
Randomized Optimum Models for Structured Prediction

Randomized Optimum Models for
Structured Prediction — Appendix

7 More Example
RandOM Constructions

7.1 Example: Shortest Paths

In the st-shortest path problem, we are given a di-
rected graph G=(V, !E), along with two special nodes,
a source s, and a destination t. Each directed
edge (i, j) has a cost wij . The goal of the st-shortest
path problem is to find a path from s to t such that
the sum of edge costs along the path is minimized.

Just as matchings represent a certain type of funda-
mental structure, so do shortest paths. For example,
consider observations of people walking through their
neighborhood from home to work. A natural model of
these observations is that people have a cost function
for traversing sections of road or sidewalk that depend
on features such as length, scenery, crowdedness, or
safety. To get between two points, we might suppose
that a person chooses the path that has lowest cost
under their (to us, unobserved) cost function.

In RandOM terms, we let w be a vector of length |!E|,
where there is a cost wij for each directed edge (i, j).
A shortest path is uniquely defined by the set of edges
that it traverses, so we can represent the path using bi-
nary variables y={yij |(i, j) ∈ !E}, where yij indicates
that the path traversed the edge from i to j. As before,
we let the sufficient statistic be the identity ρ(y)=y,
and we let η(y) enforce the constraint that y corre-
sponds to a valid st-path.2 It is then clear that mini-
mizing fw is equivalent to finding the shortest st-path.

7.1.1 Example: Minimum Cuts

Another example is finding the minimum cut in a
graph. Given an undirected graph G=(V, E) with non-
negative edge weights {wij : (i, j) ∈ E}, the minimum
cut problem is to split the graph into two subsets S
and S̄ such that the sum of the weights of the “cut”
edges is minimized. An edge is considered cut if one
endpoint lies in S and the other lies in S̄.

There exist efficient algorithms for finding the min-
imum cut in graphs with arbitrary topology. This
is particularly useful because of the connection be-
tween finding a minimum cut in a graph and min-
imizing graph-structured submodular functions over

2One way to define a shortest st-path as a set of con-
straints: constrain the out-degree of s to be 1, the in-degree
of t to be 1, and for all other vertices, force the in-degree
to equal the out-degree, which must be less than or equal
to 1. Note these are linear constraints in y.

binary variables. That is, these submodular mini-
mization problems can be solved exactly via reduc-
tion to min-cut (Cunningham, 1985), which has led to
widespread practical application. One example is the
so-called “graph cuts” algorithm, which is a workhorse
of computer vision. The most common use in com-
puter vision is binary image segmentation, where the
goal is to label each pixel in an image as belonging to
one of two semantic classes. For example, separating
foreground from background or object (e.g., airplane)
from not-object. This task is fundamental in many
vision applications, can be a subtask for non-binary
image segmentation, and has applications on its own
to image editing (Rother et al., 2004). The effective-
ness of the available optimization procedures has also
led to the problem being used to model protein-protein
interactions in computation biology (Wang, 2008), and
in natural language processing (Ng, 2009).

To express the minimization in RandOM terms, we use
the standard connection with graph-structured sub-
modular energy functions over binary variables. Given
a graph G=(V, E), we associate a binary variable yi

with each vertex i, so y={y1, . . . , y|V|}. In the im-
age labeling setting, for example, there would be one
binary variable per pixel. In this case, the sufficient
statistic ρ(y) is no longer the identity. Instead, it is

ρ(y) = ({1{yi=k}|i ∈ V, k ∈ {0, 1}}, (15)

{1{yi !=yj}|(i, j) ∈ E}). (16)

There is an indicator for each yi, and indicators de-
noting whether variables that share an edge in G have
different values (i.e., the edge is cut). The vector w
associates a cost with each variable taking on each
value, and for cutting each edge. The constraints η(y)
are unused, because all binary labelings are allowed.

Assuming the w values associated with edges are non-
negative, the resulting fw(y) = 〈w, ρ(y)〉 will be sub-
modular and can thus be minimized efficiently. Con-
versely, it is the case that any graph-structured sub-
modular function over binary variables can be ex-
pressed in this form (Kolmogorov and Zabih, 2004).

8 Relation to Conditional Random
Field Representation

In Papandreou and Yuille (2011), it is discussed how
the Gibbs distribution arising from a typical CRF for-
mulation can be recovered in the PM framework by
adding independent Gumbel noise to the energy of
each joint assignment. While the same argument ap-
plies to RandOMs, since it is not practically imple-
mentable, and since it has been discussed in Papan-
dreou and Yuille (2011), we do not discuss it further

Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

here. Instead, we focus on how the energy function of
a standard CRF formulation can be recovered using
our notation and the RandOM formulation.

The latent variables w are defined such that the en-
ergy function used by a standard exponential family
form of CRF could be recovered as fw(y). In our no-
tation, we could achieve this by deterministically set-
ting w = ψT φ(x). To illustrate this representational
choice concretely, consider a pairwise graphical model
over graph G = (V, E) with unary feature set U and
pairwise feature set P, and thus energy function

E(y) =
∑

d∈V

∑

u∈U
ψuφ̄ud(yd;x) (17)

+
∑

d,d′∈E

∑

p∈P
ψpφ̄pdd′(yd, yd′ ;x), (18)

where φ̄ud are unary feature functions that give a fea-
ture response for feature u at location d for each pos-
sible setting of yd. When y are discrete, the feature
functions φ̄ decompose as

φ̄ud(yd;x) =
∑

k∈Ld

1{yd=k}φudk(x) (19)

φ̄pdd′(yd, yd′ ;x) =
∑

k,k′∈Ld×Ld′

1{yd=k∧yd′=k′}φpdd′kk′(x)

(20)

We can then flatten the above φ functions into a single
vector, φ, such that E(y) =

〈
ψT φ(x), ρ(y)

〉
, where

ρ(y) is the set of standard exponential family suffi-
cient statistics for the canonical overcomplete repre-
sentation: ρ(y) =

(
1{yα=kα}

)
α∈V∪E,kα∈×d∈αLd

, where
kα is either the label space for a single variable, or the
cross product of label spaces for variables that share an
edge (Wainwright and Jordan, 2008). From here, it is
straightforward to see that if we set w to be determin-
istically defined as w = ψT φ(x), then fw(y) = E(y).
In the RandOM formulation, w is instead a random
function of ψT φ(x).

9 Geometry of Inverse Mapping Sets

A fundamental challenge when using real-valued pa-
rameters to define cost functions over discrete spaces
is that there are many settings of the parameters that
lead to the same minimum cost assignment. We refer
to this set of parameter settings as the “inverse map-
ping set,” and — as mentioned before — we denote it
F−1(y). One of the central themes of this work is that
optimization algorithms can be productively thought
of in terms of the geometry of the inverse mapping set

F−1(y), and leveraging structure in F−1(y) can lead
to efficiencies in learning algorithms.

In this section, we develop some intuitions about these
important sets and prove properties of F−1(y) for dif-
ferent optimization problems defined by fw. In the
next section, we will discuss learning algorithms that
make use of these characterizations.

Proposition 3. When fw(y) is defined as the expo-
nential family (possibly with combinatorial base mea-
sure) as in Eq. 4, F−1(y) is a convex set.

Proof. First, consider the case that η(y)=0 for all y.
Then, as noted in Papandreou and Yuille (2011),
F−1(y) is defined by the conjunction of constraints
〈w, ρ(y)〉 <〈w, ρ(y′)〉 for all y′ $=y. This is a set of
linear constraints in w. Half-spaces are convex sets,
and the intersection of a set of convex sets is a convex
set, which proves the η(y) = 0 case.

For the more general case where η(y) may define non-
trivial support, F−1(y) is defined by the conjunction of
constraints 〈w, ρ(y)〉 < 〈w, ρ(y′)〉 for all y′ $= y, where
y′ is allowed by η. Again, though, this is an intersec-
tion of half-spaces, which completes the proof.

Proposition 4. When fw is defined as the connected
components objective in Eq. 9, F−1(y) may be non-
convex.

Proof. We prove this by example, constructing wA ∈
F−1(y), wB ∈ F−1(y) and wc = λwA + (1 − λ)wB

such that λ ∈ [0, 1] and wC $∈ F−1(y).

Suppose we have G = (V, E) with nodes
V = {v1, v2, v3, v4} and edges E =
{(1, 2), (2, 3), (3, 4), (4, 1)}. Let τ > .5. It is clear that
if we set wA = (wA

12, w
A
23, w

A
34, w

A
41) = (1, 1, 1, 0),

then there is a single connected component,
so F (wA) = (1, 1, 1, 1). Similarly, if we set
wB = (wB

12, w
B
23, w

B
34, w

B
41) = (1, 0, 1, 1), then

there is a single connected component, so also
F (wB) = (1, 1, 1, 1). Thus for y = (1, 1, 1, 1),
wA ∈ F−1(y) and wB ∈ F−1(y).

Now let λ = .5, so wc = λwA + (1 − λ)wB =
(1, .5, 1, .5). Now, however, both of the edges (2, 3)
and (4, 1) have weight below the threshold i.e. wij ≤ τ ,
leaving us with two separate connected components.
So F (wC) $= y and thus wC $∈ F−1(y), which com-
pletes the proof.

Lemma 2. Let fw(y) be defined as the connected com-
ponents objective in Eq. 9. There is no equivalent ex-
pression of fw(y) in the exponential family form Eq. 4.

Proof. This follows simply from a proof by contradic-
tion that uses Propositions 3 and 4.

Randomized Optimum Models for Structured Prediction

Suppose for the sake of contradiction that there is some
f̃w(y) such that f̃w(y) is expressible in exponential
family form, and that f̃w(y) = fw(y) for all y. Then
F−1(y) = F̃−1(y), and by Proposition 3, F−1(y) is
a convex set. However, this contradicts Proposition
4.

Note that this result is specific to the choice of pa-
rameterization for a problem. For example, there are
functions fw̃ of higher dimensional w̃ that assign the
same cost as fw to all y, where the inverse mapping in
the higher dimensional space could very well be onto
a convex set.

9.1 Star Convexity

Our final result in this section is to show that there
are properties of F−1(y) beyond convexity that will
still be useful in certain later learning formulations.
To illustrate this, we take as example the inverse set
F−1(y) for the connected components problem from
Section 2.1.2. While not necessarily a convex set,
F−1(y) for this problem still has particular tractable
structure that will allow us to learn a RandOM using
some of the techniques in Section 4.

We begin by recalling the definition of star convexity
(Smith, 1968).

Definition 1. A set S is star convex if there exists a
point t ∈ S such that ∀s ∈ S, λs+(1−λ)t ∈ S for all
λ ∈ [0, 1]. We call t a center point.

Proposition 5. The inverse set F−1(y) for the con-
nected components problem from Section 2.1.2 is a
star-convex set.

Proof. The main idea is that for any s ∈ F−1(y) and
all pairs of variables i, j such that yi = yj , there must
be at least one critical path between i and j using edges
(k, l) such that skl > τ . We define a center point t and
show that moving from s towards t does not alter the
critical path structure.

First, given y, we give a center point t. For each
(i, j) ∈ E , let tij = 1 if yi = yj and tij = 0 if yi $= yj .
We then claim that t is a center point. To verify
that t is a center point and thus that F−1(y) is star-
convex, we need to show that for an arbitrary point
s ∈ F−1(y), it holds that λs + (1− λ)t = u ∈ F−1(y)
for all λ ∈ [0, 1].

Next, we show that for any edge (i, j), we can inde-
pendently change the value of uij to any value between
sij and tij while maintaining that F (u) = yu is equal
to y, which ensures u ∈ F−1(y). A subtle point is
that we are proving a slightly stronger condition than
is required. Whereas star-convexity requires only that

the line segment connecting s and t lies fully within
F−1(y), we show that the largest axis-aligned hyper-
rectangle that has s and t as corners lies fully within
F−1(y).

Let r(w) be the set of edges (i, j) ∈ E such that
wij > τ . A consequence of this definition of r and the
definition of t is that yi = yj if and only if (i, j) ∈ r(t).
The next claim is that r(t) ⊇ r(s). Suppose this were
false. Then sij > τ for some (i, j) where yi $= yj , which
contradicts s ∈ F−1(y).

Consider a pair (i, j) such that yi = yj . Although it
might be that (i, j) $∈ r(s) or even that (i, j) $∈ E ,
we know due to s ∈ F−1(y) that there is some other
path between i and j via edges in r(s). We call such
a path p(i, j) a critical path between i and j. Note
that all edges (k, l) on p(i, j) have tkl = 1, so letting
ukl = λklskl + (1− λkl)tkl for λkl ∈ [0, 1] ensures that
all critical paths in r(s) are also in r(u). This implies
that after setting ukl = λklskl +(1−λkl)tkl, if yk = yl,
then yu

k = yu
l .

The final step is to show that by setting ukl = λskl +
(1 − λkl)tkl, we never induce yu

i = yu
j when yi $= yj .

We make use of the fact that yu
i = yu

j when yi $= yj for
some i and j if and only if there is at least one edge
(k, l) ∈ E such that (k, l) ∈ r(u) while (k, l) $∈ r(t).
Consider a (k, l) ∈ E such that yk $= yl. From here,
it follows that tkl = 0 and skl ≤ τ . Letting ukl =
λklskl + (1 − λkl)tkl for λkl ∈ [0, 1], it is clear that
ukl ≤ τ . This implies that (k, l) $∈ r(t) =⇒ (k, l) $∈
r(u), which completes the proof.

10 Slice Sampling Algorithm

Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

Algorithm 2 Inner Slice Sampling Loop for Bipartite Matching RandOM
Input: Ay Current state of dynamic Hungarian algorithm, which stores y internally

Input: w ∈ RJ2
, which lies within F−1(y)

Input: α ∈ R Slice sampling step out parameter
W ← Reshape(w, (J, J)) { Treat w as a J × J matrix}
for j = 1 to J do

u′ ← log (Random-Uniform(0, 1)) + log p(W |ψ, x)
s ← Random-Normal(0, IJ)
{Step out}
inInvSetL, inInvSetR, inInvSet ← 0, 0, 0 { Used to cache set membership calls}
W j: ← W j: − αs { Subtract from row j of W }
bl, br ← −α, α {Keep track of how far we step out left and right, respectively}
while log p(W |ψ, x) > u′ ∧ (inInvSetL ← In-Inverse-Set(W , j;Ay)) do

W j: ← W j :− αs
bl ← bl − α

end while
W j: ← W j: − bls + αs { Return to starting point, and step right}
while log p(W |ψ, x) > u′ ∧ (inInvSetR ← In-Inverse-Set(W , j;Ay)) do

W j: ← W j : + αs
br ← br + α

end while
{Step in}
b ← br { Current state of W is where we ended step out right}
while !(inInvSet ∧ log p(W |ψ, x) > u′) do

b′ ← Random-Uniform(bl, br)
W j: ← W j: + (b′ − b)s
if (b′ < 0 ∧ inInvSetL) ∨ (b′ > 0 ∧ inInvSetR) then

inInvSet ← 1
else

inInvSet ← In-Inverse-Set(W , j;Ay)
end if
if b′ < 0 then

bl ← b′

inInvSetL ← inInvSet
else if b′ > 0 then

br ← b′

inInvSetR ← inInvSet
end if

end while
end for
Return Reshape(W , (J2))

