as
cut functions of hypergraphs of degree d, as considered
by Bshouty and Mazzawi (2010).

Submodular functions. Another structural prop-
erty exhibited by many set functions of practical im-
portance is submodularity, a natural discrete ana-
logue of convexity (Lovasz, 1983). A set function
is submodular if its 2nd order differences are every-
where nonpositive. We define the cone of submod-
ular functions: H− := {f ∈ H : s, t ∈ V \ A ⇒
f(A+ s+ t)− f(A+ s)− f(A+ t) + f(A) ≤ 0}.
While submodularity does not immediately restrict the
set P of candidate supports, it immediately implies
dependence among the Fourier coefficients, (a subset
of) which can be encoded as constraints in the convex
program solved during recovery. In particular, submod-
ularity can be characterized in the Fourier domain: f
is submodular iff for all |B| = 2 and A ⊆ V \B:

f̂(B) +
∑

{C:B(C}
f̂(C)ψC(A) ≤ 0 (4.3)

Checking submodularity is no easier in the Fourier
domain; it still requires checking at least 2n−2(n

2

)
in-

equalities. However, we can get a necessary condition
for submodularity.

Proposition 3 For all f ∈ H−, and |B| = 2, B ⊂ C,

f̂(B) + |f̂(C)| ≤ 0. (4.4)

Proof. Given a particular C1 such that B ⊂ C1, letQ =
{A ∈ 2V : ψC1(A) = sign(f̂(C1))}. Sum Equation 4.3
over all A ∈ Q.

|Q|f̂(B) +
∑

A∈Q

∑

{C:B(C}
f̂(C)ψC(A) ≤ 0 (4.5)

|Q|f̂(B) +
∑

{C:B(C}
f̂(C)

∑

A∈Q
ψC(A) ≤ 0 (4.6)

To further simplify, we use the following fact:

∑

A∈Q
ψC(A) =

{
0 if B ⊆ C and C 6= C1

|Q| sign(f̂(C1)) if C = C1

Thus Equation 4.6 reduces to |Q|f̂(B) +

f̂(C1)|Q| sign(f̂(C1)) ≤ 0, which is then equiva-
lent to Equation 4.4 as desired.

This has an immediate simple implication about the
support of a submodular function:
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Corollary 4 For f ∈ H−, if C ∈ Supp[f̂ ], then B ∈
Supp[f̂ ] for all B ⊂ C with |B| = 2.

Besides providing some intution about the Fourier sup-
port of submodular functions, Equation 4.4 gives a
relatively simple convex constraint that can be incor-
porated into our recovery program. In general, adding
any valid convex constraint can never increase our re-
covery error (a simple consequnce of convexity), and
in practice it often decreases it.

There is another such useful constraint for any function
which is low order in addition to being submodular. We
can fully characterize third order submodular functions
in terms of

(
n
2

)
inequalities.

Proposition 5 For all f ∈ H3, then f ∈ H− iff for
all |B| = 2:

f̂(B) +
∑

s∈V \B
|f̂(B + s)| ≤ 0. (4.7)

Proof. To show this is necessary for submodularity,
apply Equation 4.3 to the set A = {s ∈ V \B : f̂(B +
s) < 0}. Conversely it is sufficient because for any

A ⊆ V \ B, we have |f̂(B + s)| ≥ f̂(B + s)ψC(A),
which implies Equation 4.3.

5 Reconstruction Algorithms

In Section 3, we have shown that the problem of learn-
ing Fourier-sparse set functions can be reduced to the
Compressed Sensing paradigm of recovery of a sparse
vector from RIP measurements. This insight allows us
to open up a cornucopia of algorithms that have been
developed for this setup (Tropp & Wright, 2010). In
particular, several greedy algorithms such as Orthogo-
nal Matching Pursuit can explicitly take advantage of
RIP to guarantee recovery, as shown by Tropp (2004).
For our experiments, we take the approach of convex
optimization. Rather than solving Eq. 3.4 exactly, we
minimize the Lagrangian formulation so that we can
apply an accelerated proximal method such as the one
by Auslender and Teboulle (2006),

min
x∈Rp

‖x‖1 +
1

2λ
||ΨM,Px− y‖2. (5.1)

In our experiments, we use the toolbox TFOCS (Becker,
Candes, & Grant, 2011), which requires only that
we supply a method to apply ΨM,P and ΨT

M,P . In
the case of 2nd order set functions, we do not need
to store the entire matrix m × p matrix, and there
is a formula that only requires O(mn) storage. Let
ΨM,d := ΨM,Pd

be the subsampledm×
(
n
d

)
Fourier ma-

trix where the columns correspond to the sets of size d.
So the matrix ΨM,1 ∈ Rm×n is defined by ΨM,1[i, j] =

{
−1 j ∈ Ai

1 j /∈ Ai

. If the 2nd order Fourier coeffients from

x ∈ R(n
2) are arranged in the off-diagonal elements of

an n × n a matrix X, then the elements of ΨM,2x
are the diagonal elements of ΨM,1XΨT

M,1, and the

transpose operation is ΨT
M,2r = ΨT

M,1 diag(r)ΨM,1.

Exploiting structure in the Fourier domain. In
Section 4, we have shown that submodularity implies
constraints about the relative magnitudes of the Fourier
coefficients. In addition to encoding this structure into
the convex program to improve recovery, this structure
can further be exploited to extend our technique to
higher order functions (where the collection P can be-
come intractably large). The key step in most sparse
recovery algorithms is to find the largest magnitude
elements of ΨT

M,Pr given a residual vector r. For exam-
ple, first order methods applied to Eq. 5.1 such as the
one we use are equivalent to iterative soft-thresholding.
While we could find the largest magnitude elements of
ΨT
M,Pr by simply applying the full transformation and

sorting, one can use submodularity to avoid having to
compute the entire set of higher-order coefficients. For
example, if the function is 3rd order and submodular,
we can apply Equation 4.7, and note for |B| = 3,

|f̂(B)| ≤ min
s∈B
−f̂(B − s)−

∑

t∈V \B
|f̂(B − s+ t)|

So these constraints can be used to speed up the iden-
tification of the largest magnitude coefficients, as we
need only compute the 3rd order coefficients with suf-
ficient slack. We leave a detailed investigation of this
direction open for future work.

6 Applications and Experiments

We evaluate our approach towards learning set func-
tions on two real-world data sets. We also use synthetic
data to demonstrate our claim that enforcing submodu-
larity through convex constraints can improve recovery
of submodular functions.

Sketching graph evolution We consider the
problem of reconstructing (differences between)
graphs by observing random cuts. Suppose we are
given a sequence of weighted undirected graphs
G1 = (V1, E1, w1), . . . , GT = (V,ET , wT ) that, w.l.o.g.,
share the same set of vertices, but differ in the set
of edges Ei and their weights wi. Let fi(A) = φGi(A)
be the the corresponding symmetric cut functions as
defined in Eq. 4.1. Note that by (4.2), knowing fi
uniquely determines Gi.

To handle the case of directed graphs, we can define
an undirected bipartite graph G′ with enlarged ground
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Figure 1: Experimental results. (a) Graph sketching of transitions of the Autonomous Systems graph. We plot
number of random cuts observed vs. reconstruction error (Combined Type I + Type II error). During different
transitions, the number ∆ of changing edges varies. Notice how approximately 8∆ random observations suffice
for perfect reconstruction. (b) Approximate submodular maximization in environmental monitoring. We wish to
choose sets of locations with maximum mutual information. We compare the greedy algorithm optimizing the
true functions, Fourier-sparse reconstructions obtained from n, 2n, 4n and 8n samples with random selection.
Notice that 8n samples already provide performance very close to the true objective.

set V × {1, 2}. The weight of an edge w(s,1),(s′,2) in
G′ corresponds to the weight of directed edge ws,s′

in G, similarly w(s′,1),(s,2) corresponds to the opposite
direction ws,s′ . If we can observe directed cuts in G, we
can infer undirected cuts in G′. From the reconstructed
G′ we can the recover G.

As we have observed in Section 5, cut functions are
contained in H2, and there is one edge for each nonzero
Fourier coefficient. We can thus use Corollary 1 to re-
construct the graph by observingO(|E(t)| log4 n) values
of random cuts. Note that while in practice, typically
|E| = Ω(n), and for large graphs, we would require a
proportionally large number of observations. If, how-
ever, we are interested in how a graph changes over
time, and this change happens slowly, we use the fact
that the symmetric difference E(t) 	 E(t+1) is sparse.

In our experiments, we take a sequence of five snapshots
of the Autonomous Systems graph 2. Our experiments
are performed on the subgraph induced by the 128
nodes with largest degree. We first pick an increasing
number of sets at random. We then sketch the graphs
at different time steps by computing the cut values
associated with those sets. Since the cut function is
linear in the edge weights, the difference in cut values
corresponds to the cuts in the symmetric graph differ-
ences. We can therefore reconstruct the difference in
the edge sets by using the reconstruction algorithm de-

2downloaded from http://snap.stanford.edu

scribed in Section 5. Note that the number of changing
edges varies from 62 to 245. Figure 1(a) presents the
reconstruction error (in terms of the fraction of edges
correctly classified as changing or not changing). For
all transitions, exact recovery is possible, using a num-
ber of samples that is approximately a factor of 8 larger
than the number of changing edges. Also, we observe
that consistently with results in compressive sensing,
a sharp phase transition occurs between a regime in
which the error is close to 100%, and the regime in
which perfect reconstruction occurs.

Approximate submodular optimization Sup-
pose a submodular function to be optimized is ex-
tremely expensive to evaluate, but can be approximated
with our recontruction methods from random samples.
Then one can evaluate the function on random sam-
ples to construct an approximation, and optimize the
approximation. We test this approach on submodular
function maximization, in an environmental monitoring
application. We consider the problem of selecting a
small number of most informative observations for the
purpose of spatial prediction. We take temperature
data from the NIMS sensor node (Harmon, Ambrose,
Gilbert, Fisher, Stealey, & Kaiser, 2006) deployed at
a lake near the University of California, Merced. The
environment is discretized in a set V of n = 86 lo-
cations. We train a nonstationary Gaussian Process
using data from a single scan of the lake by the NIMS
sensor node, using a method described by Krause et al.
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(2008). In order to quantify the informativeness of a
set of locations A ⊆ V , we use the mutual information

f(A) = I(XA;XV \A) = H(XV \A)−H(XV \A | XA),

that quantifies the reduction of uncertainty in the un-
observed locations V \ A by taking into account the
observations XA at the selected observations. As shown
by Krause et al. (2008), f is submodular and approx-
imately monotonic (for small sets A), and therefore
an efficient greedy algorithm, adding observations that
maximally increase f(A) until k observations have been
selected produces a set AG with near-maximal infor-
mativeness (Nemhauser, Wolsey, & Fisher, 1978).

Unfortunately, computing mutual information f(A) for
the case of Gaussian processes requires solving a lin-
ear system of n variables, which is very expensive for
large n. We consider approximating f by a low-order
function. We evaluate f on an increasing number of
sets, chosen uniformly at random, and then use the al-
gorithm described in Section 5 to approximate f ∈ H2.
Notice that even though f not exactly sparse, it appears
to be well-approximated by a order 2 function: The
best order 2 approximation explains approximately 86
% of its variance. In order to determine how well suited
the approximate function is for optimization, we run
the greedy algorithm on the approximation, and com-
pare the resulting sets with the (provably near-optimal)
solutions obtained by running the greedy algorithm on
the original (expensive to evaluate) function f . As
baseline, we also compare against the performance of
sets chosen uniformly at random. Figure 1(b) presents
the results of the experiment, using approximations
obtained from n, 2n, 4n and 8n random function eval-
uations. Notice that n and 2n function evaluations not
surprisingly lead to poor performance. However, even
4 samples per location lead to strong performance, and
8n samples leads to solutions almost as good as those
obtained when working with the true objective. These
results indicate that the proposed approximations can
perform very well even though the assumption of exact
sparsity in the Fourier domain is not met.

Synthetic Submodular Recovery We claimed in
Section 4 that if a function is known to be submodular,
then incorporating convex constraints implied by sub-
modularity can improve the recovery of a function. We
now describe some experiments on synthetic functions
that demonstrate this claim empirically. We attempt
the recovery a 3rd order submodular function by in-
corporating the constraints from Equation 4.7 into a
convex recovery algorithm.

We take n = 16 and restrict to H3, therefore p = 697.
By Proposition 5, we can check submodularity with
120 constraints. These numbers are small enough
so that we can use a standard interior point method
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Figure 2: Empirical study of submodular constraints.
Synthetic functions on a base set of 16 elements. At-
tempted recovery with differing types of constraints.
The experiments were repeated with different random
synthetic functions and different random measurments,
and the mean relative error ‖f − g‖2/‖f‖2 is plotted
vs. number of random measurements.

solver to get accurate solutions. We construct f by
taking a function with i.i.d. Gaussian entries and
then projecting it onto the cone H− ∩ H3 to get a
target synthetic function. The resulting projection is
not exactly sparse, on average it has 200± 10 (out of
697 possible) nonzero Fourier coefficients. However,
it is compressible, so we can expect a small error
even without recovering the support exactly. Then,
given random function samples, we reconstruct the
target function by minimizing the Fourier `1 norm,
but vary what sets of additional constraints we apply.
First, we simply solve Equation 3.4 with no additional
constraints. For our second way, we assume oracle
access to the signs of the Fourier coefficients and we
enforce the known signs of the coefficients. Lastly, we
enforce the constraints of Equation 4.7. The results
are plotted in Figure 2. Enforcing submodularity
significantly improves the recovery. It gives a relative
error of less than 10−3 with only 300 measurements,
and it recovers the support exactly with about 350.
Using the `1 norm alone requires about 450 measure-
ments just to get a relative error or 10−3. The method
with oracle access to the signs of the coefficients has
better performance than standard `1, but still not as
good as the submodularity-enforcing method.

7 Related Work

Fourier analysis on the discrete cube {0, 1}n
The problem of learning Boolean and pseudoboolean
functions has a long history with many special cases
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that have been studied, and the use of discrete Fourier
analysis dates back to the work of Linial, Mansour,
and Nisan (1993).

The specific problem of reconstructing graphs from few
observations has received attention to important appli-
cations in bioinformatics. The literature distinguishes
additive queries (computing weight of all edges in a sub-
graph), and less powerful cross-additive queries (com-
puting the weight of edges between two sets of vertices).
Cuts are a special case of the latter. The literature
also distinguishes adaptive queries (that can choose
observations based on past observations) and less pow-
erful nonadaptive queries (that have to commit to all
observations in advance). In general, non-adaptive al-
gorithms only requiring cross-additive queries are pre-
ferred (as these make the fewest assumptions, can be
parallelized, etc.). For graphs with n nodes and k edges,

an information theoretic lower bound of Ω
(k log(n2/k)

log k

)

additive (possibly adaptive) queries is known. Mazzawi
(2010) provides an adaptive polynomial time algorithm
that attains this optimal complexity in log n nonadap-
tive rounds. To our knowledge, the only existing non-
adaptive algorithms with linear dependence on k are
non-constructive (i.e., not polynomial time) (Bshouty
& Mazzawi, 2010). This approach also requires additive
queries. To our knowledge, ours is the first efficient
nonadaptive approach (and furthermore only requires
cross-additive queries).

Learning of pseudo-boolean functions (and associated
hypergraphs) has been considered by Choi et al. (2011),
who provides an almost tight adaptive algorithm for
computing the Fourier coefficients of k-bounded pseu-
doboolean functions. Bshouty and Mazzawi (2010)
provide a non-adaptive, but also non-constructive ap-
proach, requiring additive queries.

Learning submodular functions Unfortunately,
even without noise, there are strong lower bounds, lim-
iting our expectations on learning general submodular
functions. Without access to a data set of exponential
size, it is not possible to approximate general submod-
ular functions to a factor better than Ω(

√
n/ log n)

(Goemans et al., 2009). On a more positive side, if the
function is Lipschitz, and sets are sampled uniformly at
random, then for any ε > 0, a O(log 1

ε ) approximation
can be achieved on a fraction of at least 1 − ε of all
sets (Balcan & Harvey, 2011). However, optimization
purposes, a guarantee that the approximation is of high
quality on only a subset (even a large subset) of sets
is problematic, since typically nothing can be inferred
about the resulting minimizer. The problem of approx-
imating a general submodular function by a simpler
one for the purpose of efficient minimization is studied
by Jegelka, Lin, and Bilmes (2011), who do not exploit

the special structure of Fourier-sparse functions.

Compressive sensing There has been vast interest
in sparse reconstruction and compressive sensing (Can-
des & Wakin, 2008). But traditionally this has been
motivated by sparsity of signals as a trigonometric
polynomial or in the wavelet domain. However, we are
unaware of any work directly applying these ideas to dis-
crete cube. If work on sublinear Fourier transforms as
of Gilbert, Guha, Indyk, Muthukrishnan, and Strauss
(2002) can be thought of as applying the ideas from
learning sparse boolean functions to sparse trigonmetric
polynomials, then our work can be thought of as doing
the reverse. Opening up a toolbox of new methods for
this domain is the main contribution of this paper.

8 Conclusion

We have considered the problem of reconstructing set
functions with decaying Fourier (Hadamard-Walsh)
spectrum, from a small number of possibly noisy ob-
servations. By leveraging recent results from random
matrices and sparse reconstruction, we have shown
that standard algorithms can be used to obtain perfect
reconstruction, with a number of samples that scales
linearly with the support size of the Fourier spectrum.
This insight allows us to open up a vast toolbox of
modern optimization methods for learning set func-
tions, which previously has been mostly the domain of
purely theoretical investigation. For example, our re-
sults imply that standard `1 minimization can be used
to reconstruct a sparse graph from observing the values
of a number of random cuts, which (up to logarithmic
factors) matches information-theoretic lower bounds
by Mazzawi (2010). Furthermore, we show other prop-
erties, such as submodularity and symmetry, imply
structure among the Fourier coefficients, that can be
exploited to reduce sample complexity, as well as speed
up reconstruction algorithms. We demonstrate the
effectiveness of our approach on two applications, show-
ing that we can indeed sketch changes in real-world
networks by measuring random cuts, and that we can
obtain useful approximations of expensive-to-compute
set functions for the purpose of optimization.
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