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Abstract

We introduce a factor analysis model that
summarizes the dependencies between ob-
served variable groups, instead of dependen-
cies between individual variables as standard
factor analysis does. A group may corre-
spond to one view of the same set of objects,
one of many data sets tied by co-occurrence,
or a set of alternative variables collected from
statistics tables to measure one property of
interest. We show that by assuming group-
wise sparse factors, active in a subset of the
sets, the variation can be decomposed into
factors explaining relationships between the
sets and factors explaining away set-specific
variation. We formulate the assumptions in
a Bayesian model providing the factors, and
apply the model to two data analysis tasks, in
neuroimaging and chemical systems biology.

1 Introduction

Factor analysis (FA) is one of the cornerstones of clas-
sical data analysis. It explains a multivariate data
set X ∈ RN×D in terms of K < D factors that cap-
ture joint variability or dependencies between the N
observed samples of dimensionality D. Each factor
or component has a weight for each dimension, and
joint variation of different dimensions can be studied
by inspecting these weights, collected in the loading
matrix W ∈ RD×K . Interpretation is made easier in
the sparse variants of FA (Knowles and Ghahramani,
2011; Paisley and Carin, 2009; Rai and Daumé III,
2009) which favor solutions with only a few non-zero
weights for each factor.
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We introduce a novel extension of factor analysis,
coined group factor analysis (GFA), for finding factors
that capture joint variability between data sets instead
of individual variables. Given a collection X1, ...,XM

of M data sets of dimensionalities D1, ..., DM , the task
is to find K <

∑M
m=1Dm factors that describe the col-

lection and in particular the dependencies between the
data sets or views Xm. Now every factor should pro-
vide weights over the data sets, preferably again in a
sparse manner, to enable analyzing the factors in the
same way as in traditional FA.

The challenge in moving from FA to GFA is in how to
make the factors focus on dependencies between the
data sets. For regular FA it is sufficient to include a
separate variance parameter for each dimension. Since
the variation independent of all other dimensions can
be modeled as noise, the factors will then model only
the dependencies. For GFA that would not be suf-
ficient, since the variation specific to a multi-variate
data set can be more complex. To enforce the factors
to model only dependencies, GFA hence needs to ex-
plicitly model the independent variation, or structured
noise, within each data set. We use linear factors or
components for that as well, effectively using a princi-
pal component analyzer (PCA) as a noise model within
each data set.

The solution to the GFA problem is described as a set
of K factors that each contain a projection vector for
each of the data sets having a non-zero weight for that
factor. A fully non-sparse solution would hence have
K ×M projection vectors or, equivalently, K projec-
tion vectors over the

∑M
m=1Dm-dimensional concate-

nation of the data sources. That would, in fact, corre-
spond to regular FA of the feature-wise concatenated
data sources. The key in learning the GFA solution is
then in correctly fixing the sparsity structure, so that
some of the components will start modeling the vari-
ation specific to individual data sets while some focus
on different kinds of dependencies.

An efficient way of solving the Bayesian GFA prob-
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lem can be constructed by extending (sparse) Bayesian
Canonical Correlation Analysis (Archambeau and
Bach, 2009) from two to multiple sets and by replacing
variable-wise sparsity by group-wise sparsity as was
recently done by Virtanen et al. (2011). The model
builds on insights from these Bayesian CCA models
and recent non-Bayesian group sparsity works (Jenat-
ton et al., 2010; Jia et al., 2010). The resulting model
will operate on the concatenation Y = [X1, ...,XM ] of
the data sets, where the groups correspond to the data
sets. Then the factors in the GFA (weight vectors over
the dimensions of Y) become sparse in the sense that
the elements corresponding to some subset of the data
sets become zero, separately for each factor. The crit-
ical question is how well is the model able to extract
the correct factors amongst the exponentially many al-
ternatives that are active in any given subset of data
sets. We empirically demonstrate that our Bayesian
model for group-wise sparse factor analysis finds the
true factors even from a fairly large number of data
sets.

The main advantages of the model are that (i) it is con-
ceptually very simple, essentially a regular Bayesian
FA model with group-wise sparsity, and (ii) it enables
tackling completely new kinds of data analysis prob-
lems. In this paper we apply the model to two real-
world example scenarios specifically requiring the GFA
model, demonstrating how the GFA solutions can be
interpreted. The model is additionally applicable to
various other tasks, such as learning of the subspace
of multi-view data predictive of some of the views, a
problem addressed by Chen et al. (2010).

The first application is analysis of fMRI measurements
of brain activity. Encouraged by the recent success in
discovering latent brain activity components in com-
plex data setups (Lashkari et al., 2010; Morup et al.,
2010; Varoquaux et al., 2010), we study a novel kind of
an analysis setup where the same subject has been ex-
posed to several different representations of the same
musical piece. The brain activity measurements done
under these different conditions are considered as dif-
ferent views, and GFA reveals brain activity patterns
shared by subsets of different conditions. For example,
the model reveals “speech” activity shared by condi-
tions where the subject listened to a recitation of the
song lyrics instead of an actual musical performance.

In the second application drug responses are studied
by modeling four data sets, three of which contain gene
expression measurements of responses of different cell
lines (proxies for three diseases; (Lamb et al., 2006))
and one contains chemical descriptors of the drugs.
Joint analysis of these four data sets gives a handle on
which drug descriptors are predictive of responses in a
specific disease, for instance.

2 Problem Formulation

The group factor analysis problem, introduced
in this work, is as follows: Given a collection
X1 ∈ RN×D1 , ...,XM ∈ RN×DM of data sets (or views)
with N co-occurring observations, find a set of K fac-
tors that describe the joint data set Y = [X1, ...,XM ].
Each factor is a sparse binary vector fk ∈ RM over
the data sets, and the non-zero elements indicate that
the factor describes dependency between the corre-
sponding views. Furthermore, each active pair (fac-
tor k, data set m) is associated with a weight vector
wm,k ∈ RDm that describes how that dependency is
manifested in the corresponding data set m. The wm,k

correspond to the factor loadings of regular FA, which
are now multivariate; their norm reveals the strength
of the factor and the vector itself gives more detailed
picture on the nature of the dependency.

The f ’s, collected in the matrix F, have been intro-
duced to make the problem formulation and the inter-
pretations simpler; in the specific model we introduce
next they will not be represented explicitly. Instead,
the weight vectors wm,k are instantiated for all possi-
ble factor-view pairs and collected into a single loading
matrix W, which is then made group-wise sparse.

3 Model

We solve the GFA problem with a group-wise sparse
matrix factorization of Y, illustrated in Figure 1. The
variable groups correspond to the views 1, ...,M and
the factorization is given by

Y ≈ ZWT ,

where we have assumed zero-mean data for simplic-
ity. The factorization gives a group-wise sparse weight
matrix W ∈ RD×K and the latent components Z ∈
RN×K . The weight matrix W collects the factor- and
view-specific projection vectors wm,k for all pairs for
which fm,k = 1. The rest of the elements in W are
filled with zeroes.

We solve the problem in the Bayesian framework, pro-
viding a generative model that extracts the correct
factors by modeling explicitly the structured noise on
top of the factors explaining dependencies. We assume
the observation model

Y = ZWT + E,

where each row of the Gaussian noise E has diagonal
noise covariance Σ with the diagonal of [σ2

1 , ..., σ
2
M ]

where σ2
m has been repeated Dm times. That is, every

dimension within the same view has the same residual
variance, but the views may have different variances.
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Figure 1: Illustration of the group factor analysis of three data sets or views. The feature-wise concatenation
of the data sets Xi is factorized as a product of the latent variables Z and factor loadings W. The factor
loadings are group-wise sparse, so that each factor is active (gray shading, indicating fm,k = 1) only in some
subset of views (or all of them). The factors active in just one of the views model the structured noise, variation
independent of all other views, whereas the rest model the dependencies. The nature of each of the factors is
learned automatically, without needing to specify the numbers of different factor types (whose number could be
exponential in the number of views) beforehand.

To complete the generative formulation, we assume
Gaussian latent variables that are a priori independent
and specify a Gamma prior for the inverse variances
σ−2
m . The full likelihood is hence given by

p(Y,W,Σ,Z) = p(W)p(Σ)p(Z)p(Y|Z,W,Σ)

= p(W)
M∏

m=1

Gamma(σ−2
m |aσ, bσ)

N∏

n=1

(
N (zn|0, I)N (yn|znWT ,Σ)

)
,

where we used aσ = bσ = 10−14, N () is the normal
distribution, and zn denotes the K-dimensional latent
variable corresponding to the sample yn.

The weight matrix W is made sparse by a group-wise
automatic relevance determination (ARD) prior,

αm,k ∼ Gamma(a0, b0)

p(W) = p(W|α) =

K∏

k=1

M∏

m=1

Dm∏

d=1

N (wm,k(d)|0, α−1
m,k) ,

where wm,k(d) denotes the dth element in the projec-
tion vector wm,k, the vector corresponding to the mth
view and kth factor. The inverse variance of each vec-
tor is governed by the parameter αm,k which has a
Gamma prior with a small a0 and b0 (we used 10−14).
The ARD makes groups of variables inactive for spe-
cific factors by driving their α−1

m,k to zero. The com-
ponents used as modeling the structured noise within
each data set are automatically produced as factors
active in only one view.

Since the model is formulated through a sparsity prior
we do not explicitly need to represent F in the model.
It can, however, be created based on the factor-specific
relative contributions to the total variance of each
view, obtained by integrating out both z and W. We

set fm,k = 1 if

α−1
m,k > ε

(
Tr(Σ̂m)/Dm − σ2

m

)
, (1)

where Σ̂m is the covariance and Tr(Σ̂m) the total vari-
ance of the mth view, and ε is a small threshold.

The inference is based on a variational approximation

q(W,Σ,Z,α) =
M∏

m=1

(
q(σ−2

m )q(αm)

Dm∏

d=1

q(Wm(d))

)

N∏

n=1

q(zn),

where Wm(d) denotes the dth row of the part of W
corresponding to the mth view and αm contains αm,k
for all k. The projection matrix is hence factorized
over the dimensions of the observed data, but not over
the components. The updates for the parameters of
the approximation follow closely those provided for
Bayesian FA (Luttinen and Ilin, 2010), and are not re-
peated here. The only differences are that the approx-
imation for αm needs to be updated for each view sep-
arately, σ2

m are view-specific instead of feature-specific,
and the parts of W corresponding to different views
are updated one at a time.

To solve the difficult problem of fixing the rotation
in factor analysis models, we borrow ideas from the
recent solution by Virtanen et al. (2011) for CCA
models. Between each round of the EM updates we
maximize the variational lower bound with respect
to a linear transformation R of the latent subspace,
which is applied to both W and Z so that the prod-
uct ZWT remains unchanged. That is, Ẑ = ZRT and
ŴT = R−TWT . Given the fixed likelihood, the opti-
mal R corresponds to a solution best matching the
prior that assumes independent latent components,
hence resulting in a posterior with maximally uncorre-
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lated components. We optimize for R by maximizing

L =− 1

2
Tr(R−1〈ZTZ〉R−T ) + C log |R|

−
M∑

m=1

Dm

2
log

K∏

k=1

rTk 〈WT
mWm〉rk (2)

with the L-BFGS algorithm for unconstrained opti-
mization. Here C =

∑
mDm − N , and rk is the kth

column of R, and the 〈ZTZ〉 =
∑
n〈zTnzn〉 collects the

second moments of the factorization. Similar notation
is used for Wm, which indicates the part of W corre-
sponding to view m.

3.1 Special Cases and Related Problems

When Dm = 1 for all m the problem reduces to regular
factor analysis. Then the wm,k are scalars and can be
incorporated into fk to reveal the factor loadings.

When M = 1, the problem reduces to probabilistic
principal component analysis (PCA), since all the fac-
tors are active in the same view and they need to de-
scribe all of the variation in the single-view data set
with linear components.

When M = 2, the problem becomes canonical corre-
lation analysis (CCA) as formulated by Archambeau
and Bach (2009) and Virtanen et al. (2011). This is
because then there are only three types of factors. Fac-
tors active in both data sets correspond to the canon-
ical components, whereas factors active in only one of
the data sets describe the residual variation in each
view. Note that most multi-set extensions of CCA
applicable for M > 2 data sets, such as those by Ar-
chambeau and Bach (2009); Deleus and Hulle (2011),
do not solve the GFA problem. This is because they
do not consider components that could be active in
subsets of size I where 2 ≤ I < M , but instead re-
strict every component to be shared by all data sets
or to be specific to one of them.

A related problem has been studied in statistics under
the name multi-block data analysis. The goal there
is to analyze connections between blocks of variables,
but again the solutions typically assume factors shared
by all blocks (Hanafi and Kiers, 2006). The model re-
cently proposed by Tenenhaus and Tenenhaus (2011)
can find factors shared by only a subset of blocks by
studying correlations between block pairs, but the sub-
sets need to be specified in advance.

Recently Jia et al. (2010) proposed a multi-view learn-
ing model that seeks components shared by any subset
of views, by searching for a sparse matrix factoriza-
tion with convex optimization. However, they did not
attempt to interpret the factors and only considered
applications with at most three views.

Knowles and Ghahramani (2007) suggested that regu-
lar sparse FA (Knowles and Ghahramani, 2011) could
be useful in a GFA-type setting. They applied sparse
FA to analyzing biological data with five tissue types
concatenated in one feature representation. In GFA
analysis the tissues would be considered as different
views, revealing directly the sparse factor-view associ-
ations that can only be obtained from sparse FA after
a separate post-processing stage. In the next section
we show that directly solving the GFA problem out-
performs the choice of thresholding sparse FA results.

4 Technical Demonstration

For technical validation of the model, we applied it to
simulated data that has all types of factors: Factors
specific to just one view, factors shared by a small sub-
set of views, and factors common to most views. We
show that the proposed model can correctly discover
the structure already with limited data, while demon-
strating that possible alternative methods that could
be adapted to the scenario do not find the correct re-
sult. We sampled M = 10 data sets with dimension-
alities Dm ranging between 5 and 10 (

∑
mDm = 72),

using a manually constructed set of K = 24 factors of
various types.

For comparing our Bayesian GFA model with alter-
native methods that could potentially find the same
structure, we consider the following constructs:

• FA: Regular factor analysis for the concatenated
data Y. The model assumes the correct number
of factors, K = 24.

• BFA: FA with an ARD prior for columns of W,
resulting in a Bayesian FA model that infers the
number of factors automatically but assumes each
factor to be shared by all views.

• NSFA: Fully sparse factor analysis for Y. We use
the nonparametric sparse FA method by Knowles
and Ghahramani (2011) which has an Indian buf-
fet process formulation for inferring the number
of factors.

With the exception of the simple FA model, the alter-
natives are comparable in the sense that they attempt
to automatically infer the number of factors, which
is a necessary prerequisite for modeling collections of
several datasets, and that they are based on Bayesian
inference.

The solution for the GFA problem is correct if the
model (i) discovers the correct sparsity structure F and
(ii) the weights wm,k mapping the latent variables into
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Figure 2: Top: Difference (mean square error MSE)
between the estimated and true loading matrix W as a
function of the sample size N. Our Bayesian group fac-
tor analyzer (GFA) directly solving the GFA problem
is consistently the best, beating state-of-the-art non-
parametric sparse factor analysis (NSFA), regular fac-
tor analysis (FA) and Bayesian FA (BFA). It is worth-
while to notice that increasing the sample size does
not help the alternative methods to obtain the correct
solution. Bottom: Difference between the estimated
and true factor activity matrix F, shown for the two
methods providing sparse representations. Again GFA
outperforms NSFA.

the observations are correct. Since the methods pro-
vide solutions of a varying number of factors given in
arbitrary order, we use a similarity measure (Knowles
and Ghahramani, 2011) that chooses an optimal re-
ordering and sign for the factors found by the models,
and then measures the mean-square error.

We start by measuring property (ii), by inspecting the
similarity of the true and learned loading matrix W.
The GFA finds the mappings much more accurately
than the alternative methods for all of the indepen-
dent runs with different sample sizes (Fig. 2). Next
we inspect the property (i), the similarity of the true
and estimated F, again using the same measure but
for binary matrices. Since FA and BFA do not enforce
any kind of sparsity within factors, we only compare
GFA and NSFA. For GFA we obtain F by threshold-
ing the ARD weights using (1) with ε = 10−3, whereas
for NSFA we set fm,k = 1 if any weight within wm,k

is non-zero. GFA again outperforms NSFA which has
not been designed for the task. By adaptive thresh-
olding of the weight sets of NSFA it would be possible
to reach almost the accuracy of GFA in discovering
F, but as shown by the comparison of W the actual
factors would still be incorrect.

Next we proceed to inspect how well GFA can extract
the correct structure from different kinds of data col-
lections, with a particular focus on discovering whether
it biases specific types of factors. If no such bias is
found, the experiments give empirical support that
the method solves the GFA problem in the right way.
For this purpose we constructed data sets with a fixed
number of samples (N = 100) and a varying num-
ber of views M that are all D = 10 dimensional. We
created data collections with three alternative distri-
butions over the different kinds of factors, simulating
possible alternatives encountered in real applications.
The first distribution type has one factor of each possi-
ble cardinality and the second shows a power-law dis-
tribution with few factors active in many views and
many very sparse factors. Finally, the third type has a
uniform distribution over the subsets, resulting in the
cardinality distribution following binomial coefficients.

Figure 3 shows the true and estimated distribution of
factor cardinalities (the number of active views in a
factor, thresholded with ε = 10−3) for the different
data collections. For all three cases, the model finds
the correct structure for M = 40 views, and in par-
ticular models correctly both types of factors: those
shared by several views and those specific to only one
or a few. Besides checking for the correct cardinal-
ities, we inspected that the actual factors found by
the model match the true ones. We then proceeded
to demonstrate (Fig. 3 (d)), for the case with uniform
distribution over factor cardinalities, that the finding
holds for all numbers of views below M = 60 for this
case with just N = 100 samples; for other distributions
the results are similar (not shown).

5 Application Scenarios and
Interpretation

Next, we apply the method to brain activity and drug
response analysis, representative of potential use cases
for GFA, and show how the results of the model can
be interpreted. Both applications contain data of mul-
tiple views (7 and 4, respectively) and could not be di-
rectly analyzed with traditional methods. The number
of views is well within the range for which the model
was demonstrated above to find the correct structure
from the simulated data.

Both applications follow the same analysis procedure,
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Figure 3: The GFA model finds the correct sparsity structure F for three very different distributions over
different types of factors in the data. The thick grey line shows the true latent structure as the cardinalities
(number of active views) of the factors in the decreasing order, and the overlaid curves show results of 10 runs on
different simulated data. The first three plots show results for M = 40 views with three different distributions
of factor types ((a): uniform over the cardinality, (b): power law over the cardinality, (c): uniform over the view
combinations), and for all cases the model learns the correct structure. The last plot (d) shows that the behavior
is consistent over a wide range of M (the different curves) and only starts to break down when M approaches
the sample size N = 100. For all cases the model had 10 more components than what were included in the
generated data, so the plots also illustrate how the real number of components is inferred automatically.

which can be taken as our practical guidelines for
data-analysis with GFA. First, the model is learned
with sufficiently many factors, recognized as a solu-
tion where more than a few factors are left at zero.
Solutions where all the factors are in use cannot be re-
lied upon, since then it is possible that a found factor
describes several of the underlying true factors. Con-
sequently, a practical way to choose K is to run with
increasing numbers until empty factors are found. Af-
ter that, the factor activity matrix F, ordered suitably,
is inspected in search for interesting broad-scale prop-
erties of the data. In particular, the number of factors
specific to individual views is indicative of the com-
plexity of residual variation in the data, and factors
sharing specific subsets of views can immediately re-
veal interesting structure. Finally, individual factors
are selected for closer inspection by ordering the fac-
tors according to an interest measure specific to the
application. We demonstrate that measures based on
both Z and W are meaningful.

5.1 Multi-set Analysis of Brain Activity

We analyze a data collection where the subject has
been exposed to audiovisual music stimulation. The
setup is uniquely multi-view; each subject experienced
the same three pieces of music seven times as different
variations. For example, in one condition the subjects
viewed a video recording of someone playing the piece
on piano, in one condition they only heard a duet of
singing and piano, and in one they saw and heard a
person reading out the lyrics of the song.

The M = 7 different exposure conditions or stimuli

types were used as views, and we sought factors tying
together the different conditions by applying GFA to a
data set where the fMRI recordings of the 10 subjects
were concatenated in the time direction. Each sam-
ple (N = 1162) contained, for each view, activities of
Dm = 32 regions of interest (ROI) extracted as aver-
ages of local brain regions. The set of 32 regions was
chosen by first picking the five most correlating ROIs
for each of the 21 possible pairs of listening conditions
and then taking the union of these choices.

The factor-view matrix F (thresholded with ε = 10−3)
of a 200-component solution is shown in Figure 4. The
number of factors is sufficient, as demonstrated by the
roughly 40 empty factors, and we see that the data
contain large blocks of view-specific factors suggesting
a lot of noise in the data. To more closely examine the
factors, we chose to study factors that are coherent
over the users. We split the latent variables zk ∈ RN
corresponding to each factor into 10 sequences corre-
sponding to the samples of the 10 subjects, and mea-
sured the inter-subject correlation (ISC) of each factor.
The factors were then ranked according to ISC (Fig. 4,
bottom), revealing a few components having very high
synchrony despite the model being ignorant that the
data consisted of several users.

The strongest ISC correlation is for a component
shared by all views. It captures the main progres-
sion of the music pieces irrespective of the view. A
closer inspection of the weight vectors reveals that the
responses in the different views are in different brain
regions according to the modality; the four conditions
with purely auditory stimuli have weights revealing au-
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Figure 4: Multi-set analysis of brain activity. Top:
The matrix F of factors (rows) across views (columns)
indicates the dependencies between the views, differ-
ent versions of the same songs being played for the
subject. Bottom: Sorting the factors as a function of
inter-subject correlation reveals which factors robustly
capture the response to the stimulus.

ditory response, whereas the three conditions with also
visual stimulation activate also vision-related regions.
The second-strongest ISC correlation is for a compo-
nent shared by just two views, speech under both au-
diovisual and purely auditory conditions. That is, it
reveals the response to hearing recitation of the song
lyrics instead of music as in the other conditions.

In this specific application, it might be useful to ad-
ditionally apply a model where solutions with similar
wm,k across all m with fm,k = 1 would be favored.
The components would then be directly interpretable
in terms of specific brain activity patterns, in addition
to the time courses.

5.2 Multi-set Analysis of Drug Responses

The second case study is a novel chemical systems biol-
ogy application, where the observations are drugs and
the first M−1 views are responses of different cell lines
(proxies to different diseases) to the specific drug. The
Mth view contains features describing chemical prop-

erties of the drug, derived from its structure. The
interesting questions are can GFA find factors relating
drug structures and diseases, or relating different cell
lines which are here different cancer subtypes.

As the biological views, we used activation profiles over
D1 = D2 = D3 = 1321 gene sets in three cancer cell
lines compared to controls, from (Lamb et al., 2006).
The 4th (chemical) view consisted of a standard type
of descriptors of the 3D structure of the drugs, called
VolSurf (D4 = 76). Observations had been recorded
for all cell lines for N = 684 drugs.

The factor-view matrix F (thresholded with ε = 10−6)
of a 600-component GFA solution is shown in Figure 5
(top). The number of components is large enough since
there are over 100 empty factors. Four main types of
factors were found: (i) Factors shared by the chemi-
cal view and one (or two) cell lines (zoomed inset in
Fig 5, top). They give hypotheses for the specific can-
cer variants. (ii) Factors shared by all cell lines and the
chemical space, representing effects specific to all sub-
types of cancer. (iii) Factors shared by all cell lines but
not the chemical space. They are drug effects not cap-
tured by the specific chemical descriptors used. The
fact that there is a large block of over 200 of these
factors fits well with the known fact that VolSurf fea-
tures are a very limited description of the complexity
of drugs. (iv) Factors specific to one biological view.
These represent either “biological noise” or then drug
effects specific to that cancer subtype, again not cap-
tured by the VolSurf features. Finally, the small set
of components active only in the chemical view corre-
spond to structure in VolSurf having no drug effect.

We inspected some of the factors more carefully, and
more detailed biological analysis is on-going. The
first factor of type (i), shared by one cell line and
the chemical descriptors, activates genes linked to in-
flammatory processes and is active in particular for
non-steroidal anti-inflammatory drugs (NSAIDs), es-
pecially ibuprofen-like compounds, which are known
to have anti-cancer effects (Ruegg et al., 2003). Of the
factors shared by all cell lines (type iii), the one with
the highest norm of the weight vector shows strong
toxic effects on all cell lines, being linked to stopping
of cell growth and apoptosis. In summary, these first
findings are well in line with established knowledge.

We next validated quantitatively the ability of the
model to discover biologically meaningful factors. We
evaluated the performance of the factors in represent-
ing drugs in the task of retrieving drugs known to have
similar effects (having the same targets).

We represented each drug with the corresponding vec-
tor in the latent variable matrix Z, and used corre-
lation along the vectors as a similarity measure when
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Figure 5: Multi-set analysis of drug responses. Top:
Factor activity matrix of the factors (rows) against the
3 biological views (columns), cell lines HL60, MCF7,
PC3, and the chemical view of drug descriptors. The
small matrix at the bottom shows a zoomed inset to
an interesting subset of the factors. Bottom: Mean
average precision of retrieving drugs having similar ef-
fects (targets), based on the first N GFA factors. Inte-
gration of the data sources gives a significantly higher
retrieval performance than any data source separately.

retrieving the drugs most similar to a query drug. Re-
trieval performance was measured as the mean aver-
age precision of retrieving drugs having similar effects
(having the same targets). As baselines we computed
the similarities in only the biological views or in only
the chemical view. Representation by the GFA fac-
tors outperforms significantly (t-test, p < 0.05) using
either space separately (Fig. 5, bottom). The experi-
ment was completely data driven except for one bit of
prior knowledge: As the chemical space is considered
to be the most informative about drug similarity, the
factors were pre-sorted by decreasing Euclidean norm
of the weight vectors wk in the chemical space.

6 Discussion

We introduced a novel problem formulation of finding
factors describing dependencies between data sets or

views, extending classical factor analysis which does
the same for variables. The task is to provide a set of
factors explaining dependencies between all possible
subsets of the views. For solving the problem, coined
group factor analysis (GFA), we provided a group-wise
sparse Bayesian factor analysis model by extending a
recent CCA formulation by Virtanen et al. (2011) to
multiple views. The model was demonstrated to find
factors of different types, including those specific to
just one view and those shared by all views, equally
well even for high numbers of views. We applied the
model to data analysis in new kinds of application se-
tups in neuroimaging and chemical systems biology.

The variational approximation used for solving the
problem is computationally reasonably efficient and is
directly applicable to data sets of thousands of sam-
ples and several high-dimensional views, with the main
computational cost coming from a high number of fac-
tors slowing down the search for an optimal rotation
of the factors. It would be fruitful to develop (approx-
imative) analytical solutions for optimizing Eq. 2 nec-
essary for the model to converge to the correct sparsity
structure, which would speed up the algorithm to the
level of standard Bayesian PCA/FA.

The primary challenge in solving the GFA problem is
in correctly detecting the sparsity structure. Our solu-
tion was demonstrated to be very accurate at least for
simulated data, but it would be fruitful to study how
well the method fares in comparison with alternative
modeling frameworks that could be adapted to solve
the GFA problem, such as the structured sparse ma-
trix factorization by Jia et al. (2010) or nonparamet-
ric sparse factor analysis (Knowles and Ghahramani,
2011) modified to support group sparsity. It could also
be useful to consider models that are group-wise sparse
but allow sparsity also within the active factor-view
groups or sparse deviations from zero for the inactive
ones, with model structures along the lines Jalali et al.
(2010) proposed for multi-task learning.
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