
Nonlinear Low-Dimensional Regression Using Auxiliary Coordinates

Weiran Wang Miguel Á. Carreira-Perpiñán
EECS, School of Engineering, University of California, Merced

Abstract

When doing regression with inputs and out-
puts that are high-dimensional, it often makes
sense to reduce the dimensionality of the in-
puts before mapping to the outputs. Much
work in statistics and machine learning, such
as reduced-rank regression, sliced inverse re-
gression and their variants, has focused on
linear dimensionality reduction, or on esti-
mating the dimensionality reduction first and
then the mapping. We propose a method
where both the dimensionality reduction and
the mapping can be nonlinear and are esti-
mated jointly. Our key idea is to define an
objective function where the low-dimensional
coordinates are free parameters, in addition
to the dimensionality reduction and the map-
ping. This has the effect of decoupling many
groups of parameters from each other, afford-
ing a far more effective optimization than if
using a deep network with nested mappings,
and to use a good initialization from sliced in-
verse regression or spectral methods. Our ex-
periments with image and robot applications
show our approach to improve over direct re-
gression and various existing approaches.

We consider the problem of low-dimensional regres-
sion, where we want to estimate a mapping between in-
puts x ∈ RDx and outputs y ∈ RDy that are both con-
tinuous and high-dimensional (such as images, or con-
trol commands for a robot), but going through a low-
dimensional, or latent, space z ∈ RDz : y = g(F(x)),
where z = F(x), y = g(z) and Dz < Dx, Dy. In some
situations, this can be preferable to a direct (full-di-
mensional) regression y = G(x), for example if, in ad-
dition to the regression, we are interested in obtaining
a low-dimensional representation of x for its own sake

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

(e.g. visualization or feature extraction). Even when
the true mapping G is not low-dimensional, using a
direct regression requires many parameters (DxDy in
linear regression) and their estimation may be unreli-
able with small sample sizes. Using a low-dimensio-
nal composite mapping g ◦ F with fewer parameters
can be seen as a form of regularization and lead to
better generalization with test data. Finally, a com-
mon practical approach is to reduce the dimension of
x independently of y, say with principal component
analysis (PCA), and then solve the regression. How-
ever, the latent coordinates z obtained in this way do
not necessarily preserve the information that is needed
to predict y. This is the same reason why one would
use linear discriminant analysis rather than PCA to
preserve class information. We want low-dimensional
coordinates z that eliminate information in the input
x that is not useful to predict the output y, in partic-
ular to reduce noise. In this sense, the problem can be
seen as supervised dimensionality reduction.

Consider then the problem of least-squares regression
(although our arguments should apply to other loss
functions). The simplest approach to estimate the di-
mensionality reduction mapping F and the regression
mapping g is to minimize the objective function

E1(F,g) =

N∑

n=1

‖yn − g(F(xn))‖2+λgR(g)+λFR(F) (1)

given a training setXDx×N ,YDy×N , where λF, λg ≥ 0
and R is a regularizer, e.g. penalizing large weights
in a neural net or radial basis function (RBF) net-
work. Indeed, the earliest method for low-dimensional
regression, reduced-rank regression (RRR) (Anderson,
1951; Reinsel and Velu, 1998), takes both mappings
as linear: F = Bx and g = Az (assuming centered
data). In RRR the global optimum of (1) is given by
an eigenproblem for A and B, although in some prob-
lems alternating optimization over A and B may be
a better option computationally. Unfortunately, when
both F and g are nonlinear, the optimization becomes
very difficult. In order to have the property of univer-
sal approximation—practically speaking, for the map-
pings to be flexible enough—neural net architectures

1295



Nonlinear Low-Dimensional Regression Using Auxiliary Coordinates

require at least one hidden layer of nonlinear units
(e.g. sigmoidal for multilayer perceptrons, Gaussian for
RBFs) (Bishop, 2006). Conceptually, computing the
derivatives of (1) wrt (the parameters of) F and g is a
simple application of the chain rule (backpropagation).
However, these derivatives are very poorly scaled, with
the gradient magnitudes being far smaller for the pa-
rameters at the innermost levels, which causes the Hes-
sian of E1 to be ill-conditioned; this worsens with the
number of layers (Rögnvaldsson, 1994). First-order
methods take tiny steps, slowly zigzagging down a
curved valley, while full-fledged second-order methods
have limited application because of the large size of the
Hessian, which is not sparse. While a direct regression
G would require only one layer of hidden units, in the
low-dimensional composite mapping g ◦F both g and
F require one layer of hidden units each, leading to a
deeper net. The same difficulty affects the use of au-
toencoders in unsupervised dimensionality reduction.
In practice, this leads to very long training times and a
parameter estimate which could well be far from a real
minimum. An additional problem is that (1) has local
optima, however there are various ways of construct-
ing good initializations, such as using one of the linear
methods (e.g. RRR or SIR), or a spectral method (e.g.
Isomap; Tenenbaum et al., 2000). Recently, the tech-
nique of pretraining (Hinton and Salakhutdinov, 2006)
has shown some promise.

It is then not surprising that most work on low-di-
mensional regression has avoided the nonlinear formu-
lation (1). Besides RRR and related methods (such as
partial least squares and canonical correlation analy-
sis; Reinsel and Velu, 1998), an important line of work
has sought to solve for the mapping F separately from
g but using information from y. Once F has been ob-
tained, one can estimate g on the pairs (yn,F(xn))
using any regression method. For example, sliced in-
verse regression (SIR) (Li, 1991) quantizes the data Y
into “slices” or clusters, which in turn induce a quan-
tization of the x–space. Each x–slice (all points xn

that map to the same y–slice) is then replaced with
its mean, and computing PCA on these means gives a
linear F. A kernelized version, KSIR (Wu, 2008), gives
instead a nonlinear F, the analogue of kernel PCA; see
also Kim and Pavlovic (2008). Instead of the slicing
condition, one can use a conditional independence cri-
terion and achieve a linear F as in kernel dimensional-
ity reduction (Fukumizu et al., 2004). The advantage
of these approaches is that the solution for F can usu-
ally be obtained by solving a nonsparse eigenproblem
or linear system in one shot, and g can be chosen and
estimated independently afterwards. However, while
in some special cases (see Li, 1991) slicing y is indeed
enough to extract all the information needed to ob-
tain an optimal F, in general it does not seem possible

to decouple F from g entirely—certainly not in the
nonlinear case. Besides, achieving in practice a good
slicing in high-dimensions with small sample sizes can
be unreliable. Kernelization has the added disadvan-
tage of having to solve eigenproblems with order N ,
which scales poorly and requires cumbersome approx-
imations unless one uses small datasets.

We believe that nonlinear methods that jointly opti-
mize over g and F hold the greatest potential. In this
paper, we revisit the objective (1) but seek to approx-
imate it by another objective having an easier opti-
mization that is scalable (linear in N) and enables its
practical use. This is an adaptation of the unsuper-
vised method of Carreira-Perpiñán and Lu (2010).

1 Low-Dimensional Regression Using
Auxiliary Coordinates

Much of the ill-conditioning in the objective func-
tion (1) is due to the deep nesting in the function g◦F.
If we let the low-dimensional coordinates ZDz×N =
(z1, . . . , zN ) be independent, auxiliary parameters to
be optimized over, we unfold the squared error into two
terms that decouple given Z and break the nesting:

E2(F,g,Z) =
∑N

n=1 ‖yn − g(zn)‖2 + λgR(g) (2)

+
∑N

n=1 ‖zn − F(xn)‖2 + λFR(F).

Now, every squared error involves only a shallow map-
ping; the parameters in (F,g,Z) are equally scaled,
which improves the conditioning of the problem; and
the derivatives required are simpler (no chain rule).
At first sight it may seem overkill to have one free pa-
rameter vector zn per data point (xn,yn), but as seen
below we can use good initial values for them, and
their optimization given the mappings is fast and very
simple. The overall training cost is linear in N . We
apply alternating optimization over Z and (F,g).

Optimization over F and g This decouples into
two independent optimizations, one for F and one for
g. Each is equivalent to a direct regression but operat-
ing on a lower input or output dimension Dz, and, cru-
cially, using shallower functions than g◦F, so we limit
ill-conditioning, as desired. An added benefit, not neg-
ligible in practice, is that the derivatives required are
simpler to compute (reducing the possibility of manual
error or the overheads of automatic differentiation),
and faster to compute. Although we could use a sig-
moidal neural net, we use instead radial basis function
(RBF) networks and some heuristics that make the
step over F and g even faster. We describe g; the case
of F is analogous. Then g(z) = WΦ(z) with M ≪ N
Gaussian RBFs φm(z) = exp(− 1

2‖(z− µm)/σ‖2), in-
cluding a bias term, and R(g) = ‖W‖2 is a qua-
dratic regularizer on the weights. As usual with RBFs

1296



Weiran Wang Miguel Á. Carreira-Perpiñán

(Bishop, 2006), we determine the centers µm by k-
means on Z (initialized at the previous iteration’s cen-
ters), and the weights W have a unique solution given
by a linear system. Other parameters (σ, λ, M) are
cross-validated. The total cost is O(M(Dy + Dz))
in memory and O(NM(M + Dy)) in training time,
mainly driven by setting up the linear system for W
(involving the Gram matrix φm(zn)); solving it ex-
actly is a negligible O(M3) since M ≪ N in practice,
and using an iterative solver initialized at the W value
from the previous step can reduce the cost to O(M2).
(Note that for F we only need run k-means and fac-
torize the linear system once and for all in the first
iteration, since its input X does not change.)

The distribution of the coordinates Z changes dramati-
cally in the first few iterations (see experiments), while
the error decreases quickly, but after that Z changes
little. This allows a heuristic speedup: after a few
iterations (50 in our experiments) we stop running k-
means for g, and fix its centers permanently. From
this moment on, the objective function essentially cor-
responds to having linear mappings applied to fixed
vectors Φ(zn) and Φ(xn), and (see later) we conjec-
ture it has a unique solution for (g,F,Z). The worst-
case risk of this heuristic is simply a slightly subopti-
mal estimate of the mappings; note the k-means step
(customarily used in RBFs) is itself suboptimal.

Optimization over Z This represents an added task
over the direct regression, but fortunately an easy one.
For fixed g and F, the optimization of (2) decouples
over each zn ∈ RDz . Thus, instead of one large non-
linear minimization over NDz parameters, we have N
independent nonlinear minimizations each on Dz pa-
rameters, of the form (we omit the subindex n here):

minz∈RDz E(z) = ‖y − g(z)‖2 + ‖z− F(x)‖2. (3)

Here, z ∈ RDz is the only free variable, and x ∈
RDx , y ∈ RDy and the functions g and F are fixed.
The squared-error form of E(z) immediately suggests
a Gauss-Newton approach, where we compute a pos-
itive definite approximation to its Hessian using only
first derivatives (equivalently, we linearize g):

∇E(z) = 2(−JT (z)(y − g(z)) + z− F(x)) (4)

∇2E(z) ≈ 2(I+ J(z)TJ(z)) (5)

where J(z) = 1
σ2

∑M
m=1 wmφm(z)(µm − z)T is the

Jacobian of g. Since our Hessian approximation is
strictly positive definite (because of the I term) and
the Jacobian is bounded, theorem 10.1 in Nocedal
and Wright (2006) guarantees convergence under usual
line-search conditions (e.g. Wolfe) to a local minimizer
no matter the initial point. The convergence order is
linear but much faster than (conjugate) gradient meth-
ods. The second-order term we discard in the true

Hessian has the form
∑Dy

d=1 (yd − gd(z))∇2gd(z), so it
is small when either our model is good (small residual
y − g(z)) or it has small curvature (∇2gd(z)). Either
case will result in a good convergence rate. So, the new
iterate along the Gauss-Newton search direction is z̃ =
z+αp with p = (I+JTJ)−1(JT (y−g(z))−z+F(x)).
In practice we find that the full Gauss-Newton step
α = 1 is nearly always accepted, except in early itera-
tions, so the line search is rarely run; and 1–2 Gauss-
Newton steps are usually enough to decrease the rel-
ative error to around 10−4. The cost per step for a
single zn is O(D2

zDy) times the cost of computing one
entry of the Jacobian (the cost term D3

z from solving
the linear system can be ignored because Dz < Dy).
This is just Dz times the cost of computing the gra-
dient. Thus, thanks to the Hessian information, we
achieve a far faster convergence than simple gradient
methods at barely any extra cost, again a nice conse-
quence of introducing low-dimensional coordinates in
the objective. The cost over all Z is then O(ND2

zDy);
in practice this costs less than the step over g and F.
The N optimizations could be run in parallel.

Initialization One advantage of having the auxil-
iary low-dimensional coordinates Z as free parame-
ters is that we can use many good ways to initialize
them (rather than using random values), ranging from
purely unsupervised dimensionality reduction (PCA,
Isomap and other spectral methods), possibly run on
X or on (X,Y), to sliced inverse regression, reduced-
rank regression and related methods.

Other Choices of Mappings In some applications
it may be convenient to make g, F or both linear. Lin-
ear F can be particularly useful with very high-dimen-
sional inputs. Indeed, much earlier work has focused
on estimating (in one shot) a linear F and then esti-
mating a nonlinear g. Another interesting possibility
that is especially efficient in our method is to take g as
linear and F as an RBF network, thus achieving a non-
linear dimensionality reduction and feature extraction.
Since the basis functions for F are trained once and for
all in the first iteration, the model F becomes a linear
mapping operating on inputs Φ(xn), so the steps over
(F,g) and Z are all quadratic and have a unique solu-
tion given by solving a linear system. In fact, we con-
jecture the objective function in this case has a unique
global optimum (up to symmetries). It is also possible
to let g and F be nonparametric. The step over (F,g)
has a unique solution given by a basis function expan-
sion where each data point xn or zn is a center (so no
k-means is needed). However, the step over Z becomes
far more complex (Carreira-Perpiñán and Lu, 2008).

Bias with Respect to (1) Our formulation does
introduce one problem: the optima of (2) are not nec-
essarily optima of (1) and vice versa. Thus, our com-

1297



Nonlinear Low-Dimensional Regression Using Auxiliary Coordinates

posite mapping g◦F is not optimal in the usual sense.
However, it is easy to see from the gradients that if
zn = F(xn) for all n at an optimum of (2) then g ◦ F
is indeed optimal in the usual sense of (1). In practice
we observe zn is always very close to F(xn), suggesting
the bias is not important. Our experiments show our
algorithm achieves better results than a range of low-
dimensional regression methods, and better or compa-
rable than direct regression. We think the computa-
tional ease of our algorithm far compensates for the
slight suboptimality with respect to (1).

We see three ways of decreasing the bias if desired.
One could optimize (1) from our F and g (discard-
ing Z). However, as discussed in the introduction, the
point is that optimizing (1) is very slow. This op-
tion treats our algorithm as a fast way to get a very
good initialization. It is similar in spirit to pretrain-
ing (Hinton and Salakhutdinov, 2006), but the latter
is even slower and obtains F, g that are less refined
because they are trained as unsupervised Boltzmann
machines rather than to minimize the prediction er-
ror. A second option is to run a fast postprocessing
step where one fits F to (X,Z), discards Z, fits g to
(F(X),Y), and returns the resulting F and g. It is
easy to see that this always decreases the error (1). By
comparing with training the deep net in experiments,
we show this option practically eliminates the (anyway
small) bias, producing near-optimal F, g much faster.
A third option we leave for future work is to drive the
F–term to zero in a graduated way during the opti-
mization, thus ensuring we obtain an optimum of (1)
while never optimizing the deep g ◦ F (effectively, ap-
plying a quadratic-penalty method to minimizing the
g–error s.t. the constraints F(X) = Z).

Cross-validation and Number of Parameters
Given a test point x, to project it to latent space and
to predict its output we simply compute z = F(x) and
y = g(z), resp. This also follows from a missing-data
point of view (Carreira-Perpiñán and Lu, 2011): if we
augment the training set X with x and minimize (2)
over the unknowns z and y, keeping F and g fixed,
we equivalently minimize E(y, z) = ‖y − g(z)‖2 +
‖z− F(x)‖2, which yields the result above. Thus, our
predictive function is g ◦ F, the same as in (1), which
we use for cross-validating the user parameters: regu-
larization parameter λ, width σ, number of basis func-
tions M (for F, g), and the dimensionality of z. Note
our approach introduces no additional user parameters
over those already existing in the formulation (1).

The number of parameters in our low-dimensional re-
gressor g ◦ F (weights and centers only, we ignore the
auxiliary parameters Z, which are not used for testing)
is O(MF(Dx+Dz)+Mg(Dy+Dz)). For a direct RBF
network from x to y with M basis functions we have

O(M(Dx+Dy)) parameters. If using linear mappings,
the low-dimensional case has O(Dz(Dx+Dy)) and the
direct one O(DxDy). The runtime for a test point is
proportional to the number of parameters in all cases.
The low-dimensional regressor will have fewer param-
eters when Dz is sufficiently smaller than Dx and Dy,
and depending on how many basis functions are used.

2 Experimental Evaluation

Our figure of merit is the prediction error with respect
to the ground truth. We determine the user parame-
ters for the direct and low-dimensional regression by
cross-validation. We initialize Z from PCA or Isomap
trained on the joint (X,Y) (which tends to work better
than just X) and use the alternating optimization of
section 1 with early stopping on a validation set, which
in our datasets happened at around 100 iterations.
Compared to the direct regression, we achieve a lower
or equal error while using fewer or the same number
of parameters. All other methods do worse than ours
and often worse than the direct regression. We com-
pare our method with two direct regressors y = G(x):
an RBF network and a Gaussian process (GP, trained
with the software of Rasmussen and Williams, 2005);
and with two low-dimensional regressors y = g(F(x))
for which either software is available (KSIR; Wu, 2008)
or results in comparable datasets are published (Kim
and Pavlovic, 2008). We also tried estimating F from
unsupervised dimensionality reduction (PCA, Isomap)
but the results (not shown) were far worse. Finally,
note that our problems have Dy > Dz, otherwise the
dimensionality reduction problem z = F(x) is no eas-
ier than the prediction problem y = G(x).

Rotated MNIST Digits ‘7’ We selected 40 dig-
its ‘7’ at random from the MNIST database (28 × 28
grayscale images, so Dx = 784), added some noise,
and rotated each by 6–degree increments from 0 to
360 degrees, to create a dataset of N = 2400 images
in D = 784 dimensions. The output y of a digit with
rotation θ was created by rigidly rotating by θ (a lin-
ear map) a fixed upright digit–7 point set in 2D (14
points so Dy = 28), yielding a skeletonized version of
the image at the corresponding rotation (fig. 1). Thus,
the composite mapping goes through a bottleneck of
dimension Dz = 2 given by the Cartesian coordinates
of the angle. We do validation on another 600 images
(fig. 2) and test on 3000 images. The Z points found
by Isomap (using k = 20 neighbors and the known di-
mensionality Dz = 2) when run on the (X,Y) dataset
capture the loop nature of the data, but images with
the same rotation have widely separated z, because
there is also a large variation in the handwriting style
of the digits (fig. 3 left); the same effect appears in
fig. 9 of Carreira-Perpiñán and Lu (2010). The results

1298



Weiran Wang Miguel Á. Carreira-Perpiñán

Figure 1: Training subset of noisy rotated MNIST ‘7’
(input image x and output skeleton y).

3.8

4

4.2

4.4

4.6

 

 

1200

2000

2400

regularization λg

lo
g
1
0
(v
a
li
d
a
ti
o
n

e
rr
o
r)

0 10−8 10−6 10−4 10−2 1 100

3.6

3.7

3.8

3.9

4

 

 

5

10

15

20

50

 

 

75

100

150

200

300

regularization λg

10−810−610−410−2 1 100 1000

Figure 2: Cross-validation curves for our algorithm on
rotated MNIST ‘7’. Left : F RBF, g linear. Each
curve corresponds to a different number of centers for
F (λF = 10−2), and the validation is over λg. Right :
both F, g RBF. We fix MF = 1200 centers and λF =
10−2. The validation is over the Mg and λg.

of KSIR and kernel PCA are no better. Our algo-
rithm (results after 16 iterations) turns the initial Z
from Isomap into a nearly 1D loop by collapsing images
with the same rotation irrespective of their individual
style (since these all map to the same skeleton). Us-
ing RBF networks for F and g, our method achieves
the lowest test error, far better than one-shot low-di-
mensional regressors (e.g. KSIR), and better than di-
rect regression with GP or RBF networks, while using
fewer parameters (table 1, fig. 3 right).

Scratched MNIST Digits We consider all MNIST
digit types now (commonly assumed to lie in a low-
dimensional manifold because of variations in slant,
thickness, style, etc.) and add scratches to the original
images of random orientation and thickness. We want
to predict the corresponding scratch-free image. We
picked 2 000 images (200 for each digit 0–9) for train-
ing, 2 000 for validation and 2 000 for test. Thus we
map from Dx = 784 to Dy = 784. Notice that the
scratches greatly alter the Euclidean distances in the
784D input space, which results in poor performance
of the nearest neighbor regressor on this data set. We
find that, with a latent dimension of only Dz = 60, we
do as well or slightly better than direct regression error
with RBF. Further confirmation that our 60D features
are good is how much they improve the nearest neigh-
bor regressor (using distances in latent space).

Our algorithm, with both F and g RBF networks, uses
the same number of parameters as the direct regres-
sion. We set the parameters as follows. We first cross-
validate the direct RBF regression to find the number
of centers and regularization. We then train our algo-
rithm with the same centers and regularization for F,

Method SSE
direct linear 51 710

direct RBF (1200 centers) 32 495
direct RBF (2000 centers) 29 525

Gaussian process 29 208
KPCA (3) + RBF (2000, 1) 49 782

KSIR (60, 26) + RBF(20, 10−5) 39 421
Ours: F RBF (2000, 10−2) + g linear (10−3) 29 612
Ours: F RBF (1200, 10−2)+g RBF (75, 10−2) 27 346

Table 1: Sum of squared errors on rotated MNIST
‘7’ test set, with optimal parameters coded as RBF
(M,λ), KPCA (Gaussian kernel width), KSIR (num-
ber of slices, Gaussian kernel width). Number of iter-
ations for our method: 16 (linear g), 7 (RBF g).

and the same regularization for g. We run 5 times for
each parameter setting for different random k-means
initializations to find the centers of g. Finally, we pick
the F and g with the smallest regression error for g◦F
as before. We find that errors on both direct RBF and
our low-dimensional regression algorithm are very sim-
ilar. We also ran a nearest neighbor regressor based on
the extracted 60D features. For each test point x, we
obtain a low-dimensional feature F(x), and find near-
est neighbors among the training set low-dimensional
projections F(x) or z. The regression errors are shown
in fig. 4. The relative improvement for the nearest
neighbor regressor is 39.4%, which can also be seen in
the sample images shown on the right. Note that Kim
and Pavlovic (2008), using similarly scratched USPS
digits, barely improved over nearest neighbor regres-
sor, and did not compare with a direct RBF regression.

Serpentine Robot Forward Kinematics In prac-
tice, robots are redundant by design, i.e., they have
more degrees of freedom than strictly required to per-
form a task, because this facilitates planning. For ex-
ample, a redundant robot arm has many angle con-
figurations to grasp a given object, to improve the
chances that some of them remain feasible in the pres-
ence of obstacles in workspace. This naturally gives
rise to low-dimensional regression settings. Serpentine
robots are of particular interest due to their high ma-
neuverability, but they also have complex kinematics.
Although the manufacturer provides an analytical for-
ward kinematics mapping that predicts the workspace
position of the end-effector given joint angles, it devi-
ates from the actual one because of the effect of e.g.
loads, and must be calibrated (or learned).

We consider here a planar simulated serpentine robot
(fig. 6 left) consisting of a chain of 10 articulated links
of equal length, with the first link anchored at the ori-
gin. Its “head” or end-effector is thus constrained to
move in a plane, but it holds a “camera” (represented
by the 3D coordinates of its 8 corners) through a fixed-

1299



Nonlinear Low-Dimensional Regression Using Auxiliary Coordinates

PCA KPCA

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

x

y

−0.15 −0.1 −0.05 0 0.05 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

KSIR (60 slices) Isomap on X

−0.1 −0.05 0 0.05 0.1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

−1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

z1

z2

Isomap on (X,Y) F RBF + g linear

−3 −2 −1 0 1 2 3

x 10
−3

−3

−2

−1

0

1

2

3
x 10

−3

z1

z2

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

test
Ground
Truth lin G RBF G GP G

RBF F
lin g

RBF F
RBF g

Figure 3: Left : embeddings Z from different methods for MNIST ‘7’. Each curve (only 10 plotted to avoid clutter)
corresponds to one original image and its continuously rotated versions. Right : sample test predictions by differ-
ent methods. GT: ground truth, G: direct regression (linear, RBF net, Gaussian process), (F,g): our method.

length link that it can orient in 3D space. Thus, we
have a mapping from Dx = 12 dimensions (the joint
angles) to Dz = 4 dimensions (the 2D position and
2D orientation of the end-effector) to Dy = 24 dimen-
sions (the camera configuration). We assume we have
recorded N = 2000 pairs of angles and camera con-
figurations while the robot moved around. We used
Isomap (k = 20) as initial Z. Cross-validation in our
method clearly showed the correct latent dimensional-
ity (fig. 5), not seen in Isomap’s residual variance, and
achieved a quite lower test error than direct regression
with RBF or GP mappings (table 2). Fig. 6 (right)
shows the latent parameterization found correlates
one-to-one with the ground-truth one; the colors of col-
umn i code our method’s coordinate zi for i = 1 to 4.

Comparison with optimizing nested model g◦F
We repeated the robot experiment by directly mini-
mizing the nested model (1) without auxiliary coordi-
nates. All conditions were identical: same data (train-
ing, validation, test), model size and initial Z (so same
initial mappings fitted to (X,Z) and (Z,Y)); early
stopping (training stops when the validation error (1)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

R
M
S
E

dimension Dz

1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

re
si
d
u
a
l
va
ri
a
n
ce

dimension Dz

Figure 5: Cross-validation of intrinsic dimensionality
for serpentine robot forward kinematics. Left : valida-
tion over Dz for our algorithm. Right : residual vari-
ance of Isomap on (X,Y) (k = 20 nearest neighbors).

increases); running on a single core of a PC. We used
alternating optimization of (1): the step over g for
fixed F is identical to ours, a regression on (F(X),Y);
the step over F uses conjugate gradients and a good
line search (C. Rasmussen’s minimize); L-BFGS did
about as well. Other variations worked far worse (opti-
mizing jointly all parameters, or using gradient descent
with or without momentum). The large number of pa-
rameters in WF (M = 2000 basis functions so 8 000

1300



Weiran Wang Miguel Á. Carreira-Perpiñán

50100200300 500 1000
0.4

0.6

0.8

1

1.2

1.4

1.6x 10
5

 

 

NN on X
RBF
F RBF + g RBF
NN on Z
NN on F(X)

Number of basis functions

R
S
S
E

Test

GT

NN-784

NN-60

RBF G

(F, g)

Figure 4: Scratched MNIST digits results. Left : prediction error for our method (lower curve, barely distin-
guishable from direct regression) and for a nearest neighbor regressor on input x directly (black line) and on our
latent features F(x) or z (magenta, green curves). Errorbars over 5 runs of our method using different k-means
initialization. Right : sample test reconstructions by different methods. GT: ground truth y, NN-784 and NN-60:
nearest neighbor regressor in original and reduced space, RBF G: direct RBF regression, (F,g): our method.

...x

yz

end-
effector

camera
links

ρ

x

y

θ1 θ2

φ

G
ro
u
n
d
tr
u
th

−5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

t1

t2

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t3

t4

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t3

t4

−5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

t1

t2

O
u
rs

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

z1

z2

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

z1

z2

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
−0.01

−0.005

0

0.005

0.01

0.015

0.02

z3

z4

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
−0.01

−0.005

0

0.005

0.01

0.015

0.02

z3

z4

Figure 6: Left : illustration of a serpentine robot configuration from two views. Right : correspondence between
the ideal 4D latent representation that generated the data set (first row) and dimension reduction achieved by our
algorithm (second row). When we move in one dimension (z1, z2, z3, and z4 for the four columns respectively)
in our latent space (color varying from blue to red), we observe a corresponding motion in the ideal latent space.

Method RMSE
direct regression, linear (reg. 0) 2.2827

direct regression, RBF (2000, 10−6) 0.3356
direct regression, Gaussian process 0.7082
KPCA (2.5) + RBF (400, 10−10) 3.7455

KSIR (400, 100) + RBF (1000, 10−8) 3.5533
Ours: F RBF (2000, 10−6)+g RBF (100, 10−9) 0.1006

Table 2: Root mean squared error (per corner of the
camera) of the output y on a test set of serpentine ro-
bot forward kinematics. Methods coded as in table 1.

weights) makes it hard to use second-order methods.

Fig. 7 shows the error (1) on training and test. Train-
ing the nested model proceeds slowly as expected. It
takes 1885 iterations and ≈ 3 hours runtime to reach
early stopping. Training with our algorithm quickly
decreases the error, with early stopping occurring after
34 iterations and 200 seconds runtime. The bias there
is very small compared with the nested convergence
error. Already stopping here gives a near-optimal
model in 1

50 th of the runtime; at that point, the nested
model’s error is far bigger, closer to the initial one. We

then switch to the nested training in order to remove
the bias. This practically occurs in the very first itera-
tion, which simply fits g to (F(X),Y) (eliminating Z).
Further training proceeds at its usual slow rate and
has little bias left to eliminate. If we let our algorithm
converge on the training set instead, the bias is bigger,
but its decrease in the first iteration after the switch
is also bigger and the final error is comparable.

3 Discussion

We have motivated our approach as a way to unfold
the squared error with a deep mapping in (1) into
two squared errors with shallower mappings, equaliz-
ing the scaling of the parameters and thus reducing ill-
conditioning. Alternating optimization is simple and
fast because the mappings decouple given the low-di-
mensional coordinates, and the Z–step decouples over
all coordinates given the mappings. Alternating opti-
mization is much slower if applied to (F,g) in (1) be-
cause the parameters are then coupled (Nocedal and
Wright, 2006) and F is nonlinearly nested inside g. As
evidenced by our experiments, our objective function

1301



Nonlinear Low-Dimensional Regression Using Auxiliary Coordinates

10
1

10
2

10
3

10
4

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 

 

nested, training
nested, test
auxcoord, training
auxcoord, test

ro
ot

m
ea
n
sq
u
ar
ed

re
gr
es
si
on

er
ro
r

run time (seconds)

switch from auxiliary
coordinates to nested

Figure 7: Learning curves for the nested objective (1)
as a function of runtime, for the nested training
(dashed) vs auxiliary coordinates (solid), on the train-
ing (blue) and test (red) datasets. Validation error
curves similar to test not shown to avoid clutter.

achieves a very good model with early stopping; the
small bias there is almost eliminated with an extra it-
eration over g alone (removing Z). This achieves an
error comparable to that of the nested model but over
an order of magnitude faster. As with other biased but
fast learning algorithms, such as contrastive divergence
(Carreira-Perpiñán and Hinton, 2005), the ability to
get a pretty good model pretty fast (and the option to
eliminate the bias at extra cost) is practically useful.

In a sense, the one-shot methods described in the in-
troduction can be seen as doing a single iteration of
our approach, since they first get Z or F (usually from
an eigenproblem) and then they fit g to (Z,Y). For
example, in sliced inverse regression (SIR) and related
methods one first fits F based on certain information
that involves y. Then, F is kept fixed and its out-
puts z = F(x) are used to fit g. (In our method, F
and g can be updated in parallel.) Unless a perfect
decoupling between F and g and thus perfect coordi-
nates Z could be achieved, which seems only possible
in very special cases, it would make sense to improve
the result by iterating the process to fit F–then–g, as
in our approach (although SIR lacks a joint objective
function over F and g). Otherwise, the estimation of
g is stuck with suboptimal inputs Z. We can then
classify low-dimensional regression methods along an
axis that measures how much the outputs y influence
the dimensionality reduction F: unsupervised dimen-
sionality reduction for F (e.g. PCA or Isomap) on the
inputs X alone, ignoring Y entirely; unsupervised di-
mensionality reduction for F on the joint (X,Y); SIR
and related methods that learn F using some informa-
tion from Y, fix it and learn g given F; and methods
that jointly optimize an objective function where F
and g are coupled, such as (1) and (2).

Our approach is close in spirit to unsupervised re-
gression methods for dimensionality reduction such as
Smola et al. (2001); Meinicke et al. (2005) and in par-
ticular Carreira-Perpiñán and Lu (2008, 2010, 2011)
(see also Ranzato et al., 2007). Here one has inputs X
but no outputs Y, and one lets the unobserved pro-
jections of X in latent space be separate variables to
be optimized over. However, without the information
provided by Y, the latent space found by them will
not generally be optimal for regression.

A problem related to low-dimensional regression is
manifold alignment (e.g. Ham et al., 2005). The latter
is usually formulated as finding a single latent space
that is shared by different high-dimensional spaces
(without specifying any as inputs or outputs), in a
semi-supervised setting (given only a few correspond-
ing pairs across spaces), and using spectral methods
(e.g. graph Laplacians). In our fully supervised setting
this seems less useful, although if we had additional
unlabeled inputs (or outputs) it may make sense to
use manifold alignment to initialize Z in our method.

4 Conclusion

Allowing both the dimensionality reduction and the
regression mappings to be nonlinear is a potentially
very powerful approach to low-dimensional regression,
but it creates a deep mapping with nested layers and
long-range couplings between parameters that makes
training very difficult. We have proposed a new ob-
jective function by introducing low-dimensional coor-
dinates to decouple both mappings, thus working on
a larger search space that is better conditioned. This
still achieves very good nonlinear solutions but is now
easier to optimize, and allows exact or second-order
steps even with high dimensions and large datasets.
Training time is linear in the sample size, with efficient
steps that cause large changes to the initialization in
a few iterations. Our results far outperform one-shot
methods such as (kernel) sliced inverse regression in
the quality of the model achieved, and direct learning
of the nested mapping in training speed. In our view,
truly nonlinear methods for dimensionality reduction
have been unfairly neglected in the literature and we
hope our work shows they can be used in practice.

Here we have taken F, g to be shallow mappings (with
just one layer of hidden units), because this is sufficient
to obtain universal approximators, and at present it is
not clear that deeper mappings are superior. However,
our approach should apply to deep nets by making the
intermediate unit activations at each layer be auxiliary
coordinates and optimizing over them as well.

Acknowledgments
MACP thanks Stefano Carpin for valuable discussions.
Work funded by NSF CAREER award IIS–0754089.

1302



Weiran Wang Miguel Á. Carreira-Perpiñán

References

T. W. Anderson. Estimating linear restrictions on re-
gression coefficients for multivariate normal distri-
butions. Annals of Mathematical Statistics, 22(3):
327–351, Sept. 1951.

C. M. Bishop. Pattern Recognition and Machine
Learning. Springer Series in Information Science and
Statistics. Springer-Verlag, Berlin, 2006.

M. Á. Carreira-Perpiñán and G. E. Hinton. On con-
trastive divergence learning. In R. G. Cowell and
Z. Ghahramani, editors, Proc. of the 10th Int. Work-
shop on Artificial Intelligence and Statistics (AIS-
TATS 2005), pages 33–40, Barbados, Jan. 6–8 2005.

M. Á. Carreira-Perpiñán and Z. Lu. Dimensionality re-
duction by unsupervised regression. In Proc. of the
2008 IEEE Computer Society Conf. Computer Vi-
sion and Pattern Recognition (CVPR’08), Anchor-
age, AK, June 23–28 2008.

M. Á. Carreira-Perpiñán and Z. Lu. Parametric
dimensionality reduction by unsupervised regres-
sion. In Proc. of the 2010 IEEE Computer Soci-
ety Conf. Computer Vision and Pattern Recognition
(CVPR’10), pages 1895–1902, San Francisco, CA,
June 13–18 2010.

M. Á. Carreira-Perpiñán and Z. Lu. Manifold learning
and missing data recovery through unsupervised re-
gression. In Proc. of the 12th IEEE Int. Conf. Data
Mining (ICDM 2011), pages 1014–1019, Vancouver,
BC, Dec. 11–14 2011.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimen-
sionality reduction for supervised learning with re-
producing kernel Hilbert spaces. Journal of Machine
Learning Research, 5:73–99, Jan. 2004.

J. Ham, D. Lee, and L. Saul. Semisupervised align-
ment of manifolds. In R. G. Cowell and Z. Ghahra-
mani, editors, Proc. of the 10th Int. Workshop
on Artificial Intelligence and Statistics (AISTATS
2005), pages 120–127, Barbados, Jan. 6–8 2005.

G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507, July 28 2006.

M. Kim and V. Pavlovic. Dimensionality reduction us-
ing covariance operator inverse regression. In Proc.
of the 2008 IEEE Computer Society Conf. Com-
puter Vision and Pattern Recognition (CVPR’08),
Anchorage, AK, June 23–28 2008.

K.-C. Li. Sliced inverse regression for dimension reduc-
tion. J. Amer. Stat. Assoc., 86(414):316–327 (with
comments, pp. 328–342), June 1991.

P. Meinicke, S. Klanke, R. Memisevic, and H. Ritter.
Principal surfaces from unsupervised kernel regres-

sion. IEEE Trans. Pattern Analysis and Machine
Intelligence, 27(9):1379–1391, Sept. 2005.

J. Nocedal and S. J. Wright. Numerical Optimization.
Springer Series in Operations Research and Finan-
cial Engineering. Springer-Verlag, New York, second
edition, 2006.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun.
Efficient learning of sparse representations with an
energy-based model. In B. Schölkopf, J. Platt, and
T. Hofmann, editors, Advances in Neural Informa-
tion Processing Systems (NIPS), volume 19, pages
1137–1144. MIT Press, Cambridge, MA, 2007.

C. E. Rasmussen and C. Williams. Gaussian Processes
for Machine Learning. Adaptive Computation and
Machine Learning Series. MIT Press, Cambridge,
MA, 2005.

G. C. Reinsel and R. P. Velu. Multivariate Reduced-
Rank Regression. Theory and Applications. Number
136 in Lecture Notes in Statistics. Springer-Verlag,
1998.

T. Rögnvaldsson. On Langevin updating in multi-
layer perceptrons. Neural Computation, 6(5):916–
926, Sept. 1994.

A. J. Smola, S. Mika, B. Schölkopf, and R. C.
Williamson. Regularized principal manifolds. Jour-
nal of Machine Learning Research, 1:179–209, June
2001.

J. B. Tenenbaum, V. de Silva, and J. C. Langford.
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323,
Dec. 22 2000.

H.-M. Wu. Kernel sliced inverse regression with appli-
cations to classification. Journal of Computational
and Graphical Statistics, 17(3):590–610, Sept. 2008.

1303



Nonlinear Low-Dimensional Regression Using Auxiliary Coordinates

A Appendix: Supplementary Material

A.1 Proof that the postprocessing step
always reduces the bias

We show that the postprocessing step described in sec-
tion 1 (under “Bias with Respect to (1)”) always re-
duces the bias. Define the nested objective function

E1(F,g) =
N∑

n=1

‖yn − g(F(xn))‖2 +λgR(g)+λFR(F)

(1’)
and the auxiliary-coordinates objective function
(where Z = (z1, . . . , zn))

E2(F,g,Z) =
∑N

n=1 ‖yn − g(zn)‖2 + λgR(g) (2’)

+
∑N

n=1 ‖zn − F(xn)‖2 + λFR(F).

Given a point (Z2,F2,g2) in the space of E2, we define
the postprocessing step as obtaining the point (F1,g1)
in the space of E1, where F1 = F2 and g1 is fit to
minimize the regression error

min
g

N∑

n=1

‖yn − g(z′n)‖
2
+ λgR(g) (6)

where g is initialized from g2 and z′n = F2(xn), n =
1, . . . , N . That is, the postprocessing step discards Z
and corrects g by fitting it to (F2(X),Y).

Theorem A.1. The postprocessing step decreases the
objective E1 or leaves it unchanged.

Proof. We have:

E1(F1,g1) =

=

N∑

n=1

‖yn − g1(F1(xn))‖2 + λgR(g1) + λFR(F1)

≤
N∑

n=1

‖yn − g2(F2(xn))‖2 + λgR(g2) + λFR(F2)

= E1(F2,g2)

since F1 = F2 and g1 minimizes (6) starting from
g2.

In practice, the point (Z2,F2,g2) typically comes from
minimizing E2, possibly with early stopping on E1

(i.e., exiting the minimizer when the error E1 on a vali-
dation set of points (x,y) increases). Because (F2,g2)
was reached by minimizing E2 and not E1, it is not op-
timal w.r.t. E1. Thus the postprocessing step always
results in a point (F1,g1) that improves over (F2,g2).
This is true even if we reduce but not completely min-
imize (6).

1304


