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Abstract

Often when modeling structured domains, it
is desirable to leverage information that is
not naturally expressed as simply a label. Ex-
amples include knowledge about the evalua-
tion measure that will be used at test time,
and partial (weak) label information. When
the additional information has structure that
factorizes according to small subsets of vari-
ables (i.e., is low order, or decomposable), sev-
eral approaches can be used to incorporate it
into a learning procedure. Our focus in this
work is the more challenging case, where the
additional information does not factorize ac-
cording to low order graphical model struc-
ture; we call this the high order case. We
propose to formalize various forms of this ad-
ditional information as high order loss func-
tions, which may have complex interactions
over large subsets of variables. We then ad-
dress the computational challenges inherent
in learning according to such loss functions,
particularly focusing on the loss-augmented
inference problem that arises in large mar-
gin learning; we show that learning with high
order loss functions is often practical, giv-
ing strong empirical results, with one popular
and several novel high-order loss functions, in
several settings.

1 Introduction

When formulating a learning objective, there is a range
of information available to the modeler. Most com-
monly, in supervised learning, there are ground truth
labels provided by measurement devices or domain ex-
perts. In the absence of any other knowledge about a
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domain, a natural learning objective is simply to min-
imize the number of errors made on the training data.
Consider formulating a learning objective for an im-
age labeling task, where the goal is to label each pixel
in an image according to semantic class (e.g., airplane,
dog, cow). Given ground truth labels for all pixels in a
set of images, it is straightforward to define a learning
objective that uses no other knowledge of the domain.
In this case, the objective might correspond to penal-
izing each pixel-wise error, and doing so equally across
the training set.

However, there is typically information available that
is not naturally expressed as simply a label. In the
above example, we may have access to weakly labeled
images (e.g., labeled with bounding boxes), or we may
have an evaluation measure that is more suited to the
learning task. It is desirable to incorporate this addi-
tional information into a learning objective, but doing
so often leads to loss functions that do not easily de-
compose according to the model structure; in other
words, the resulting loss functions are high order.

High order loss functions arise in many domains. In
search engine rankings, for example, it is well known
that the accuracy on the top most relevant results is
far more important than accuracy on lower ranked re-
sults; standard evaluation objectives take this into ac-
count, and are high-order. Domain-specific evaluation
measures with non-decomposable structure also arise
in many other domains, including machine transla-
tion, where the BLEU score assesses the precision of n-
grams in candidate machine translations against refer-
ence human translations [1], and image labeling prob-
lems, where the PASCAL VOC Segmentation Chal-
lenge scoring function is based on a ratio of counts: #
true positives/(# true positives + # false positives +
# false negatives) [2]. While incorporating knowledge
of the test-time procedure in a learning objective is
intuitively appealing, it does not always improve per-
formance; in certain domains such as ranking it has
been observed that optimizing the test objective can
actually hurt performance [3]. In this work, we will
show that it is beneficial to include knowledge of test-
time evaluation in an image labeling setting.
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The common motivation in each of these examples is
that we would like to improve performance of our mod-
els using knowledge that is (a) not easily expressed as
a simple label, and (b) is non-decomposable. Method-
ologically, the commonality is that we will express
knowledge as non-decomposable or high order loss
functions (HOLs), then we will use a common learn-
ing procedure to incorporate the loss function into the
learning objective. The framework we choose to work
with is the margin-scaled structural SVM, which aims
to maximize a margin between the energy a model as-
signs to the ground truth and the energy the model
assigns to all other assignments. In the margin-scaled
SVM, the margin is dependent on the loss — assign-
ments with high loss need to have higher energy. The
computational crux that comes up when learning using
the margin-scaled SVM is finding the most violating
constraint, which is a function of the assignment that
maximizes a sum of negative energy and loss. When a
decomposable loss function is paired with an otherwise
tractable model, finding this most violating constraint
is tractable, as the loss can be folded directly into stan-
dard inference computations. With high order losses,
the problem becomes more difficult. Our approach will
work within a high order message passing framework,
as described in e.g., [4].

Interestingly, there are certain classes of high order
interaction where efficient optimization can be per-
formed either exactly or approximately. Such cases
have been the focus of much recent work on maximum
a posteriori (MAP) inference in high order models (see
e.g., [5]), but little work has applied the computational
insights at the heart of this work to learning problems;
we extend the fundamental insights that are leveraged
in the MAP inference community, and apply them to
derive efficient learning algorithms for HOLs.

Contributions:

• New algorithms that enable several types of high
order loss functions to be incorporated.

• Several new classes of loss function, along with the
observation that efficient algorithms from MAP
inference, which have not previously been consid-
ered in the context of learning objectives, can be
used to optimize them.

• An empirical demonstration in image segmenta-
tion that optimizing the test objective (based on
the PASCAL score) gives an improvement over
optimizing other surrogate training objectives.

There are two secondary emphases of our work. The
first concerns its modularity and generality. The com-
plex loss functions are expressed as factors that can be

used generically in a factor graph formulation, mean-
ing they can be combined to form a range of loss
functions and also be combined with any factor graph
model, with no need for new formulations, derivations,
or code. Second, by putting complexity in the loss
function and not the energy, we push complexity to
the training procedure and obtain models that can be
very efficient at test-time.

2 Related Work

Methods for improving learning in structured output
spaces by incorporating the loss function were origi-
nally developed for SVMs [7, 8], where the MAP in-
ference problem required for margin maximization was
augmented to include the loss function. Recent pro-
posals have also demonstrated improved learning in
conditional random field approaches to structured pre-
diction by incorporating loss [9]. An application that
drives progress in this area is image segmentation; [10]
noted that pairwise segmentation models paired with
(decomposable) per-pixel loss functions can be opti-
mized very efficiently by using graph cuts to solve the
loss-augmented MAP problem. Our work here can be
viewed as an extension that explores high order loss
functions, similarly relying on recent advances in MAP
inference to achieve efficiency on difficult subproblems.

With the exception of [6] and [11], relatively little work
exists on large margin learning with high-order losses;
further, the algorithm of [6] is limited to the case of
unary-only models, where all variables are assumed to
be independent in the model. The recent work of [11]
is closely related to one of our applications: the fo-
cus is optimizing a labeling model for performance on
the aforementioned intersection-over-union loss. [11]
utilizes a piecewise approximation to the loss function
and solves a separate linear program for each piece.
We discuss this method further in Section 4, drawing
comparisons once we have given more details of our
approach. We note that other works have expressed
similar motivations, aiming to optimize specific test-
time evaluation procedures, such as the BLEU score
[12]. Our approach differs in that we work within a
standard well-studied learning framework.

We also note that concurrent with this work, [13] ad-
dresses the problem of learning with high order loss
functions for a special case where exact loss-augmented
inference can be done via reduction to graph cuts. Our
message passing approach is more general, but for the
problem addressed, our loss-augmented inference is ap-
proximate. An empirical comparison between the two
approaches is provided in [13].

There is a rapidly growing literature on incorporating
high-order potentials into the model likelihood. No-
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table examples are the pattern potentials of [14, 15];
connectivity potentials of [16, 17]; cardinality poten-
tials of [18, 19, 4]; order-based and composite poten-
tials of [4]; and the near-bounding-box-border con-
straints of [20]. This research has produced a rich
algorithmic toolbox to make MAP inference tractable
for these models. We utilize and extend this toolbox in
this paper. These methods of expressing desired prop-
erties in the model likelihood, such as adding terms
to the energy that favor object labelings that are con-
nected or convex, are complementary to our approach
of adding structure to the loss function that the model
seeks to optimize during learning.

A broader aim of incorporating additional forms of
supervision, like we discuss here, has also been a pop-
ular theme recently in machine learning. A variety
of methods for modifying the learning objective via
adding regularization-like terms have been proposed,
such as Posterior Regularization [21] and Generalized
Expectation [22]. Our approach can be seen as an al-
ternative, which puts this information directly into the
loss function.

3 Background and Notation

Structural SVMs. Given an input image
x with N pixels at test time and feature responses
φ(x), our goal is to produce an output image labeling
y ∈ {0, . . . ,K − 1}N . We will assume K = 2 through-
out, but the loss formulations apply equally well to
problems with larger K. A structural SVM works by
mapping x to y via maximizing an input-dependent
(log) likelihood function: y = arg maxŷ L(ŷ;x) =
arg maxŷ wTφ(ŷ;x), which is governed by parameters
w. The learning problem is to find a w that maximizes
a margin between the ground truth y∗

(j) and all other
outputs y(j) for all training examples j. This can be
written as a quadratic program (QP):

min.w,ξ wT w + C
∑

n

ξ(j)

s.t. wT
[
φ(y∗

(j), x(j))−φ(y(j), x(j))
]
≥1− ξ(j) (1)

where ξ(j) ≥ 0 and the constraint is replicated for
each example j and for all y(j) $= y∗

(j). C is a regular-
ization parameter. To incorporate a loss function ∆,
the margin-scaling approach enforces a loss-dependent
variable margin for different labelings, replacing Eq.
(1) with:

s.t. wT
[
φ(y∗

(j), x(j))−φ(y(j), x(j))
]
≥∆(y(j))− ξ(j) (2)

Even for a single example, Eq. (2) represents an ex-
ponentially large number of constraints, so explicitly
instantiating the QP is intractable. A common strat-
egy is to start with an empty set of constraints, suc-
cessively add the most violated constraint, re-solve

the QP, and repeat. To find violated constraints, a
loss-augmented MAP problem must be solved: y− =
maxŷ [L(ŷ;x) +∆(ŷ)] . This procedure converges in
polynomial time [8].

The central interpretation in our approach is that the
loss-augmented MAP problem can be phrased as a
(possibly approximate) inference problem in a factor
graph that includes terms both for the energy and for
the loss. In this light, assuming that we know how
to compute message for all factors in the model, we
can directly apply modern message passing algorithms
such as max-product belief propagation (MPBP) or
tree-reweighted max-product (TRW). Thus, to admit
high order loss functions into a large margin learning
formulation, we need only derive efficient message up-
dates for factors representing loss functions of interest.

One Slack Formulation [23]. A more efficient
formulation turns out to be equivalent. As usual, at
iteration t, on example j, find a negative example y−

(j).

Add one constraint in the form of Eq. (2) for a single
y(j) to a constraint set St. After finding most vio-
lated constraints for all instances, add the averaged
constraints

wT
∑

(y+
(j)

,y−
(j)

)∈St

[
φ(y+

(j), x(j))−φ(y−
(j), x(j))

]
≥
∑

(y+
(j)

,y−
(j)

)∈St

∆(y−
(j))−ξ (3)

to the quadratic program for each t. In this formu-
lation, there is a single ξ, and the size of the QP
grows with the number of iterations rather than num-
ber of iterations times number of training examples.
Especially with large data sets, this is a significantly
more efficient, yet surprisingly equivalent, formulation.
From here forward, we drop subscripts (j) indicating
the training example. Later, we will use the notation
yi to refer to the ith variable in the output vector y.

4 Learning with High Order Losses

In this section, we begin with a minor generalization
of the standard structural SVM formulation (in Sec-
tion 4.1). Then in Section 4.2, we return to the in-
terpretation of loss augmented MAP as approximate
inference and give our main contributions: defining
factor computations that allow several practical high
order loss functions to be used within the large margin
learning formulation.

4.1 Finding Positive and Negative Examples

Positive Examples: Partially labeled training data
do not provide full ground truths. Instead, there is
a set of pixels with known labels (e.g., with bound-
ing boxes, pixels outside the bounding box are back-
ground) and a set of pixels with unknown labels (e.g.,
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pixels inside the bounding box may be either fore-
ground or background). A loss function defined in
terms of partial labels implicitly expresses properties
that we desire in a positive example, but we need a
single labeling y+ to compute φ(y+, x). To deal with
this issue, we run inference to find the labeling that
has zero loss and highest likelihood under the model.
We call this the 0-Loss Constrained MAP problem:
y+ = maxŷ:∆(ŷ)=0 L(ŷ;x). Note that when full label-
ings are given as training data (such as in our first
set of experiments below), there is typically only one
labeling with zero loss, so this reduces to using the
ground truth as the positive example.

Negative Examples: The loss-augmented MAP
problem is equivalent to a MAP inference problem in
a factor graph for the model with an additional factor
for the loss function. For a factor representing loss
function ∆, the needed MPBP messages are,

m∆→i(yi)=max
y−i


∆(yi, y−i)+

∑

i′ %=i

mi′→∆(yi′)


 , (4)

where y−i is the set of all variables excluding the ith.
Note there is a separate message for each variable and
each value it can take on, so naively there are 2N opti-
mizations to perform. A theme in developing efficient
message passing algorithms is to share the work be-
tween these different optimizations. In the following
section, we show how to efficiently compute these mes-
sages for factors representing several loss functions of
interest.

4.2 Factor Computations

Here, we develop three loss functions and algorithms
for incorporating additional non-decomposable super-
vision into the learning objective.

(A) PASCAL Loss. The loss used to evaluate
the PASCAL Segmentation Challenge, restricted to a
single class, can be written as

∆PASCAL
y∗ (y) = 1 +

∑
i y∗

i (1 − yi) −
∑

i y∗
i∑

i y∗
i +

∑
i yi(1 − y∗

i )
. (5)

Let N+ =
∑

i y∗
i , N0 =

∑
i:y∗

i =1(1 − yi), and N1 =∑
i:y∗

i =0 yi be the number of ground truth pixels, false

negatives, and false positives, respectively. We can

rewrite the loss as ∆PASCAL
y∗ (y) = 1 + N0−N+

N++N1
and the

objective inside the maximization in Eq. (4) as

f(N0, N1) =
N0 − N+

N+ + N1
+ s0(N0) + s1(N1) + κ, (6)

where s0(N0) is the cumulative sum of the first N0

sorted negative incoming message values from vari-
ables where y∗ = 1 and s1(N1) is the cumulative sum

of the first N1 sorted incoming message values from
variables where y∗ = 0, and κ is a constant.

The full details of the message computations for the
PASCAL factor are given in the Appendix. Here, we
give a sketch, along with the intuition. The key insight
is that the optimal setting of y−i, and thus the full out-
going message optimization Eq. (4) can be easily com-
puted from the choice of N0 and N1 that optimizes f .
The secondary insight is that after relaxing N0 and N1

to be real-valued, f is quasi-concave restricted to the
domain of interest: N0, N1 ≥ 0. This leads to the sim-
ple (but possibly suboptimal) optimization approach
that we found to work well, which is to use local search
to find the optimal N0 or N1, then to use N0 and N1 to
compute y−i. Although the procedure could theoret-
ically get stuck at suboptimal points, in experiments
to test this, it always reached the optimum, and it did
so very quickly. (An alternative choice would use bi-
section to guarantee convergence to an ε-suboptimal
solution in log2(

1
ε ) iterations.)

Each outgoing message requires optimizing f with
slightly different incoming message values. Since the
problems are so similar, we find that we get signifi-
cantly faster convergence by warm starting the opti-
mization for one outgoing message with the result from
the previous calculation. Empirically, solving the first
optimization takes linear time, then solving the latter
N problems takes constant time each (usually 0, 1, or
2 steps of local search). Thus, we expect the sort op-
eration to dominate the complexity and runtime for
computing all N outgoing messages from a factor to
scale like N log N i.e., log N time amortized per mes-
sage. Indeed, for an image with ten thousand pixels,
like we use in our experiments, exact computation at
the loss factor in each iteration takes .03 seconds. Em-
pirical runtimes on larger problems indicate the scaling
to be roughly N log N (10k pixels: .03s, 100k pixels:
.32s, 1M pixels: 3.3s, 10M pixels: 34.5s).

Comparison to [11]. The preceding formulation is
superior to the piecewise linear approximation (PLA)
of [11] in several respects. First, the scale is sig-
nificantly greater; our algorithms operate on tens of
thousands of output variables (one per pixel) as op-
posed to the approximately 50 output variables used
by PLA. The computation benefit comes from the fact
that rather than solving many linear programs (one
per piece of the approximation to the loss function)
to find a violated constraint, the above approach uses
highly efficient special-purpose algorithms, which com-
municate using message passing. Second, the above
formulation is exact in cases where the PLA approach
is not, because the message passing operates on the
exact loss and computes exact outgoing messages. Fi-
nally, the above approach is more modular, as different
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HOLs can easily be combined with other forms of su-
pervision and/or other modeling components.

(B) Bounding Box % Fullness Loss. Suppose
we are given bounding box labels at training time
and wish to optimize for performance on a per-pixel
segmentation task. This situation may arise if we
are training a segmentation model and would like to
augment the set of detailed per-pixel ground truths
with a set of easier-to-obtain, coarser bounding box
ground truths. We assume that bounding boxes con-
tain roughly a fraction R foreground pixels (and 1−R
background pixels). Let y∗ be the coarse labeling
where y∗

i indicates whether pixel i is within the bound-
ing box. A reasonable (and novel) loss function is

∆BB
y∗ (y) =

∑

i:y∗
i =0

yi +

∣∣∣∣∣∣
∑

i:y∗
i =1

y∗
i yi − R

∑

i:y∗
i =1

y∗
i

∣∣∣∣∣∣
. (7)

This loss can be decomposed into low order parts over
pixels outside the bounding box and a high order part
over pixels inside the bounding box. The high order
term can be written as a function of the number of
pixels on inside the bounding box i.e., f(

∑
i:y∗

i =1 yi),

so the cardinality potential from [4] can be used with-
out modification. The 0-loss Constrained MAP can
also use an unmodified cardinality potential. A range
of other functions could be used for the inside the
bounding box term. For example, we might assign zero
loss to several different pixel value counts and vari-
ous penalties to deviations from these preferred values.
Any such loss can easily be used in this formulation.

(C) Local Border Convexity Loss. A second
form of weak labeling that is easier for humans to pro-
duce than a full per-pixel labeling is a rough inner-
bound on the true labeling plus a rough outline of the
object to serve as an outer bound. For example, a pop-
ular form of labeling in interactive image segmentation
derives from a user drawing a few strokes to mark the
internal skeleton of the object, and a crude circular
stroke around the outside. We would like to use such
a labeling to define a loss function. We assume that
the strokes define the inner core of the object, so if
follow any ray extending out from the stroke towards
the boundary of the object, the labeling along the ray
will be monotonic—i.e., of the form 1m0n.

This motivates our local border convexity (LBC) loss,
illustrated in Fig. 1 (a) and described intuitively in
the caption. Formally, we start with a set of pixels F
that are labeled foreground in the and a set of pixels
B that are labeled background. The remaining unla-
beled pixels will be denoted U (gray in Fig. 1). We
construct shortest paths through pixels in U from an
outermost pixel p ∈ U (i.e., one that neighbors a pixel
in B) to any innermost pixel in q ∈ U (i.e., one that

Figure 1: (Left) Illustration of LBC loss. The white re-
gion is foreground, and the black is background. The
gray can take either label, but a penalty of α is in-
curred for each outwards path that changes from back-
ground to foreground as it moves away from the object.
(Right) Example of eroded Aeroplane labeling.

neighbors a pixel in F). We then traverse the path
backwards, from q to p and add a monotonicity con-
straint on this ordered set Q0 = (q0, . . . , p0) of pixels.
We repeat this for each pixel on the U - B boundary
that has not already been used in a shortest path, then
through other pixels in U that have not been used in
any shortest path. From each of these starting pixels,
we find a shortest path through U to F , constructing
ordered sets Qk for each path. When all pixels in U
have been used in at least one path, we have our set
of constraints Q = {Q0, . . . ,Qm}. The loss is then,

∆LBC
y∗ (y) =

∑

i∈F∪B
1{yi $= y∗

i } +
∑

(q,...,p)∈Q
g(yq, . . . , yp), (8)

where g(y0, . . . , ym) = 0 if yi ≥ yj for all i < j and α
otherwise.

To maximize the loss, we need to define a not-
monotonic factor. This is an order-based potential
[4], We describe a dynamic programming algorithm
for this factor in the supplementary materials. The
algorithm computes all N outgoing messages in O(N)
time, i.e., O(1) amortized time per message. The 0-
loss constrained MAP uses a slightly modified version
of the convexity potential described in [4], which is
equally efficient (see supplementary materials).

5 Experimental Evaluation

5.1 Deformable Shape Loss

As a first experiment, we simulated a setting where the
relative location of a set of points is important, but the
precise location is not. Such a setup is motivated by
the task of recognizing deformable shapes given noisy
observations of landmarks.

Inputs come in the form of noisy observations of a set
of point locations on a 2D grid. Specifically, the task
is to jointly predict the location of three special points
on a grid, given feature responses at each grid location.
We compare two losses: a low order loss that penalizes
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!!!!!!!!!!Train
Evaluate

Pixel Error HO Error

L
o
w Pixel-loss 7.1% 3.2%

HO-loss 10.1% 1.4%
M

e
d Pixel-loss 26.9% 9.7%

HO-loss 28.2% 5.2%

H
ig

h Pixel-loss 84.3% 44.9%
HO-loss 67.5% 15.8%

Figure 2: Synthetic results. Error on pixel-based error
and high order (HO) error for different levels of noise
and train time loss functions.

any error in predicting special point locations; and a
high order loss that cares only about the relative order-
ing of the points from top to bottom and from left to
right. Due to space, we describe experimental details
in the supplementary materials. The important result,
however, is that learning according to the high order
loss function leads the model to favor the features that
are less reliable predictors of the exact location but
that are more accurate predictors of the general re-
gion where a point lies; learning according to the low
order loss leads the model to favor a set of features that
gives a stronger indicator of the precise location of the
special points but that has a non-local noise model.
Quantitative results (Fig. 2) show that except for the
high noise case, the high order-trained model performs
best on the high order loss, and the low order-trained
model performs best according to the low order loss.
The low order loss, in a sense, leads to learning a model
that cannot see the forest for the trees.

5.2 Three Image Labeling Experiments

Data. We took subsets of images from the PAS-
CAL VOC Segmentation challenge data set contain-
ing a given object—Aeroplane, Car, Cow, and Dog.
The database provided pixel-wise segmentations and
bounding boxes for each image. We then created
ground truth labels by assigning a pixel to foreground
if it was labeled {Aeroplane, Car, Cow, Dog} in the
VOC labels and background otherwise. We scaled the
images so that the minimum dimension was 100 pixels.
We also created eroded data by eroding the per-pixel
ground truths with a disk of radius 5.5. We then cre-
ated an uncertain region by dilating the eroded labels
by 10 pixels. See Fig. 1 (b) for an example.

Model. We use 84 per-pixel features that repre-
sent color and texture in the patch surrounding a pixel
(the unary model). We use a standard pairwise 4-
connected grid model, with 1 constant pairwise feature
and 12 pairwise features that are based on boundary
appearance (the unary + pairwise model). Weights

on pairwise features are constrained to be positive, so
that the resulting pairwise potentials are submodular.
This produces models with approximately 10,000 to
20,000 variables and 20,000 to 40,000 edges per image.

Inference. We use the COMPOSE framework [24] to
compute messages for the entire pairwise model using
dynamic graph cuts [25]. With decomposable (per-
pixel) losses, this guarantees that inference is exact,
even though the grid graph contains loops. With high
order losses, inference is not guaranteed to be exact,
but we find this framework to work significantly better
than standard max-product belief propagation with a
static message passing schedule.

We use an asynchronous schedule across subproblems,
where the full grid model is treated as one subproblem,
and the loss is treated as a second subproblem. We al-
ternate between the loss factor(s) and the submodular
grid factor, having each send all outgoing messages
at each step. We use damping of .95 for all exper-
iments and set a maximum number of 50 iterations.
Solving the QP is very fast, so the bottleneck is the
loss-augmented MAP calls. We parallelize them over
four CPUs. One loss-augmented MAP call takes be-
tween a couple seconds and two minutes, depending
on the model and loss function being used. With-
out pairwise potentials, only one iteration of message
passing is typically required for the loss-augmented
MAP, so learning is very fast. For learning, we set
C = .01 for experiments with per-pixel ground truths
and C = .0001 for experiments with weakly labeled
ground truths. All our learned models are submodu-
lar, so we run the graph cuts algorithm of [26] at test
time to find the optimal MAP labeling.

(A). PASCAL Loss. We first examine how training
on different loss functions affects test performance. We
look at three loss functions: 0-1 Loss is the constant-
margin structural SVM Eq. (1); Pixel Loss and PAS-
CAL Loss are loss-augmented structural SVM train-
ing with the respective loss functions. We pair all com-
binations of training objective and test evaluation, be-
tween pixel and PASCAL accuracy. We also evaluate
the tradeoff associated with using pairwise potentials
in the model. On one hand, we know that objects
in images are smooth, so introducing pairwise interac-
tions should make the model more realistic. On the
other hand, when paired with high order losses, loss-
augmented MAP inference is no longer guaranteed to
be exact, which might hurt learning performance.

Fig. 3 (a) shows results for a unary only model trained
to optimize the three loss functions, where inference is
always exact. Fig. 3 (b) shows results for a unary +
pairwise model trained with the same loss functions.
For the 0-1 and pixel loss, inference is exact. For the
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!!!!!!!!!!Train
Evaluate

Pixel Acc. PASCAL Acc.

0-1 Loss 82.1% 28.6
Pixel Loss 91.2% 47.5

PASCAL Loss 88.5% 51.6
(a) Unary only model

!!!!!!!!!!Train
Evaluate

Pixel Acc. PASCAL Acc.

0-1 Loss 79.0% 28.8
Pixel Loss 92.7% 54.1

PASCAL Loss 90.0% 58.4
(b) Unary + pairwise model

!!!!!!!!!!Train
Evaluate

Pixel Acc. PASCAL Acc.

C
a
r Pixel Loss 80.4% 6.7

PASCAL Loss 72.9% 37.0

C
o
w Pixel Loss 80.3% 23.3

PASCAL Loss 79.4% 48.1

D
o
g Pixel Loss 81.5% 16.6

PASCAL Loss 75.9% 38.3
(c) Unary + pairwise model; other objects

Figure 3: Test accuracies for training-test loss function
combinations. In (c), all models are unary + pairwise.
A labeling of all background gives pixel accuracies of
79.8%, 78.9%, and 80.2%, on Car, Cow, and Dog re-
spectively.

PASCAL loss, inference is approximate. However, re-
sults show that the combination of richer model, high
order loss, and approximate inference produces the
best results out of all models when evaluated on the
PASCAL objective. In particular, it outperforms both
exact PASCAL loss training with unary-only poten-
tials and exact training of a unary + pairwise model
but with a pixel loss.

In Fig. 3 (c), we take the strongest baseline (unary +
pairwise model, pixel loss) and compare it to a unary
+ pairwise model trained to optimize the PASCAL
loss on a variety of other object classes. As before, we
find that training the model for the same loss func-
tion as is being evaluated at test time produces re-
sults that are clearly superior. In Fig. 4, we show
training and test outputs for unary + pairwise models
trained on the pixel loss (middle column) and the PAS-
CAL loss (right column). Visually, we can see that the
PASCAL-trained model labels more pixels foreground,
correcting the overly conservative pixel-trained model.

(B). Bounding Box % Fullness Loss. Here, we
consider the problem of learning to label pixels in im-
ages when only a bounding box is given as supervision.
We use the bounding box loss given in (9) and use a
range of settings of the “fullness” parameter R. When
R = 1, we have a baseline low-order model where the

Figure 4: Example test results on Cow dataset. Meth-
ods from left to right: (Left) Raw image. (Middle)
Pixel Loss. (Right) PASCAL Loss. Additional exam-
ples can be found in the supplementary material.

bounding box is treated as the ground truth segmenta-
tion. Fig. 5 shows test results for Aeroplane and Cow
evaluated on both pixel and PASCAL loss. In Fig. 5
(b,c,d), we see that performance peaks near the true
percentage observed in the data, denoted by the verti-
cal red line. Note that the location of this vertical red
line can itself be viewed as a type of non-decomposable
supervision, which we could reliably predict from do-
main knowledge or a small number of fully labeled ex-
amples. This demonstrates that the model utilizes the
weak labels in the bounding box, out-performing the
SVM that ignores these pixels.

(C). Local Border Convexity Loss. Finally,
we compare two methods for learning with partially-
labeled images, as illustrated in Fig. 1. In the base-
line method, we train an SVM with a modified loss
function, where unlabeled pixels can be assigned ei-
ther label without incurring any loss. This amounts
to discarding the unlabeled pixels during training. We
refer to this as the Modified Loss SVM. The second
method is our structural SVM with LBC Loss. In
this loss function, there are many labelings of the un-
labeled pixels that are assigned zero loss, but penalties
are imposed on non-locally convex labelings.

Fig. 5 shows results on four object classes. In all cases,
the LBC loss is an improvement over the baseline when
evaluating with respect to the PASCAL score (and
in three of four cases with respect to pixel accuracy).
Note that the loss being optimized is not exactly ei-
ther the PASCAL or pixel loss. In the other cases,
the improvements are more modest, likely because the
Modified Loss SVM is not significantly worse than
the methods that train on fully labeled ground truths
(Fig. 3), so there is not much room for improvement.
The largest gap in performance between strongly la-
beled and weakly labeled is on Aeroplane, which is
likely caused by the high proportion of small planes –
our erosion method completely eliminates some small
objects, making it impossible for the LBC loss to re-
cover them at training time. Surprisingly, on the Dog
data set, the results are even better than training with
per-pixel labels.
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(c) (d)

!!!!!!!!!!Train
Evaluate

Pixel Acc. PASCAL Acc.

A
e
ro Mod. Loss SVM 90.2% 36.4

LBC Loss 90.6% 38.1

C
a
r Mod. Loss SVM 79.8% 0

LBC Loss 80.2% 5.3

C
o
w Mod. Loss SVM 78.4% 15.6

LBC Loss 76.8% 32.3

D
o
g Mod. Loss SVM 80.2% 0

LBC Loss 82.4% 24.2
(e)

Figure 5: (a-d) Bounding box results: test accuracy
versus bounding box fullness parameter R. Vertical
line shows true average bounding box fullness. (a)
Aeroplane pixel score. (b) Aeroplane PASCAL score.
(c) Cow pixel score. (d) Cow PASCAL score. (e) Local
border convexity results for training-test loss function
combinations on eroded data. Modified Loss SVM is
an independent SVM that discards pixels in the gray
region at training time.

6 Discussion and Future Work

Though low order loss functions are convenient for op-
timization, they can impose a significant bias on the
learned model. In this work, we show several exam-
ples where model performance can be improved by us-
ing more complex loss functions without significantly
sacrificing computationally efficiency. A larger class
of loss functions provides more flexibility in designing
a training criteria, allowing one to tailor the loss to
the application, e.g., training a model to optimize the
PASCAL loss significantly improves performance when
it is evaluated on the PASCAL loss, while training a
model to optimize the deformable shape loss is effec-
tive at guiding the model to focus its capacity on the
features most relevant to the true task. The other two
losses give a meaningful way of doing semi-supervised
learning, where a loss is defined in terms of how a par-
tial labeling is extended to a full labeling.

Based on these results, and the efficiency of the high
order factors (e.g., the PASCAL factor defined over 10
million variables requires only approximately 30 sec-
onds per iteration), we expect there to be many more
scenarios where tractable high order loss functions can
improve performance, both in computer vision and be-
yond. Specifically, all of the losses here are applicable
to multilabel problems. A second natural extension
is to formulate high order losses that do not just ap-
ply to many outputs within an image but that apply
to many outputs across multiple images. For example,
we might define a loss function in terms of the smooth-
ness of a pattern of pixels moving through frames of a
video.

Given this extension of the range of loss functions that
can be efficiently optimized in structural SVMs, an
interesting modeling choice that arises is whether to
add structure to the model, to the loss function, or
to both. There are two potential benefits of adding
structure to the loss rather than the model. First, it
may facilitate learning. Some constraints or desired
properties of the labeling are easier to express rela-
tive to the ground truth, which is available at training
time but not at test. For example, if we would like
to build some translation-invariance into the model,
we can construct a loss function that assigns zero loss
to segmentations in which the target object is trans-
lated by one or two pixels. This can be expressed as
a high-order loss, but would be nearly impossible to
put into the likelihood. Second, it allows for flexi-
ble modeling while also permitting fast test-time in-
ference. Adding structure to the loss function but not
the model creates a variational-like learning scenario,
where the model must learn to use its restricted de-
grees of freedom to best optimize the loss. The simpler
likelihood can make test-time inference very fast. Ex-
ploring the tradeoffs between these alternative model
formulations is a direction of future work. More gen-
erally, we believe that the flexibility and efficiency of
our loss functions opens up a wide range of exciting
applications.
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