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Abstract

An important form of prior information in
clustering comes in form of cannot-link and
must-link constraints. We present a gen-
eralization of the popular spectral cluster-
ing technique which integrates such con-
straints. Motivated by the recently proposed
1-spectral clustering for the unconstrained
problem, our method is based on a tight re-
laxation of the constrained normalized cut
into a continuous optimization problem. Op-
posite to all other methods which have been
suggested for constrained spectral clustering,
we can always guarantee to satisfy all con-
straints. Moreover, our soft formulation al-
lows to optimize a trade-off between normal-
ized cut and the number of violated con-
straints. An efficient implementation is pro-
vided which scales to large datasets. We
outperform consistently all other proposed
methods in the experiments.

1 Introduction

The task of clustering is to find a natural grouping of
items given e.g. pairwise similarities. In real world
problems, such a natural grouping is often hard to dis-
cover with given similarities alone or there is more
than one way to group the given items. In either
case, clustering methods benefit from domain knowl-
edge that gives bias to the desired clustering. Wagstaff
et. al (Wagstaff et al., 2001) are the first to consider
constrained clustering by encoding available domain
knowledge in the form of pairwise must-link (ML, for
short) and cannot-link (CL) constraints. By incor-
porating these constraints into k-means they achieve
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much better performance. Since acquiring such con-
straint information is relatively easy, constrained clus-
tering has become an active area of research; see (Basu
et al., 2008) for an overview.

Spectral clustering is a graph-based clustering algo-
rithm originally derived as a relaxation of the NP-hard
normalized cut problem. The spectral relaxation leads
to an eigenproblem for the graph Laplacian, see (Ha-
gen & Kahng, 1991; Shi & Malik, 2000; von Luxburg,
2007). However, it is known that the spectral relax-
ation can be quite loose (Guattery & Miller, 1998).
More recently, it has been shown that one can equiva-
lently rewrite the discrete (combinatorial) normalized
Cheeger cut problem into a continuous optimization
problem using the nonlinear 1-graph Laplacian (Hein
& Biihler, 2010; Szlam & Bresson, 2010) which yields
much better cuts than the spectral relaxation. In fur-
ther work it is shown that even all balanced graph cut
problems, including normalized cut, have a tight relax-
ation into a continuous optimization problem (Hein &
Setzer, 2011).

The first approach to integrate constraints into spec-
tral clustering was based on the idea of modifying the
weight matrix in order to enforce the must-link and
cannot-link constraints and then solving the resulting
unconstrained problem (Kamvar et al., 2003). Another
idea is to adapt the embedding obtained from the first
k eigenvectors of the graph Laplacian (Li et al., 2009).
Closer to the original normalized graph cut problem
are the approaches that start with the optimization
problem of the spectral relaxation and add constraints
that encode must-links and cannot-links (Yu & Shi,
2004; Eriksson et al., 2007; Xu et al., 2009; Wang
& Davidson, 2010). Furthermore, the case where the
constraints are allowed to be inconsistent is considered
in (Coleman et al., 2008).

In this paper we contribute in various ways to the area
of graph-based constrained learning. First, we show in
the spirit of 1-spectral clustering (Hein & Biihler, 2010;
Hein & Setzer, 2011), that the constrained normalized
cut problem has a tight relaxation as an unconstrained
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continuous optimization problem. Our method, which
we call COSC, is the first one in the field of con-
strained spectral clustering, which can guarantee that
all given constraints are fulfilled. While we present ar-
guments that in practice it is the best choice to satisfy
all constraints even if the data is noisy, in the case
of inconsistent or unreliable constraints one should re-
frain from doing so. Thus our second contribution is
to show that our framework can be extended to han-
dle degree-of-belief and even inconsistent constraints.
In this case COSC optimizes a trade-off between hav-
ing small normalized cut and a small number of vio-
lated constraints. We present an efficient implementa-
tion of COSC based on an optimization technique pro-
posed in (Hein & Setzer, 2011) which scales to large
datasets. While the continuous optimization problem
is non-convex and thus convergence to the global opti-
mum is not guaranteed, we can show that our method
improves any given partition which satisfies all con-
straints or it stops after one iteration.

All omitted proofs and additional experimental results
can be found in the supplementary material.

Notation. Set functions are denoted by a hat, S,
while the corresponding extension is S. In this paper,
we consider the normalized cut problem with general
vertex weights. Formally, let G(V, E, w, b) be an undi-
rected graph G with vertex set V and edge set E to-
gether with edge weights w: V x V' — R, and vertex
weights b : V. — Ry and n = |V|. Let C C V and

denote by C' = V\C. We define respectively the cut,
the generalized volume and the normalized cut (with

general vertex weights) of a partition (C,C) as

cut(C,C) = 2 Z w;j, gvol(C) = Zbi,
i€C,jeC ieC
gvol(C’)gvol(é) — _ cut(C,C)
bal(C) = —gvol(V) , NCut(C,C) = “Hal(C)
We obtain ratio cut and normalized cut for spe-
cial cases of the vertex weights, b; = 1, and b; =
d;, where d; = Z;.l:l wjj;, respectively. In the ratio

cut case, gvol(C) is the cardinality of C' and in the
normalized cut case, it is volume of C', denoted by
vol(C).

2 The Constrained Normalized Cut
Problem

We consider the normalized cut problem with must-
link and cannot-link constraints. Let G(V, E, w, b) de-
note the given graph and Q™, Q¢ be the constraint
matrices, where the element gj} (or ¢f;) € {0, 1} speci-
fies the must-link (or cannot-link) constraint between 4
and j. We will in the following always assume that G is
connected. All what is stated below and our suggested
algorithm can be easily generalized to degree of belief
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constraints by allowing ¢} (and ¢f;) € [0,1]. How-
ever, in the following we consider only ¢;; (and ¢f;)
€ {0,1}, in order to keep the theoretical statements
more accessible.

Definition 2.1. We call a partition (C,C) consis-
tent if it satisfies all constraints in Q™ and Q°.

Then the constrained normalized cut problem is
to minimize NCut(C, C) over all consistent partitions.
If the constraints are unreliable or inconsistent one can
relax this problem and optimize a trade-off between
normalized cut and the number of violated constraints.
In this paper, we address both problems in a common
framework.

We define the set functions, M, N : 2V = R, as

C)=2 > q

ieC,jeC
= DodGt Y af=voll@) -2 D .
1€C, jeC i€C,jelC i€C,jeC

M(C) and N(C) are equal to twice the number of
violated must-link and cannot-link constraints of par-
tition (C, C).

As we show in the following, both the constrained nor-
malized cut problem and its soft version can be ad-
dressed by minimization of £, : 2V — R defined as

. cut(C,C) + (M N(C (@)

F,(C)= 1

"/( ) bal(C’) ’ ( )

where v € Ry. Note that £, (C) = NCut(C,C) if
(C,C) is consistent. Thus the minimization of F(C)
corresponds to a trade-off between having small nor-
malized cut and satisfying all constraints parameter-
ized by 7.

The relation between the parameter v and the number
of violated constraints by the partition minimizing F,
is quantified in the following lemma.

Lemma 2.1. Let (C,C) be consistent and \ =
NCut(C,C). If v > g"((;i‘l/)))\, then any minimizer of

F., wviolates no more than | constraints.

Note that it is easy to construct a partition which is
consistent and thus the above choice of v is construc-
tive. The following theorem is immediate from the
above lemma for the special case [ = 0.

Theorem 2.1. Let (C,C) be consistent with the given
constraints and A = NCut(C,C). Then for v >
e oV) )\, it holds that

NCut(C,C) = arg min F, (C)
ccv

arg min
sas
(C,C) consistent

and the optimum values of both problems are equal.
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Thus the constrained normalized cut problem can be
equivalently formulated as the combinatorial problem
of minimizing ﬁl,. In the next section we will show
that this problem allows for a tight relaxation into a
continuous optimization problem.

2.1 A tight continuous relaxation of Fv

Minimizing }:—',y is a hard combinatorial problem. In
the following, we derive an equivalent continuous opti-
mization problem. Let f : RY — R denote a function
on V, and 1¢ denote the vector that is 1 on C' and 0
elsewhere. Define

M(f):= Y ¢ 1fi = filand

ij=1

N(f) :=vol(Q%) (max(f) — min(£)) = > a5 |fi = fil,

ij=1

where max(f) and min(f) are respectively the maxi-
mum and minimum elements of f. Note that M (1¢) =
M(C) and N(1¢) = N(C) for any non-trivial! parti-
tion (C,C).

Let B denote the diagonal matrix with the vertex
weights b on the diagonal. We define

|B( - s (00 1)

We denote the numerator of F,(f) by R,(f) and the
denominator by S(f).

Lemma 2.2. For any non-trivial partition it holds
that F,(C) = Fy(1¢).

F’v(f):

From Lemma 2.2 it immediately follows that minimiz-
ing F), is a relaxation of minimizing FAL,. In our main
result (Theorem 2.2), we establish that both problems
are actually equivalent, so that we have a tight relax-
ation. In particular a minimizer of F’, is an indicator
function corresponding to the optimal partition mini-
mizing Fw~

The proof is based on the following key property of

the functional F,. Given any non-constant f € R",

optimal thresholding,
C; =

arg min E, (C9),

min; f; < t < max; f;

where C% = {i € V|f; > t}, yields an indicator func-
tion on some C; C V with smaller or equal value of
E,.

LA partition (C,C) is non-trivial if neither C = ) nor
c=V.
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Theorem 2.2. For v > 0, we have

L(O) = min

min F’
ccv fER™, f non-constant

B (f)-
Moreover, a solution of the first problem can be ob-
tained from the solution of the second problem.

Proof. It has been shown in (Hein & Biihler, 2010),
that

n

Zwiﬂfi—fjl:/ cut(CF, Cf)dt

i,j=1
We define P : 2V — Ras P(C) = 1, if C # V and
C # 0, and 0 otherwise. Denoting by cutg(C,C), the

cut on the constraint graph whose weight matrix is
given by @, we have

R = [ (€t [ cuten(Ch,T)
max; f;

+ v vol(Q°)

min; f;

1dt — ~ / cthc(C}7?})

:/ cut(C},Ci})dter/ cthnL(C},Ci;)
Fyvol(@) [ P(Cht—y [ eut(c), 5
:/ R’Y(C})dt

Note that S(f) is an even, convex and positively one-
homogeneous function.? Moreover, every even, convex
positively one-homogeneous function, 7' : RY — R has
the form T'(f) = sup,cy (u, f), where U is a symmet-

ric convex set, see e.g., (Hiriart-Urruty & Lemaréchal,
2001). Note that S(1) = 0 and thus because of the
symmetry of U it has to hold (u,1) =0 for all u € U.

Since S(lc}) = S(C}) and (u, f) < S(f),u € U, we
have for all u € U,

v [T )

R (C max; f;
> inf 22(C1) / <u, 1o > at, (2
teR S(ij) min; f; f

where in the last inequality we changed the limits of
integration using the fact that (u,1) = 0. Let C; :=
C%, and Cp = V. Then

max; f; n-l
[ wtedt =Y (e (i - £) =
min; f; i=1

n

Zfi((u, lo,_,) —(u,1¢,)) = Zfiui = (u, f)

i=1

2A function S : RV — R is positively one-homogeneous
if S(af) = aS(f) for all o > 0.
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Noting that (2) holds for all u € U, we have

Ry(f) > inf F,(C}) sup (u, f) = inf ,(C}) S(f).

uelU
This implies that
Fy(f) ZEQDEFW(C})ZFWHC;)’ 3)
where C*% = arg min FW(CJE)

min; f; < t < max; f;

This shows that we always get descent by optimal
thresholding. Thus the actual minimizer of F, is a
two-valued function, which can be transformed to an
indicator function on some C' C V, because of the scale
and shift invariance of F,,. Then from Lemma 2.2,
which shows that for non-trivial partitions, F,Y(C’) =
F,(1¢), the statement follows. O

Now, we state our second result: the problem of min-
imizing the functional F), over arbitrary real-valued
non-constant f, for a particular choice of v, is in fact
equivalent to the NP-hard problem of minimizing nor-
malized cut with constraints. The proof follows di-
rectly from Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let (C,C) be consistent and A\ =
NCut(C’,C"). Then for v > %(V) A, it holds that
min NCut(C,C) =

_Cccv:
(C,C) consistent

E(f)

min
fER™, f non-constant

Furthermore, an optimal partition of the constrained
problem can be obtained from a minimizer of the right
problem.

A few comments on the implications of Theorem 2.3.
First, it shows that the constrained normalized cut
problem can be equivalently solved by minimizing
F,(f) for the given value of 7. The value of v depends
on the normalized cut value of a partition consistent
with given constraints. Note that such a partition can
be obtained in polynomial time by 2-coloring the con-
straint graph as long as the constraints are consistent.

2.2 Integration of must-link constraints via
sparsification

If the must-link constraints are reliable and therefore
should be enforced, one can directly integrate them
by merging the corresponding vertices together with
re-definition of edge and vertex weights. In this way
ones derives a new reduced graph, where the value of
the normalized cut of all partitions that satisfy the
must-link constraints are preserved.

The construction of a reduced graph is given below for
a must-link constraint (p, q).
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1. merge p and ¢ into a single vertex 7.
2. update the vertex weight of 7 by b, = b, + b,.

3. update the edges as follows: if r is any vertex
other than p and ¢, then add an edge between 7
and r with weight w(p, r) + w(q, ).

Note that this construction leads to a graph with
vertex weights even if the original graph had vertex
weights equal to 1. If there are many must-links, one
can efficiently integrate all of them together by first
constructing the must-link constraint graph and merg-
ing each connected component in this way.

The following lemma shows that the above construc-
tion preserves all normalized cuts which respect the
must-link constraints. We prove it for the simple case
where we merge p and ¢ and the proof can easily be
extended to the general case by induction.

Lemma 2.3. Let G'(V',E',w',b') be the reduced
graph of G(V, E,w,b) obtained by merging vertices p
and q. If a partition (C,C) does not separate p and q,
we have NCutg (C, C) = NCutg (C’, C").

All partitions of the reduced graph fulfill all must-
link constraints and thus any relaxation of the un-
constrained normalized cut problem can now be used.
Moreover, this is not restricted to the cut criterion we
are using but any other graph cut criterion based on
cut and the volume of the subsets will be preserved in
the reduction.

3 Algorithm for Constrained
1-Spectral Clustering

In this section we discuss the efficient minimization of
F., based on recent ideas from unconstrained 1-spectral
clustering (Hein & Biihler, 2010; Hein & Setzer, 2011).
Note, that F, is a non-negative ratio of a difference of
convex (d.c) function and a convex function, both of
which are positively one-homogeneous. In recent work
(Hein & Biihler, 2010; Hein & Setzer, 2011), a general
scheme, shown in Algorithm 1 (where 0S(f) denotes
the subdifferential of the convex function S at f), is
proposed for the minimization of a non-negative ratio
of a d.c function and convex function both of which
are positively one-homogeneous.

It is shown in (Hein & Setzer, 2011) that Algorithm 1
generates a sequence f* such that either Fy( A <
F,(f*) or the sequence terminates. Moreover, the

cluster points of f* correspond to critical points of
F,. The scheme is given in Algorithm 1 for the prob-
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lem min¢ern (R1(f) — R2(f))/S(f), where

n

Ri(f) = 5 3 (wis +2aE)I i — |

3,j=1

n % > gfj(max(f) — min(f))

i,j=1

Ra(f) =5 3 ailfi— il

i,j=1

‘B(f !

SD= 5 |PU oy

; (.5)1)

1

Note that R;, R, are both convex functions and

B (f) = (Bu(f) = Ra(£))/S(f)

Algorithm 1 Minimization of a ratio (Ri(f) —
Ry(f))/S(f) where R1, Ro, S are convex and positively
one-homogeneous

1: Initialization: f° = random with HfOH =1,
AY = (B1(f) = Ra(f9))/S(f°)
2: repeat
3 fM=argmin {Ri(f) — (fir2) = A (f. )}
I£1.<1

where 73 € ORy(f%), s € 9S(f*)

4: )\k-i-l — (Rl(fk-i-l) _ R2(fk+1)/s(fk+l)
‘)\k+1_>\k|
5: until " <e

6: Output: \**t1 and frF+1.

Moreover, it is shown in (Hein & Setzer, 2011), that
if one wants to minimize (Ry(f) — Ra2(f))/S(f) only
over non-constant functions, one has to ensure that
(re,1) = (s,1) = 0. Note, that

1 1
Z(I—

2 ( gvol(V)

(b, f)
gvol(V) 1)

OR>(f) = {Zqz'cjuij |uij = —uji, uij € sign(fi — fj)}7
=1

aS(f) = b17)Bsign (f—

where sign(z) = [—1,1] if = 0, otherwise it just the
sign function. It is easy to check that (u,1) = 0 for all
u € 0S(f) and all f € R™ and there exists always a
vector u € ORy(f) for all f € R™ such that (u,1) = 0.

In the algorithm the key part is the inner convex prob-
lem which one has to solve at each step. In our case it
has the form,

1 n
min — wi; + g™ | fi — £ A
I£llp<1 2”2:1( i +ais) 1fi — £l (4)

+ 2> gfmax(f) —min(f) = (f.yra+A's),

i,j=1
where ro € OR2(f), s € dS(f*) and N\* = F,(f*).

To solve it more efliciently we derive an equivalent
smooth dual formulation for this non-smooth convex
problem. We replace w;;+~v¢q;; by ng in the following.
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Lemma 3.1. Let E C V x V denote the set of

edges and A : R¥ — RY be defined as (Aa); =

Zﬂ(z‘,j)eE wi;cvij. Moreover, let U denote the simplez,

U={ueRkR"| ¥ u =1u >0, Vi}. The above

inner problem is equivalent to
min

{QEREIHO‘HOOSLO‘U:_aji}
velU

U(a,v) = (5)

b

C"—Ag+v+b—PU(—Ag+v+b)‘
C C 2

where ¢ = Zvol(Q°), b = 2 + \*2 and Py(x) is the
projection of x on to the simplex U.

The smooth dual problem can be solved efficiently us-
ing first order projected gradient methods like FISTA
(Beck & Teboulle, 2009), which has a guaranteed con-
vergence rate of O(,CL—Q)7 where k is the number of steps,
and L is the Lipschitz constant of the gradient of the
objective. The bound on the Lipschitz constant for
the gradient of the objective in (5) can be rather loose
if the weights are varying a lot. The rescaling of the
variable « introduced in Lemma 3.2 leads to a bet-
ter condition number and also to a tighter bound on
the Lipschitz constant. This results in a significant
improvement in practical performance.

Lemma 3.2. Let B be a linear operator defined as
(BB); := Zj:(m)eE Bi; and let s;; = %M, for posi-
tive constant M > ||B||. The above inner problem is
equivalent to

. - 1
min T(B,v) = = |d— Py(d) .
{BERE||1B| o <s45,Bi5=—Bj:} 2
ve

where d = —%B—H} +b. The Lipschitz constant of the
gradient of U is upper bounded by 4.

We can choose M by upper bounding || B]| using

|B|* < max Z 12 = m;;mxneigh(r),
(r.j)€E

where neigh(r) is the number of neighbors of vertex r.

Despite the problem of minimizing F is non-convex
and thus global convergence is not guaranteed, Algo-
rithm 1 has the following quality guarantee.

Theorem 3.1. Let (C,C) be any partition and let X =
NCut(C,C). 1If one uses 1¢ as the initialization of
the Algorithm 1, then the algorithm either terminates
in one step or outputs an f' which yields a partition

(A, A) such that
E(4) < B,(0)

Moreover, if (C,C) is consistent and if we set for~y any

value larger than %(V))\ then A is also consistent and

NCut(4, A) < NCut(C,C).
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Figure 1: Influence of « on cut and clustering error.

In practice, the best results can be obtained by first
minimizing F, for v = 0 (unconstrained problem) and
then increase the value of v and use the previously
obtained clustering as initialization. This process is
iterated until the current partition violates not more
than a given number of constraints.

4 Soft- versus Hard-Constrained
Normalized Cut Problem

The need for a soft version arises, for example, if the
constraints are noisy or inconsistent. Moreover, as we
illustrate in the next section, we use the soft version to
extend our clustering method to the multi-partitioning
problem. Using the bound of Lemma 2.1 for v, we
can solve the soft constrained problem for any given
number of violations.

It appears from a theoretical point of view that, due
to noise, satisfying all constraints should not be the
best choice. However, in our experiments it turned
out, that typically the best results were achieved when
all constraints were satisfied. We illustrate this be-
havior for the dataset Sonar, where we generated 80
constraints and increased ~ from zero until all con-
straints were satisfied. In Figure 1, we plot cuts and
errors versus the number of violated constraints. One
observes that the best error is obtained when all con-
straints were satisfied. Since by enforcing always all
given constraints, our method becomes parameter-free
(we increase «y until all constraints are satisfied), we
chose this option for the experiments.

5 Multi-Partitioning with Constraints

In this section we present a method to integrate
constraints in a multi-partitioning setting. In the
multi-partitioning problem, one seeks a k-partitioning
(C1,...,C%) of the graph such that the normalized
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multi-cut given by

k
> NCut(C;, &) (6)
i=1
is minimized. A straightforward way to generate a
multi-partitioning is to use a recursive bi-partitioning
scheme. Starting with all points as the initial parti-
tion, the method repeats the following steps until the
current partition has k components.

1. split each of the components in the current parti-
tion into two parts.

2. choose among the above splits the one minimizing
the multi-cut criterion.

Now we extend this method to the constrained case.
Note that it is always possible to perform a binary
split which satisfies all must-link constraints. Thus,
must-link constraints pose no difficulty in the multi-
partitioning scheme, as all must-link constraints can
be integrated using the procedure given in 2.2.

However, satisfying all cannot-link constraints is some-
times not possible (cyclic constraints) and usually also
not desirable at each level of the recursive bi-partition,
since an early binary split cannot separate all classes.
The issues here is which cannot-link constraints should
be considered for the binary split in step 1.

To address this issue, we use the soft-version of our for-
mulation where we need only to specify the maximum
number, [, of violations allowed. We derive this num-
ber | assuming the following simple uniform model of
the data and constraints. We assume that all classes
have equal size and there is an equal number of cannot
link constraints between all pairs of classes. Assuming
that any binary split does not destroy the class struc-
ture, the maximum number of violation is obtained
if one class is separated from the rest. Precisely, the
expected value of this number, given N cannot-link
U2 N In the
first binary split, these numbers (N and k) are known.
In the succesive binary splits, N is known, while k can
again be derived, assuming the uniform model, as % n,
where 7 is the size of the current component.

constraints and k classes, is

We illustrate our approach using an artificial dataset
(mixture of Gaussians, 500 points, 2 dimensions). Fig-
ure 2 shows on the left the ground truth and the so-
lution of unconstrained (y=0) multi-partitioning. In
the unconstrained solution, points belonging to the
same class are split into two clusters while points from
other two classes are merged into a single cluster. On
the rightmost, the result of our constrained multi-
partitioning framework with 80 randomly generated
constraints is shown.
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Figure 2: Left: ground-truth, middle: clustering ob-
tained by unconstrained 1-spectral clustering, right:
clustering obtained by the constrained version.

6 Experiments

We compare our method against the following four
related constrained clustering approaches: Spectral
Learning (SL) (Kamvar et al., 2003), Flexible Con-
strained Spectral Clustering (CSP) (Wang & David-
son, 2010), Constrained Clustering via Spectral Regu-
larization (CCSR) (Li et al., 2009) and Spectral Clus-
tering with Linear Constraints (SCLC) (Xu et al.,
2009). SL integrates the constraints by simply modi-
fying the weight matrix such that the edges connect-
ing must-links have maximum weight and the edges
of cannot-links have zero weight. CSP starts from
the spectral relaxation and restricts the space of fea-
sible solutions to those that satisfy a certain amount
(specified by the user) of constraints. This amounts
to solving a full generalized eigenproblem and choos-
ing among the eigenvectors corresponding to positive
eigenvalues the one that has minimum cost. CCSR
addresses the problem of incorporating the constraints
in the multi-class problem directly by an SDP which
aims at adapting the spectral embedding to be con-
sistent with the constraint information. For CSP and
CCSR we use the code provided by the authors on
their webpages.

In SCLC one solves the spectral relaxation of the
normalized cut problem subject to linear constraints
(Eriksson et al., 2007; Xu et al., 2009). Cannot-links
and must-links are encoded via linear constraints as
follows (Eriksson et al., 2007): if the vertices p and
¢ cannot-link (resp. must-link) then add a constraint
fp = —fq (xresp. fp = fg). Although must-links are
correctly formulated, one can argue that the encod-
ing of cannot-links has modeling drawbacks. First ob-
serve that any solution that assigns zero to the con-
strained vertices p and ¢ still satisfies the correspond-
ing cannot-link constraint although it is not feasible to
the constrained cut problem. Moreover, one can ob-
serve from the derivation of spectral relaxation (von
Luxburg, 2007), that vertices belonging to different
components need to have only different signs but not
the same value. Encoding cannot-links this way intro-
duces bias towards partitions of equal volume, which
can be observed in the experiments.
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Table 1: UCI datasets. The extended MNIST dataset
is generated by translating each original input image
of MNIST by one pixel, i.e., 8 directions.

Dataset Size Features | Classes
Sonar 208 60 2
Spam 4207 57 2
USPS 9298 256 10
MNIST 70000 784 10
MNIST (Ext) | 630000 784 10

Our evaluation is based on three criteria: clustering
error, normalized cut and fraction of constraints vi-
olated. For the clustering error we take the known
labels and classify each cluster using majority vote. In
this way each point is assigned a label and the clus-
tering error is the error of this labeling. We use this
measure as it is the expected error one would obtain
when using simple semi-supervised learning, where one
labels each cluster using majority vote.

The summary of the datasets considered is given in
Table 1. The data with missing values are removed
and the k-NN similarity graph is constructed from the
remaining data as in (Biithler & Hein, 2009). More-
over, redundant data points are removed from the
spam dataset. In order to illustrate the performance
in case of highly unbalanced problems, we create a
binary problem (digit 0 versus rest) from USPS. The
constraint pairs are generated in the following manner.
We randomly sample pairs of points and for each pair,
we introduce a cannot or must-link constraint based on
the labels of the sampled pair. The results, averaged
over 10 trials are shown in Table 2 for 2-class problems
and in Table 3 for multi-class problems®. In the plots
our method is denoted as COSC and we enforce always
all constraints (see discussion in Section 4). Since our
formulation is a non-convex problem, we use the best
result (based on the achieved cut value) of 10 runs with
random initializations. Except our method, no other
method can guarantee to satisfy all constraints, even
though SCLC does so in all cases. Our method pro-
duces always much better cuts than the ones found by
SCLC which shows that our method is better suited
for solving the constrained normalized cut problem.
In terms of the clustering error, our method is consis-
tently better than other methods. In case of unbal-
anced datasets (Spam, USPS 0 vs rest) our method
significantly outperforms SCLC in terms of cuts and
clustering error. Moreover, because of hard encoding
of constraints, CSLC cannot solve multi-partitioning
problems.

3CSP could not scale to the large datasets, as the
method solves the full (generalized) eigenvalue problem
where the matrices involved are not sparse.
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Table 2: Results for binary partitioning: Left: clustering error versus number of constraints, Middle: normal-

ized cut versus number of constraints, Right: fraction of violated constraints versus number of constraints.
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Results for multi-partitioning - Left: clustering error versus number of constraints, Middle: normal-

ized cut versus number of constraints, Right: fraction of violated constraints versus number of constraints.
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