## A APPENDIX - SUPPLEMENTARY MATERIAL

## A. 1 Additional Technical Tools

We state below two results that we use frequently in our proofs. The first is well-known consequence of the CS decomposition. It relates the canonical angles between subspaces to the singular values of products and differences of their corresponding projection matrices.
Lemma A.1.1 (Stewart and Sun [22, Theorem I.5.5]). Let $\mathcal{X}$ and $\mathcal{Y}$ be $k$-dimensional subspaces of $\mathbb{R}^{p}$ with orthogonal projections $\Pi_{\mathcal{X}}$ and $\Pi_{\mathcal{Y}}$. Let $\sigma_{1} \geq \sigma_{2} \geq$ $\cdots \geq \sigma_{k}$ be the sines of the canonical angles between $\mathcal{X}$ and $\mathcal{Y}$. Then

1. The singular values of $\Pi_{\mathcal{X}}\left(I_{p}-\Pi_{\mathcal{Y}}\right)$ are

$$
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, 0, \ldots, 0
$$

2. The singular values of $\Pi_{\mathcal{X}}-\Pi_{\mathcal{Y}}$ are

$$
\sigma_{1}, \sigma_{1}, \sigma_{2}, \sigma_{2}, \ldots, \sigma_{k}, \sigma_{k}, 0, \ldots, 0
$$

Lemma A.1.2. Let $x, y \in \mathbb{S}_{2}^{p-1}$. Then

$$
\left\|x x^{T}-y y^{T}\right\|_{F}^{2} \leq 2\|x-y\|_{2}^{2}
$$

If in addition $\|x-y\|_{2} \leq \sqrt{2}$, then

$$
\left\|x x^{T}-y y^{T}\right\|_{F}^{2} \geq\|x-y\|_{2}^{2}
$$

Proof. By Lemma A.1.1 and the polarization identity

$$
\begin{aligned}
\frac{1}{2}\left\|x x^{T}-y y^{T}\right\|_{F}^{2} & =1-\left(x^{T} y\right)^{2} \\
& =1-\left(\frac{2-\|x-y\|^{2}}{2}\right)^{2} \\
& =\|x-y\|_{2}^{2}-\|x-y\|_{2}^{4} / 4 \\
& =\|x-y\|_{2}^{2}\left(1-\|x-y\|_{2}^{2} / 4\right) .
\end{aligned}
$$

The upper bound follows immediately. Now if $\| x-$ $y \|_{2}^{2} \leq 2$, then the above right-hand side is bounded from below by $\|x-y\|_{2}^{2} / 2$.

## A. 2 Proofs for Theorem 2.1

Proof of Lemma 3.1.2 Our construction is based on a hypercube argument. We require a variation of the Varshamov-Gilbert bound due to Birgé and Massart [4]. We use a specialization of the version that appears in [15, Lemma 4.10].
Lemma. Let $d$ be an integer satisfying $1 \leq d \leq$ $(p-1) / 4$. There exists a subset $\Omega_{d} \subset\{0,1\}^{p-1}$ that satisfies the following properties:

1. $\|\omega\|_{0}=d$ for all $\omega \in \Omega_{d}$,
2. $\left\|\omega-\omega^{\prime}\right\|_{0}>d / 2$ for all distinct pairs $\omega, \omega^{\prime} \in \Omega_{d}$, and
3. $\log \left|\Omega_{d}\right| \geq c d \log ((p-1) / d)$, where $c \geq 0.233$.

Let $d \in[1,(p-1) / 4]$ be an integer, $\Omega_{d}$ be the corresponding subset of $\{0,1\}^{p-1}$ given by preceding lemma,

$$
x(\omega)=\left(\left(1-\epsilon^{2}\right)^{\frac{1}{2}}, \epsilon \omega d^{-\frac{1}{2}}\right) \in \mathbb{R}^{p}
$$

and

$$
\Theta=\left\{x(\omega): \omega \in \Omega_{d}\right\}
$$

Clearly, $\Theta$ satisfies the following properties:

1. $\Theta \subseteq \mathbb{S}_{2}^{p-1}$,
2. $\epsilon / \sqrt{2}<\left\|\theta_{1}-\theta_{2}\right\|_{2} \leq \sqrt{2} \epsilon$ for all distinct pairs $\theta_{1}, \theta_{2} \in \Theta_{d}$,
3. $\|\theta\|_{q}^{q} \leq 1+\epsilon^{q} d^{(2-q) / 2}$ for all $\theta \in \Theta$, and
4. $\log |\Theta| \geq c d[\log (p-1)-\log d]$, where $c \geq 0.233$.

To ensure that $\Theta$ is also contained in $\mathbb{B}_{q}^{p}\left(R_{q}\right)$, we will choose $d$ so that the right side of the upper bound in item 3 is smaller than $R_{q}$. Choose

$$
d=\left\lfloor\min \left\{(p-1) / 4,\left(\bar{R}_{q} / \epsilon^{q}\right)^{\frac{2}{2-q}}\right\}\right\rfloor .
$$

The assumptions that $p \geq 5, \epsilon \leq 1$, and $\bar{R}_{q} \geq 1$ guarantee that this is a valid choice satisfying $d \in[1,(p-$ 1)/4]. The choice also guarantees that $\Theta \subset \mathbb{B}_{q}^{p}\left(R_{q}\right)$, because

$$
\begin{aligned}
\|\theta\|_{q}^{q} & \leq 1+\epsilon^{q} d^{(2-q) / 2} \\
& \leq 1+\epsilon^{q}\left(\bar{R}_{q} / \epsilon^{q}\right)=R_{q}
\end{aligned}
$$

for all $\theta \in \Theta$. To complete the proof we will show that $\log |\Theta|$ satisfies the lower bound claimed by the lemma. Note that the function $a \mapsto a \log [(p-1) / a]$ is increasing on $[0,(p-1) / e]$ and decreasing on $[(p-1) / e, \infty)$. So if

$$
a:=\left(\frac{\bar{R}_{q}}{\epsilon^{q}}\right)^{\frac{2}{2-q}} \leq \frac{p-1}{4}
$$

then

$$
\begin{aligned}
\log |\Theta| & \geq c d[\log (p-1)-\log d] \\
& \geq(c / 2) a[\log (p-1)-\log a]
\end{aligned}
$$

because $d=\lfloor a\rfloor \geq a / 2$. Moreover, since $d \leq(p-1) / 4$ and the above right hand side is maximized when $a=$
$(p-1) / e$, the inequality remains valid for all $a \geq 0$ if we replace the constant $(c / 2)$ with the constant

$$
\begin{aligned}
c^{\prime} & =(c / 2) \frac{\frac{p-1}{4}\left[\log (p-1)-\log \frac{p-1}{4}\right]}{\frac{p-1}{e}\left[\log (p-1)-\log \frac{p-1}{e}\right]} \\
& =(c / 2) \frac{e \log 4}{4} \geq 0.109 .
\end{aligned}
$$

Proof of Lemma 3.1.3 Let $A_{i}=x_{i} x_{i}^{T}$ for $i=1,2$. Then $\Sigma_{i}=\lambda_{1} A_{i}+\lambda_{2}\left(I_{p}-A_{i}\right)$. Since $\Sigma_{1}$ and $\Sigma_{2}$ have the same eigenvalues and hence the same determinant,

$$
\begin{aligned}
D\left(\mathbb{P}_{1} \| \mathbb{P}_{2}\right) & =\frac{n}{2}\left[\operatorname{Tr}\left(\Sigma_{2}^{-1} \Sigma_{1}\right)-p-\log \operatorname{det}\left(\Sigma_{2}^{-1} \Sigma_{1}\right)\right] \\
& =\frac{n}{2}\left[\operatorname{Tr}\left(\Sigma_{2}^{-1} \Sigma_{1}\right)-p\right] \\
& =\frac{n}{2} \operatorname{Tr}\left(\Sigma_{2}^{-1}\left(\Sigma_{1}-\Sigma_{2}\right)\right)
\end{aligned}
$$

The spectral decomposition $\Sigma_{2}=\lambda_{1} A_{2}+\lambda_{2}\left(I_{p}-A_{2}\right)$ allows us to easily calculate that

$$
\Sigma_{2}^{-1}=\lambda_{2}^{-1}\left(I_{p}-A_{2}\right)+\lambda_{1}^{-1} A_{2}
$$

Since orthogonal projections are idempotent, i.e. $A_{i} A_{i}=A_{i}$,

$$
\begin{aligned}
& \Sigma_{2}^{-1}\left(\Sigma_{1}-\Sigma_{2}\right) \\
& =\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}\left[\left(\lambda_{1} / \lambda_{2}\right)\left(I_{p}-A_{2}\right)+A_{2}\right]\left(A_{1}-A_{2}\right) \\
& =\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}\left[\left(\lambda_{1} / \lambda_{2}\right)\left(I_{p}-A_{2}\right) A_{1}-A_{2}\left(A_{2}-A_{1}\right)\right] \\
& =\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}\left[\left(\lambda_{1} / \lambda_{2}\right)\left(I_{p}-A_{2}\right) A_{1}-A_{2}\left(I_{p}-A_{1}\right)\right]
\end{aligned}
$$

Using again the idempotent property and symmetry of projection matrices,

$$
\begin{aligned}
& \operatorname{Tr}\left(\left(I_{p}-A_{2}\right) A_{1}\right) \\
& =\operatorname{Tr}\left(\left(I_{p}-A_{2}\right)\left(I_{p}-A_{2}\right) A_{1} A_{1}\right) \\
& =\operatorname{Tr}\left(A_{1}\left(I_{p}-A_{2}\right)\left(I_{p}-A_{2}\right) A_{1}\right) \\
& =\left\|A_{1}\left(I_{p}-A_{2}\right)\right\|_{F}^{2}
\end{aligned}
$$

and similarly,

$$
\operatorname{Tr}\left(A_{2}\left(I_{p}-A_{1}\right)\right)=\left\|A_{2}\left(I_{p}-A_{1}\right)\right\|_{F}^{2}
$$

By Lemma A.1.1,

$$
\left\|A_{1}\left(I_{p}-A_{2}\right)\right\|_{F}^{2}=\left\|A_{2}\left(I_{p}-A_{1}\right)\right\|_{F}^{2}=\frac{1}{2}\left\|A_{1}-A_{2}\right\|_{F}^{2}
$$

Thus,

$$
\operatorname{Tr}\left(\Sigma_{2}^{-1}\left(\Sigma_{1}-\Sigma_{2}\right)\right)=\frac{\left(\lambda_{1}-\lambda_{2}\right)^{2}}{2 \lambda_{1} \lambda_{2}}\left\|A_{1}-A_{2}\right\|_{F}^{2}
$$

and the result follows.

## A. 3 Proofs for Theorem 2.2

Proof of Lemma 3.2.1 We begin with the expansion,

$$
\begin{aligned}
& \left\langle\Sigma, \theta_{1} \theta_{1}^{T}-\theta \theta^{T}\right\rangle \\
& =\operatorname{Tr}\left\{\Sigma \theta_{1} \theta_{1}^{T}\right\}-\operatorname{Tr}\left\{\Sigma \theta \theta^{T}\right\} \\
& =\operatorname{Tr}\left\{\Sigma\left(I_{p}-\theta \theta^{T}\right) \theta_{1} \theta_{1}^{T}\right\}-\operatorname{Tr}\left\{\Sigma \theta \theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right)\right\}
\end{aligned}
$$

Since $\theta_{1}$ is an eigenvector of $\Sigma$ corresponding to the eigenvalue $\lambda_{1}$,

$$
\begin{aligned}
& \operatorname{Tr}\left\{\Sigma\left(I_{p}-\theta \theta^{T}\right) \theta_{1} \theta_{1}^{T}\right\} \\
& =\operatorname{Tr}\left\{\theta_{1} \theta_{1}^{T} \Sigma\left(I_{p}-\theta \theta^{T}\right) \theta_{1} \theta_{1}^{T}\right\} \\
& =\lambda_{1} \operatorname{Tr}\left\{\theta_{1} \theta_{1}^{T}\left(I_{p}-\theta \theta^{T}\right) \theta_{1} \theta_{1}^{T}\right\} \\
& =\lambda_{1} \operatorname{Tr}\left\{\theta_{1} \theta_{1}^{T}\left(I_{p}-\theta \theta^{T}\right)^{2} \theta_{1} \theta_{1}^{T}\right\} \\
& =\lambda_{1}\left\|\theta_{1} \theta_{1}^{T}\left(I_{p}-\theta \theta^{T}\right)\right\|_{F}^{2}
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \operatorname{Tr}\left\{\Sigma \theta \theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right)\right\} \\
& =\operatorname{Tr}\left\{\left(I_{p}-\theta_{1} \theta_{1}^{T}\right) \Sigma \theta \theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right)\right\} \\
& =\operatorname{Tr}\left\{\theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right) \Sigma\left(I_{p}-\theta_{1} \theta_{1}^{T}\right) \theta\right\} \\
& \leq \lambda_{2} \operatorname{Tr}\left\{\theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right)^{2} \theta\right\} \\
& =\lambda_{2}\left\|\theta \theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right)\right\|_{F}^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\langle\Sigma, \theta_{1} \theta_{1}^{T}-\theta \theta^{T}\right\rangle & \geq\left(\lambda_{1}-\lambda_{2}\right)\left\|\theta \theta^{T}\left(I_{p}-\theta_{1} \theta_{1}^{T}\right)\right\|_{F}^{2} \\
& =\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right)\left\|\theta \theta^{T}-\theta_{1} \theta_{1}^{T}\right\|_{F}^{2}
\end{aligned}
$$

The last inequality follows from Lemma A.1.1.
Proof of Lemma 3.2.2 Since the distribution of $S-\Sigma$ does not depend on $\mu=\mathbb{E} X_{i}$, we assume without loss of generality that $\mu=0$. Let $a, b \in\{1, \ldots, p\}$ and

$$
\begin{aligned}
D_{a b} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{m}\right)_{a}\left(X_{m}\right)_{b}-\Sigma_{a b} \\
& =: \frac{1}{n} \sum_{i=1}^{n} \zeta_{i}-\mathbb{E} \zeta_{i} .
\end{aligned}
$$

Then

$$
(S-\Sigma)_{a b}=D_{a b}-\bar{X}_{a} \bar{X}_{b}
$$

Using the elementary inequality $2|a b| \leq a^{2}+b^{2}$, we have by Assumption 2.2 that

$$
\begin{aligned}
\left\|\zeta_{i}\right\|_{\psi_{1}} & =\left\|\left\langle X_{i}, 1_{a}\right\rangle\left\langle X_{i}, 1_{b}\right\rangle\right\|_{\psi_{1}} \\
& \leq \max _{a}\left\|\left|\left\langle X_{i}, 1_{a}\right\rangle\right|^{2}\right\|_{\psi_{1}} \\
& \leq 2 \max _{a}\left\|\left\langle\Sigma^{1 / 2} Z_{i}, 1_{a}\right\rangle\right\|_{\psi_{2}}^{2} \\
& \leq 2 \lambda_{1} K^{2} .
\end{aligned}
$$

In the third line, we used the fact that the $\psi_{1}$-norm is bounded above by a constant times the $\psi_{2}$-norm [see 24, p. 95]. By a generalization of Bernstein's Inequality for the $\psi_{1}$-norm [see 24, Section 2.2], for all $t>0$

$$
\begin{aligned}
\mathbb{P}\left(\left|D_{a b}\right|>8 t \lambda_{1} K^{2}\right) & \leq \mathbb{P}\left(\mid\left(D_{a b} \mid>4 t\left\|\zeta_{i}\right\|_{\psi_{1}}\right)\right. \\
& \leq 2 \exp \left(-n \min \left\{t, t^{2}\right\} / 2\right)
\end{aligned}
$$

This implies [24, Lemma 2.2.10] the bound

$$
\begin{align*}
& \left\|\max _{a b}\left|D_{a b}\right|\right\|_{\psi_{1}} \\
& \leq c K^{2} \lambda_{1} \max \left\{\sqrt{\frac{\log p}{n}}, \frac{\log p}{n}\right\} . \tag{22}
\end{align*}
$$

Similarly,

$$
\begin{aligned}
2\left\|\bar{X}_{a} \bar{X}_{b}\right\|_{\psi_{1}} & \leq\left\|\left|\left\langle\bar{X}, 1_{a}\right\rangle\right|^{2}\right\|_{\psi_{1}}+\left\|\left|\left\langle\bar{X}, 1_{b}\right\rangle\right|^{2}\right\|_{\psi_{1}} \\
& \leq\left\|\left\langle\bar{X}, 1_{a}\right\rangle\right\|_{\psi_{2}}^{2}+\left\|\left\langle\bar{X}, 1_{b}\right\rangle\right\|_{\psi_{2}}^{2} \\
& \leq \frac{2}{n^{2}} \sum_{i=1}^{n}\left\|\left\langle X_{i}, 1_{a}\right\rangle\right\|_{\psi_{2}}^{2}+\left\|\left\langle X_{i}, 1_{b}\right\rangle\right\|_{\psi_{2}}^{2} \\
& \leq \frac{4}{n} \lambda_{1} K^{2}
\end{aligned}
$$

So by a union bound [24, Lemma 2.2.2],

$$
\begin{equation*}
\left\|\max _{a b}\left|\bar{X}_{a} \bar{X}_{b}\right|\right\|_{\psi_{1}} \leq c K^{2} \lambda_{1} \frac{\log p}{n} \tag{23}
\end{equation*}
$$

Adding eqs. (22) and (23) and then adjusting the constant $c$ gives the desired result, because

$$
\begin{aligned}
& \left\|\|\operatorname{vec}(S-\Sigma)\|_{\infty}\right\|_{\psi_{1}} \\
& \leq\left\|\max _{a b}\left|D_{a b}\right|\right\|_{\psi_{1}}+\left\|\max _{a b}\left|\bar{X}_{a} \bar{X}_{b}\right|\right\|_{\psi_{1}} .
\end{aligned}
$$

Proof of Lemma 3.2.3 Let $B=\mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{1}^{p}\left(R_{1}\right)$. We will use a recent result in empirical process theory due to Mendelson [16] to bound

$$
\sup _{b \in B} b^{T}(S-\Sigma) b
$$

The result uses Talagrand's generic chaining method, and allows us to reduce the problem to bounding the supremum of a Gaussian process. The statement of the result involves the generic chaining complexity, $\gamma_{2}(B, d)$, of a set $B$ equipped with the metric $d$. We only use a special case, $\gamma_{2}\left(B,\|\cdot\|_{2}\right)$, where the complexity measure is equivalent to the expectation of the supremum of a Gaussian process on $B$. We refer the reader to [23] for a complete introduction.
Lemma A.3.1 (Mendelson [16]). Let $Z_{i}, i=1, \ldots, n$ be i.i.d. random variables. There exists an absolute
constant $c$ for which the following holds. If $\mathcal{F}$ is a symmetric class of mean-zero functions then

$$
\begin{aligned}
& \mathbb{E} \sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f^{2}\left(Z_{i}\right)-\mathbb{E} f^{2}\left(Z_{i}\right)\right| \\
& \leq c \max \left\{d_{\psi_{1}} \frac{\gamma_{2}\left(\mathcal{F}, \psi_{2}\right)}{\sqrt{n}}, \frac{\gamma_{2}^{2}\left(\mathcal{F}, \psi_{2}\right)}{n}\right\},
\end{aligned}
$$

where $d_{\psi_{1}}=\sup _{f \in \mathcal{F}}\|f\|_{\psi_{1}}$.
Since the distribution of $S-\Sigma$ does not depend on $\mu=\mathbb{E} X_{i}$, we assume without loss of generality that $\mu=0$. Then $\left|b^{T}(S-\Sigma) b\right|$ is bounded from above by a sum of two terms,

$$
\left|b^{T}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T}-\Sigma\right) b\right|+b^{T} \bar{X} \bar{X}^{T} b
$$

which can be rewritten as

$$
D_{1}(b):=\left|\frac{1}{n} \sum_{i=1}^{n}\left\langle Z_{i}, \Sigma^{1 / 2} b\right\rangle^{2}-\mathbb{E}\left\langle Z_{i}, \Sigma^{1 / 2} b\right\rangle^{2}\right|
$$

and $D_{2}(b):=\left\langle\bar{Z}, \Sigma^{1 / 2} b\right\rangle^{2}$, respectively. To apply Lemma A.3.1 to $D_{1}$, define the class of linear functionals

$$
\mathcal{F}:=\left\{\left\langle\cdot, \Sigma^{1 / 2} b\right\rangle: b \in B\right\} .
$$

Then

$$
\sup _{b \in B} D_{1}(b)=\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f^{2}\left(Z_{i}\right)-\mathbb{E} f^{2}\left(Z_{i}\right)\right|,
$$

and we are in the setting of Lemma A.3.1.
First, we bound the $\psi_{1}$-diameter of $\mathcal{F}$.

$$
\begin{aligned}
d_{\psi_{1}} & =\sup _{b \in B}\left\|\left\langle Z_{i}, \Sigma^{1 / 2} b\right\rangle\right\|_{\psi_{1}} \\
& \leq c \sup _{b \in B}\left\|\left\langle Z_{i}, \Sigma^{1 / 2} b\right\rangle\right\|_{\psi_{2}} .
\end{aligned}
$$

By Assumption 2.2,

$$
\left\|\left\langle Z_{i}, \Sigma^{1 / 2} b\right\rangle\right\|_{\psi_{2}} \leq K\left\|\Sigma^{1 / 2} b\right\|_{2} \leq K \lambda_{1}^{1 / 2}
$$

and so

$$
\begin{equation*}
d_{\psi_{1}} \leq c K \lambda_{1}^{1 / 2} \tag{24}
\end{equation*}
$$

Next, we bound $\gamma_{2}\left(\mathcal{F}, \psi_{2}\right)$ by showing that the metric induced by the $\psi_{2}$-norm on $\mathcal{F}$ is equivalent to the Euclidean metric on $B$. This will allow us to reduce the problem to bounding the supremum of a Gaussian process. For any $f, g \in \mathcal{F}$, by Assumption 2.2,

$$
\begin{align*}
\left\|(f-g)\left(Z_{i}\right)\right\|_{\psi_{2}} & =\left\|\left\langle Z_{i}, \Sigma^{1 / 2}\left(b_{f}-b_{g}\right)\right\rangle\right\|_{\psi_{2}} \\
& \leq K\left\|\Sigma^{1 / 2}\left(b_{f}-b_{g}\right)\right\|_{2} \\
& \leq K \lambda_{1}^{1 / 2}\left\|b_{f}-b_{g}\right\|_{2}, \tag{25}
\end{align*}
$$

where $b_{f}, b_{g} \in B$. Thus, by [23, Theorem 1.3.6],

$$
\gamma_{2}\left(\mathcal{F}, \psi_{2}\right) \leq c K \lambda_{1}^{1 / 2} \gamma_{2}\left(B,\|\cdot\|_{2}\right) .
$$

Then applying Talagrand's Majorizing Measure Theorem [23, Theorem 2.1.1] yields

$$
\begin{equation*}
\gamma_{2}\left(\mathcal{F}, \psi_{2}\right) \leq c K \lambda_{1}^{1 / 2} \mathbb{E}_{b \in B}\langle Y, b\rangle, \tag{26}
\end{equation*}
$$

where $Y$ is a $p$-dimensional standard Gaussian random vector. Recall that $B=\mathbb{B}_{1}^{p}\left(R_{1}\right) \cap \mathbb{S}_{2}^{p-1}$. So

$$
\mathbb{E} \sup _{b \in B}\langle Y, b\rangle \leq \mathbb{E} \sup _{b \in \mathbb{B}_{1}^{p}\left(R_{1}\right) \cap \mathbb{B}_{2}^{p}(1)}\langle Y, b\rangle .
$$

Here, we could easily upper bound the above quantity by the supremum over $\mathbb{B}_{1}^{p}\left(R_{q}\right)$ alone. Instead, we use a sharper upper bound due to Gordon et al. [8, Theorem 5.1]:

$$
\begin{aligned}
\mathbb{E} \sup _{b \in \mathbb{B}_{1}^{p}\left(R_{1}\right) \cap \mathbb{B}_{2}^{p}(1)}\langle Y, b\rangle & \leq R_{1} \sqrt{2+\log \left(2 p / R_{1}^{2}\right)} \\
& \leq 2 R_{1} \sqrt{\log \left(p / R_{1}^{2}\right)},
\end{aligned}
$$

where we used the assumption that $R_{1}^{2} \leq p / e$ in the last inequality. Now we apply Lemma A.3.1 to get

$$
\begin{aligned}
& \mathbb{E} \sup _{b \in B} D_{1}(B) \\
& \leq c K^{2} \lambda_{1} \max \left\{R_{1} \sqrt{\frac{\log \left(p / R_{1}^{2}\right)}{n}}, R_{1}^{2} \frac{\log \left(p / R_{1}^{2}\right)}{n}\right\} .
\end{aligned}
$$

Turning to $D_{2}(b)$, we can take $n=1$ in Lemma A.3.1 and use a similar argument as above, because

$$
D_{2}(b) \leq\left|\left\langle\bar{Z}, \Sigma^{1 / 2} b\right\rangle^{2}-\mathbb{E}\left\langle\bar{Z}, \Sigma^{1 / 2} b\right\rangle^{2}\right|+\mathbb{E}\left\langle\bar{Z}, \Sigma^{1 / 2} b\right\rangle^{2} .
$$

We just need to bound the $\psi_{2}$-norms of $f(\bar{Z})$ and $(f-g)(\bar{Z})$ to get bounds that are analogous to eqs. (24) and (25). Since $\bar{Z}$ is the sum of the independent random variables $Z_{i} / n$,

$$
\begin{aligned}
\sup _{b \in B}\|f(\bar{Z})\|_{\psi_{2}}^{2} & =\sup _{b \in B}\left\|\left\langle\bar{Z}, \Sigma^{1 / 2} b_{f}\right\rangle\right\|_{\psi_{2}}^{2} \\
& \leq \sup _{b \in B} c \sum_{i=1}^{n}\left\|\left\langle Z_{i}, \Sigma^{1 / 2} b_{f}\right\rangle\right\|_{\psi_{2}}^{2} / n^{2} \\
& \leq \sup _{b \in B} c K^{2} \lambda_{1}\left\|b_{f}\right\|_{2}^{2} / n \\
& \leq c K^{2} \lambda_{1} / n,
\end{aligned}
$$

and similarly,

$$
\|(f-g)(\bar{Z})\|_{\psi_{2}} \leq c K \lambda_{1}\left\|b_{f}-b_{g}\right\|_{2}^{2} / n .
$$

So repeating the same arguments as for $D_{1}$, we get a similar bound for $D_{2}$. Finally, we bound $\mathbb{E} D_{2}(b)$ by

$$
\begin{aligned}
\mathbb{E}\langle\bar{X}, b\rangle^{2} & =b^{T}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E} X_{i} X_{j}^{T} / n^{2}\right) b \\
& =b^{T}\left(\sum_{i=1}^{n} \mathbb{E} X_{i} X_{i}^{T} / n^{2}\right) b \\
& =\left\|\Sigma^{1 / 2} b\right\|_{2}^{2} / n \\
& \leq \lambda_{1} / n .
\end{aligned}
$$

Putting together the bounds for $D_{1}$ and $D_{2}$ and then adjusting constants completes the proof.

Proof of Lemma 3.2.4 Using a similar argument as in the proof of Lemma 3.2.3 we can show that

$$
\mathbb{E} \sup _{b \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\left|b^{T}(S-\Sigma) b\right| \leq c K^{2} \lambda_{1} \max \left\{\frac{A}{\sqrt{n}}, \frac{A^{2}}{n}\right\},
$$

where

$$
A=\mathbb{E} \sup _{\mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\langle Y, b\rangle
$$

and $Y$ is a $p$-dimensional standard Gaussian $Y$. Thus we can reduce the problem to bounding the supremum of a Gaussian process.
Let $\mathcal{N} \subset \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)$ be a minimal $\delta$-covering of $\mathbb{S}_{2}^{p-1} \cap$ $\mathbb{B}_{0}^{p}(d)$ in the Euclidean metric with the property that for each $x \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)$ there exists $y \in \mathcal{N}$ satisfying $\|x-y\|_{2} \leq \delta$ and $x-y \in \mathbb{B}_{0}^{p}(d)$. (We will show later that such a covering exists.)
Let $b^{*} \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)$ satisfy

$$
\sup _{\mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\langle Y, b\rangle=\left\langle Y, b^{*}\right\rangle .
$$

Then there is $\tilde{b} \in \mathcal{N}$ such that $\left\|b^{*}-\tilde{b}\right\|_{2} \leq \delta$ and $b^{*}-\tilde{b} \in \mathbb{B}_{0}^{p}(d)$. Since $\left(b^{*}-\tilde{b}\right) /\left\|b^{*}-\tilde{b}\right\|_{2} \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)$,

$$
\begin{aligned}
\left\langle Y, b^{*}\right\rangle & =\left\langle Y, b^{*}-\tilde{b}\right\rangle+\langle Y, \tilde{b}\rangle \\
& \leq \delta \sup _{u \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\langle Y, u\rangle+\langle Y, \tilde{b}\rangle \\
& \leq \delta\left\langle Y, b^{*}\right\rangle+\max _{b \in \mathcal{N}}\langle Y, b\rangle .
\end{aligned}
$$

Thus,

$$
\sup _{b \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\langle Y, b\rangle \leq(1-\delta)^{-1} \max _{b \in \mathcal{N}}\langle Y, b\rangle .
$$

Since $\langle Y, b\rangle$ is a standard Gaussian for every $b \in \mathcal{N}$, a union bound [24, Lemma 2.2.2] implies

$$
\mathbb{E} \max _{b \in \mathcal{N}}\langle Y, b\rangle \leq c \sqrt{\log |\mathcal{N}|}
$$

for an absolute constant $c>0$. Thus,

$$
\mathbb{E} \sup _{b \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\langle Y, b\rangle \leq c(1-\delta)^{-1} \sqrt{\log |\mathcal{N}|}
$$

Finally, we will bound $\log |\mathcal{N}|$ by constructing a $\delta$ covering set and then choosing $\delta$. It is well known that the minimal $\delta$-covering of $\mathbb{S}_{2}^{d-1}$ in the Euclidean metric has cardinality at most $(1+2 / \delta)^{d}$. Associate with each subset $I \subseteq\{1, \ldots, p\}$ of size $d$, a minimal $\delta$-covering of the corresponding isometric copy of $\mathbb{S}_{2}^{d-1}$. This set covers every possible subset of size $d$, so for each $x \in \mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}(d)$ there is $y \in \mathcal{N}$ satisfying $\|x-y\|_{2} \leq \delta$ and $x-y \in \mathbb{B}_{0}(d)$. Since there are ( $p$ choose $d$ ) possible subsets,

$$
\begin{aligned}
\log |\mathcal{N}| & \leq \log \binom{p}{d}+d \log (1+2 / \delta) \\
& \leq \log \left(\frac{p e}{d}\right)^{d}+d \log (1+2 / \delta) \\
& =d+d \log (p / d)+d \log (1+2 / \delta)
\end{aligned}
$$

In the second line, we used the binomial coefficient bound $\binom{p}{d} \leq(e p / d)^{d}$. If we take $\delta=1 / 4$, then

$$
\begin{aligned}
\log |\mathcal{N}| & \leq d+d \log (p / d)+d \log 9 \\
& \leq c d \log (p / d),
\end{aligned}
$$

where we used the assumption that $d<p / 2$. Thus,

$$
A=\mathbb{E} \sup _{\mathbb{S}_{2}^{p-1} \cap \mathbb{B}_{0}^{p}(d)}\langle Y, b\rangle \leq c d \log (p / d)
$$

for all $d \in[1, p / 2)$.

