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Abstract

We develop scalable algorithms for regular
and non-negative matrix completion. In par-
ticular, we base the methods on trace-norm
regularization that induces a low rank pre-
dicted matrix. The regularization problem
is solved via a constraint generation method
that explicitly maintains a sparse dual and
the corresponding low rank primal solution.
We provide a new dual block coordinate de-
scent algorithm for solving the dual prob-
lem with a few spectral constraints. Empir-
ical results illustrate the effectiveness of our
method in comparison to recently proposed
alternatives.

1 Introduction

Matrix completion lies at the heart of collaborative
filtering. Given a sparsely observed rating matrix of
users and items, the goal is to reconstruct the remain-
ing entries so as to be able to recommend additional
items to users. By placing constraints on the underly-
ing rating matrix, and assuming favorable conditions
for the selection of observed entries (cf. [12]), we may
be able to recover the matrix from sparse [6] and po-
tentially also noisy observations. The most commonly
used constraint on the underlying matrix is that user
preferences vary only across a few prominent underly-
ing dimensions. The assumption can be made explicit
so that the matrix has low rank or introduced as a
regularizer (convex relaxations of rank) [7, 14]. An ex-
plicit low rank assumption about the underlying ma-
trix results in a non-convex optimization problem. For
this reason, recent work has focused on optimization
algorithms (e.g., [9, 16, 15, 13]) and statistical recovery
questions (e.g., [6, 2]) pertaining to convex relaxations
of rank or alternative convex formulations (e.g., [1]).
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Our focus in this paper is on optimization algorithms
for trace-norm regularized matrix completion. Trace-
norm (a.k.a nuclear norm) is a 1-norm penalty on the
singular values of the matrix and thus leads to a low
rank solution with sufficient regularization. One key
difficulty with this approach is that while the result-
ing optimization problem is convex, it is not differen-
tiable. A number of approaches have been suggested
to deal with this problem (e.g., [4]). In particular,
many variants of proximal gradient methods (e.g., [9])
are effective as they fold the non-smooth regularization
penalty into a simple proximal update that makes use
of singular value decomposition. An alternative strat-
egy would be to cast the trace-norm itself as a mini-
mization problem over weighted Frobenius norms that
are both convex and smooth.

Another key difficulty arises from the sheer size of the
full rating matrix even if the observations are sparse.
This is a problem with all convex optimization ap-
proaches (e.g., proximal gradient methods) that explic-
itly maintain the predicted rating matrix (rank con-
straint would destroy convexity). The scaling problem
can be remedied by switching to the dual regulariza-
tion problem where dual variables are associated with
the few observed entries [14]. The standard dual ap-
proach would, however, require us to solve an addi-
tional reconstruction problem (using complementary
slackness) to realize the actual rating matrix.

We introduce here a new primal-dual approach that
avoids both of these problems, leading to a sparse dual
optimization problem while also iteratively generating
a low rank estimated matrix. The approach scales well
to large and especially sparse matrices that are un-
suitable for methods that maintain the full matrix or
require singular value decomposition. We also extend
the approach to non-negative matrix completion.

2 Trace norm regularization for
matrix completion

We consider the well-known sparse matrix completion
problem [6]. The goal is to predict the missing en-
tries of a n ×m (n ≥ m) real valued target matrix Y
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based on a small subset of observed entries. We index
the observed entries as Yu,i, (u, i) ∈ D. A typical ap-
proach to this problem would constrain the predicted
matrix W to have low rank: W = UV T , where the
smaller dimension of U and V is (substantially) less
than m. A convex relaxation of the corresponding es-
timation problem is obtained via trace norm regular-
ization (e.g., [7, 14])

J(W ) =
∑

(u,i)∈D
Loss(Yu,i,Wu,i) + λ‖W‖∗ (1)

where Loss(Yu,i,Wu,i) is a convex loss function of
Wu,i such as the squared loss. To simplify the en-
suing notation, we assume that the loss function de-
pends only on the difference between W and Y so that
Loss(Yu,i,Wu,i) = Loss(Yu,i −Wu,i). The trace-norm
‖W‖∗ is a 1-norm penalty on the singular values of the
matrix, i.e., ‖W‖∗ =

∑m
j=1 σj(W ) where σj(W ) ≥ 0 is

the jth singular value of W . For large enough λ, some
of the singular values are set exactly to zero resulting
in a low rank predicted matrix W .

One key optimization challenge comes from the regu-
larization penalty ‖W‖∗ which is convex but not dif-
ferentiable. Effective algorithms based on (acceler-
ated) proximal gradient updates have been developed
to overcome this issue (e.g., [9, 2]). However, such
methods update the full matrix W in each iteration
and are thus unsuitable for large problems.

3 A primal-dual algorithm

We consider here primal-dual algorithms that operate
only over the observed entries, thus leading to a sparse
estimation problem. In our formulation, the dual vari-
ables arise from Legendre conjugate transformations
of the loss functions:

Loss(z) = max
q
{qz − Loss∗(q)} (2)

where the conjugate function Loss∗(q) is also convex.
For example, for the squared loss, Loss∗(q) = q2/2.
The resulting dual variables, Qu,i, (u, i) ∈ D, one vari-
able for each observed entry, can be viewed as a sparse
n×m matrix Q with remaining entries set to zero.

The trace norm regularization in the primal formula-
tion translates into a semi-definite constraint in the
dual (cf. [7, 14]):

maximize tr(QTY )−∑(u,i)∈D Loss∗(Qu,i) (3)

subject to QTQ ≤ λ2I

We derive the dual problem in the next section as the
derivation will be reused with slight modification in

the context of non-negative matrix factorization. Note
that the constraint QTQ ≤ λ2I can be equivalently
written as ‖Qb‖2 ≤ λ2 for all b such that ‖b‖ = 1. In
other words, it is a constraint on the spectral norm of
Q. We will solve the dual by iteratively adding spectral
constraints that are violated.

3.1 Derivation of the dual

The trace norm of matrix W with factorization W =
UV T is given by (e.g., [14])

‖W‖∗ = min
W=UV T

1

2
(‖U‖2F + ‖V ‖2F ) (4)

where U and V need not be low rank so the factor-
ization always exists. Consider then an extended sym-
metric matrix

X =

(
UUT UV T

V UT V V T

)
(5)

whose upper right and lower left components equal
W and WT , respectively. As a result, ‖W‖∗ =
minW=XUR tr(X)/2 whereXUR is the upper right part
of X. By construction, X is symmetric and positive
semi-definite.

We can also expand the observations into a symmetric
matrix

Z =

(
0 Y
Y T 0

)
(6)

and use Ω as the index set to identify observed en-
tries in the upper right and lower left components of
Z. Formally, Ω = {(i, j)|1 ≤ i, j ≤ m + n, (i, j −
n) or (i− n, j) ∈ D}.
With these definitions, the primal trace norm regular-
ization problem is equivalent to the extended problem

min
X∈S

∑

(u,i)∈Ω

Loss(Zu,i −Xu,i) + λtr(X) (7)

where S is the cone of positive semi-definite matrices
in R(m+n)×(m+n).

We introduce dual variables for each observed entry in
Z via Legendre conjugate transformations of the loss
functions. The Lagrangian involving both primal and
dual variables is then given by

L(A,X,Z) =
∑

(u,i)∈Ω

[
Au,i(Zu,i −Xu,i)− Loss∗(Au,i)

]

+ λtr(X) (8)

where A can be written as

A =

(
0 Q
QT 0

)
(9)
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and Q is sparse such that Qu,i = 0 is (u, i) /∈ D. To in-
troduce the dual variables for the positive semi-definite
constraint, we consider the dual cone of S which is de-
fined as

S∗ = {E ∈ R(m+n)×(m+n), tr(ETM) ≥ 0,∀M ∈ S} (10)

S is self-dual so that S∗ = S. The Lagrangian is then

L(A,E,X,Z) =
∑

(u,i)∈Ω

[
Au,i(Zu,i−Xu,i)−Loss∗(Au,i)

]

+ λtr(X)− tr(ETX) (11)

To solve for X, we set d/X L(A,E,X,Z) = 0, and get

λI −A = E ∈ S (12)

Inserting the solution back into the Lagrangian, we
obtain

L(A) =
∑

(u,i)∈Ω

Au,iZu,i − Loss∗(Au,i) (13)

Since E does not show up in the Lagrangian, we can
replace the equation (12) with a constraint λI−A ∈ S.
The formulation can be simplified by considering the
original Q and Y which correspond to the upper right
components of A and Z. The dual problem in these
variables is then

maximize tr(QTY )−∑(u,i)∈D Loss∗(Qu,i)

subject to λ2I −QTQ ∈ S (14)

3.2 Solving the dual

There are three challenges with the dual. The first
one is the separation problem, i.e., finding vectors b,
‖b‖ = 1, such that ‖Qb‖2 > λ2, where Q refers to the
current solution. Each such b can be found efficiently
precisely because Q is sparse. The second challenge is
effectively solving the dual under a few spectral con-
straints. For this, we derive a new block coordinate
descent approach (cf. [16]). The third challenge con-
cerns the problem of reconstructing the primal matrix
W from the dual solution. By including only a few
spectral constraints in the dual, we obtain a low-rank
primal solution. We can thus explicitly maintain a
primal-dual pair of the relaxed problem (fewer con-
straints) throughout the optimization.

The separation problem. We will iteratively add
constraints represented by b. The separation problem
we must solve is then: given the current solution Q,
find b for which ‖Qb‖2 > λ2. This is easily solved
by finding the eigenvector of QTQ with the largest
eigenvalue. For example, the power method

b = randn(m, 1). Iterate b← QTQb, b← b/‖b‖ (15)

is particularly effective with sparse matrices. If
‖Qb‖2 > λ2 for the resulting b, then we add a sin-
gle constraint ‖Qb‖2 ≤ λ2 into the dual. Note that b
does not have to be solved exactly; any b provides a
valid albeit not necessarily the tightest constraint. An
existing constraint can also be easily tightened later
on with a few iterations of the power method, start-
ing with the current b. We can fold this tightening
together with the block coordinate optimization dis-
cussed below.

Primal-dual block coordinate descent. The sec-
ond problem is to solve the dual subject to ‖Qbl‖2 ≤
λ2, l = 1, . . . , k, instead of the full set of constraints
QTQ ≤ λ2I. This partially constrained dual problem
can be written as

tr(QTY )−
∑

(u,i)∈D
Loss∗(Qu,i)−

k∑

l=1

h(‖Qbl‖2 − λ2) (16)

where h(z) =∞ if z > 0 and h(z) = 0 otherwise. The
advantage of this form is that each h(‖Qb‖2−λ2) term
is a convex function of Q (a convex non-decreasing
function of a convex quadratic function of Q, therefore
itself convex). We can thus obtain its conjugate dual
as

h(‖Qb‖2 − λ2) = sup
ξ≥0
{ξ(‖Qb‖2 − λ2)/2}

= sup
ξ≥0,v

{vTQb− ‖v‖2/(2ξ)− ξλ2/2}

where the latter form is jointly concave in (ξ, v) where
b is assumed fixed. This step lies at the core of our
algorithm. By relaxing the supremum over (ξ, v), we
obtain a linear, not quadratic, function of Q. The new
Lagrangian is given by

L(Q,V, ξ) = tr(QTY )−
∑

(u,i)∈D
Loss∗(Qu,i)

−
k∑

l=1

[
(vl)TQbl − ‖vl‖2/(2ξl)− ξlλ2/2

]

= tr(QT (Y −
∑

l

vl(bl)T ))

−
∑

(u,i)∈D
Loss∗(Qu,i) +

k∑

l=1

[‖vl‖2
2ξl

+
ξlλ2

2

]

which can be maximized with respect to Q for
fixed (ξl, vl), l = 1, . . . , k. Indeed, our primal-dual
algorithm seeks to iteratively minimize L(V, ξ) =
maxQ L(Q,V, ξ) while explicitly maintaining Q =
Q(V, ξ). Note also that by maximizing over Q,
we reconstitute the loss terms tr(QT (Y − W )) −∑

(u,i)∈D Loss∗(Qu,i). The predicted rank k matrix

W is therefore obtained explicitly W =
∑
l v
l(bl)T .
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By allowing k constraints in the dual, we search over
rank k predictions.

The iterative algorithm proceeds by selecting one l,
fixing (ξj , vj), j 6= l, and optimizing L(V, ξ) with re-
spect to (ξl, vl). As a result, L(V, ξ) is monotonically
decreasing. Let W̃ =

∑
j 6=l v

j(bj)T , where only the ob-
served entries need to be evaluated. We consider two
variants for minimizing L(V, ξ) with respect to (ξl, vl):

Method 1: When the loss function is not strictly
convex, we first solve ξl as function of vl resulting in
ξl = ‖vl‖/λ. Recall that L(V, ξ) involves a maximiza-
tion over Q that reconstitutes the loss terms with a
predicted matrix W = W̃+vl(bl)T . By dropping terms
not depending on vl, the relevant part of minξl L(V, ξ)
is given by

∑

(u,i)∈D
Loss(Yu,i − W̃u,i − vlubli) + λ‖vl‖ (17)

which is a simple primal group Lasso minimization
problem over vl. Since bl is fixed, the problem is con-
vex and can be solved by standard methods.

Method 2: When the loss function is strictly convex,
we can first solve vl = ξlQbl and explicitly maintain
the maximizingQ = Q(ξl). The minimization problem
over ξl ≥ 0 is

max
Q

{
tr(QT (Y − W̃ ))−

∑

(u,i)∈D
Loss∗(Qu,i)

−ξl(‖Qbl‖2 − λ2)/2

}
(18)

where we have dropped all the terms that remain con-
stant during the iterative step. For the squared loss,
for example, Q(ξl) is obtained in closed form:

Qu,Iu(ξl) = (Yu,Iu − W̃u,Iu)

(
1− ξlblIu(blIu)T

1 + ξl‖blIu‖2

)
,

where Iu = {i : (u, i) ∈ D} is the index set of observed
elements for a row (user) u. In general, an iterative so-
lution is required. The optimal value ξl ≥ 0 is subse-
quently set as follows. If ‖Q(0)bl‖2 ≤ λ2, then ξl = 0.
Otherwise, since ‖Q(ξl)bl‖2 is monotonically decreas-
ing as a function of ξl, we find (e.g., via bracketing)
ξl > 0 such that ‖Q(ξl)bl‖2 = λ2.

4 Constraints and convergence

The algorithm described earlier monotonically de-
creases L(V, ξ) for any fixed set of constraints corre-
sponding to bl, l = 1, . . . , k. Any additional constraint
further decreases this function. We consider here how
quickly the solution approaches the dual optimum as

new constraints are added. To this end, we write our
algorithm more generally as minimizing

F (B) = max
Q

{
tr(QTY )− Loss∗(Qu,i)

+ 1/2tr((λ2I −QTQ)B)
}

(19)

where B is a positive semi-definite m×m matrix. For
any fixed set of constraints, our algorithm minimizes
F (B) over the cone B =

∑k
l=1 ξ

lbl(bl)T that corre-
sponds to constraints tr((λ2I − QTQ)bl(bl)T ) > 0,∀l.
F (B) is clearly convex as a point-wise supremum of
linear functions of B. For simplicity, we assume that
the loss function Loss(z) is strictly convex with a Lip-
schitz continuous derivative (e.g., the squared loss).
In this case, F (B) is also differentiable with gradient
dF (B) = 1/2(λ2I −QTQ) where Q = Q(B) (unique).
Moreover, B∗ that minimizes F (B) remains bounded,
as does Q(B). Under these assumptions F (B) has a
Lipschitz continuous derivative but need not itself be
strictly convex.

Theorem 4.1. Under the assumptions discussed
above, F (Br)− F (B∗) = O(1/r).

Proof. Consider (B0, Q0), (B1, Q1), ... the sequence
generated by the primal-dual algorithm. Since dF (B)
is Lipschitz continuous with some constant L, F (B)
has a quadratic upper bound:

F (B) ≤ F (Br−1) + 〈dF (Br−1), B −Br−1〉
+L/2‖B −Br−1‖2F (20)

In each iteration, we add a constraint (br)TQTQbr ≤
λ2 and fully optimize Q and ξi to satisfy all the con-
straints that have been added. Prior to including the
rth constraint, from complementary slackness, we have
for each i < r, ξi(bi)T (λ2I − QTQ)bi = 0 where Q
is optimized based on r − 1 constraints. This means
that tr((λ2I − QTQ)

∑r−1
i=0 ξ

ibi(bi)T ) = tr((λ2I −
QTQ)Br−1) = 0, or 〈dF (Br−1), Br−1〉 = 0. Let Br =
Br−1 + ξrbr(br)T , where br = argmax‖b‖=1b

TQTQb,

i.e., the largest eigenvalue λ2
r (λr > λ). Here, λr is the

largest eigenvalue prior to including br. As a result,
the upper bound evaluated at Br yields

F (Br) ≤ F (Br−1) + ξr(λ2 − λ2
r) + 2L(ξr)2

By setting ξr = (λ2
r − λ2)/4L (non-negative), we get

F (Br) ≤ F (Br−1)− (λ2
r − λ2)2/8L

The optimal value of ξr may be different. Moreover,
at each iteration, Br, including all of its previous con-
straints, are optimized. Thus the actual decrease may
be somewhat larger.

From the convexity of F (B) and complementary slack-
ness, we have

F (Br−1)− F (B∗) ≤ 〈dF (Br−1), Br−1 −B∗〉
= −〈dF (Br−1), B∗〉
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where B∗ is the optimum. B∗ is a positive semi-
definite matrix. Therefore

− 〈dF (Br−1), B∗〉 ≤ −〈Projneg(dF (Br−1)), B∗〉
≤ (λ2

r − λ2)tr(B∗) = (λ2
r − λ2)C

where Projneg(·) is a projection to negative semi-
definite matrices. The minimum eigenvalue of
dF (Br−1) = 1/2(λ2 − QTQ) is λ2 − λ2

r. Combining
this with the sufficient decrease, we get

F (Br−1)− F (Br) ≥ (F (Br−1)− F (B∗))2

8LC2

The above inequality implies

1

F (Br)− F (B∗)
− 1

F (Br−1)− F (B∗)

≥ F (Br−1)− F (B∗)
8LC2(F (Br)− F (B∗))

≥ 1

8LC2

Summing over all r, we get

F (Br)− F (B∗) ≤ 8LC2(F (B0)− F (B∗))
r(F (B0)− F (B∗)) + 8LC2

= O(
1

r
)

5 Convex formulation of nonnegative
matrix factorization

The non-negative matrix factorization(NMF) problem
is typically written as

min
U,V

∑

(u,i)∈D
(Yu,i − (UV T )u,i)

2 (21)

where U ∈ Rn×k and V ∈ Rm×k are both matrices
with nonnegative entries. The optimization problem
defined in this way is non-convex and NP-hard in gen-
eral [20]. As before, we look for convex relaxations
of this problem via trace norm regularization. This
step requires some care, however. The set of matrices
UV T , where U and V are non-negative and of rank
k, is not the same as the set of rank k matrices with
non-negative elements. The difference is well-known
even if not fully characterized.

Let us first introduce some basic concepts such as com-
pletely positive and co-positive matrices. A matrix W
is completely positive if there exists a nonnegative ma-
trix B such that W = BBT . It can be seen from the
definition that each completely positive matrix is also
positive semi-definite. A matrix C is co-positive if for
any v ≥ 0, i.e., a vector with non-negative entries,
vTCv ≥ 0. Unlike completely positive matrices, co-
positive matrices may be indefinite. We will denote
the set of completely positive symmetric matrices and
co-positive matrices as S+ and C+, respectively. C+ is

the dual cone of S+, i.e., (S+)∗ = C+. (the dimensions
of these cones are clear from context).

Following the derivation of the dual in section 3, we
consider expanded symmetric matrices X and Z in
R(m+n)×(m+n), defined as before. Instead of requiring
X to be positive semi-definite, however, for NMF we
constrain X to be a completely positive matrix, i.e., in
S+. The primal optimization problem can be given as

min
X∈S+

∑

(u,i)∈Ω

Loss(Xu,i − Zu,i) + λtr(X) (22)

Notice that the primal problem involves infinite con-
straints corresponding to X ∈ S+ and is difficult to
solve directly.

We start with the Lagrangian involving primal and
dual variables:

L(A,C,X,Z) =
∑

(u,i)∈Ω

[
Au,i(Zu,i −Xu,i)− Loss∗(Au,i)

]

+ λtr(X)− tr(CTX) (23)

where C ∈ C+ and A = [0, Q;QT , 0] as before. By
setting d/X L(A,E,X,Z) = 0, we get

λI −A = C ∈ C+ (24)

Substituting the result back into the Lagrangian, the
dual problem becomes

maximize tr(ATZ)−∑(u,i)∈Ω Loss∗(A) (25)

subject to λI −A ∈ C+

where A is a sparse matrix in the sense that Au,i = 0
if (u, i) /∈ Ω. The co-positivity constraint is equivalent
to vT (λI −A)v ≥ 0, ∀v ≥ 0.

Similarly to the primal dual algorithm, in each itera-
tion vl = [al; bl] is selected as the vector that violates
the constraint the most. This vector can be found by
solving

max
v≥0,‖v‖≤1

vTAv = max
a,b≥0,‖a‖2+‖b‖2≤1

aTQb (26)

where Q is the matrix of dual variables (before expan-
sion), and a ∈ Rm, b ∈ Rn. While the sub-problem
of finding the most violating constraint is NP-hard
in general, it is unnecessary to find the global opti-
mum. Any non-negative v that violates the constraint
vT (λI − A)v ≥ 0 can be used to improve the current
solution. At the optimum, ‖a‖2 = ‖b‖2 = 1/2, and
thus it is equivalent to solve

max
a,b≥0,‖a‖2=‖b‖2=1/2

aTQb (27)
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A local optimum can be found by alternatingly opti-
mizing a and b according to

a = h(Qb)/(
√

2‖h(Qb)‖)
b = h(QTa)/(

√
2‖h(QTa)‖) (28)

where h(x) = max(0, x) is the element-wise non-
negative projection. The running time across the
two operations is directly proportional to the num-
ber of observed entries. The stationary point vs =
[as; bs] satisfies ‖vs‖ = 1 and Avs + max(0,−Avs) +
‖h(Avs)‖vs = 0 which are necessary (but not suffi-
cient) optimality conditions for (26). As a result, many
elements in a and b are exactly zero so that the decom-
position is not only non-negative but sparse.

Given vl, l = 1, . . . , k, the Lagrangian is then

L(A, ξ) = tr(ATZ)−
∑

(u,i)∈Ω

Loss∗(A)

−
∑

l

ξl((vl)TAvl − λ)

where ξl ≥ 0 and
∑k
l=1 ξ

lvl(vl)T ∈ S+.

To update ξl, we fix ξj (j 6= l) and optimize the ob-
jective with respect to A and ξl,

max
A,ξl≥0

tr(AT (Z −∑j 6=l ξ
jvj(vj)T ))

−∑(u,i)∈Ω Loss∗(A)− ξl((vl)TAvl − λ)

It can be seen from above formulation that our pri-
mal solution without the lth constraint can be recon-
structed from the dual as X̃ =

∑
j 6=l ξ

jvj(vj)T ∈ S+.
Only a small fraction of entries of this matrix (those
corresponding to observations) need to be evaluated.
If the loss function is the squared loss, then the vari-
ables A and ξl have closed form expressions. Specifi-
cally, for a fixed ξl,

A(ξl)u,i = Zu,i − X̃u,i − ξlvluvli (29)

If (vl)TA(0)vl ≤ λ, then the optimum ξ̂l = 0. Other-
wise

ξ̂l =

∑
(u,i)∈Ω(Zu,i − X̃u,i)v

l
uv
l
i − λ∑

(u,i)∈Ω(vluv
l
i)

2
(30)

The update of A and ξl takes time linear in the num-
ber of observed elements. If we update all ξl in each
iteration, then the running time is k times longer and
is the same as the update times in multiplicative up-
date methods ([22]) that aim to directly solve the op-
timization problem (21). The multiplicative update
method revises the decomposition into U and V it-
eratively while keeping U and V nonnegative. Be-
cause the objective is non-convex, the algorithm gets

frequently trapped in locally optimal solutions. It is
also likely to convergence slowly, and often requires
a proper initialization scheme [23]. In contrast, the
primal-dual method discussed here solves a convex op-
timization problem. With a large enough λ, only a few
constraints are expected to be necessary, resulting in a
low rank reconstruction. The key difficulty in our ap-
proach is identifying a violating constraint. The simple
iterative method may fail even though a violating con-
straint exists. This is where randomization is helpful
in our approach. We initialize a and b randomly and
run the separation algorithm several times so as to get
a reasonable guarantee of finding a violated constraint
when they exist.

6 Experiments

There are many variations of our primal-dual (PD)
method pertaining to how the constraints are en-
forced and when they are updated. We introduced the
method as one that fully optimizes all ξl correspond-
ing to the available constraints prior to searching for
additional constraints. Another variant, analogous to
gradient based methods, is to update only the last ξk

associated with the new constraint without ever going
back and iteratively optimizing any of the previous
ξl(l < k) (or the constraints themselves). The method
adds constraints fasters as ξl are updated only once
when introduced. Another variant is to update all the
previous ξl together with their constraint vectors bl

(through the power method) before introducing a new
constraint. By updating bl as well, this approach re-
places the previous constraints with tighter ones. This
protocol can reduce the number of constraints that are
added is thus useful in cases where a very low rank so-
lution is desirable.

We compare here the two variants of our method to re-
cent approaches proposed in the literature. We begin
with the state of art method proposed in [18] which
we refer to as JS. Similar to PD, JS formulates a trace
norm regularization problem using extended matrices
X,Z ∈ R(m+n)×(m+n) which are derived from the pre-
dictions and observed data. It solves the following
optimization problem,

min
X≥0,tr(X)=t

Loss(X,Z) (31)

Instead of penalizing the trace of X, JS fixes tr(X) to
a constant t. In each iteration, JS finds the maximum
eigenvector of the gradient, vk, and updates X accord-
ing to X = (1− tk)X + tkv

k(vk)T where tk is an opti-
mized step size. During the optimization process, the
trace norm constraint is always satisfied. Though JS
and PD attempt to optimize different objective func-
tions, if we set t = tr(X∗) where X∗ is the optimum
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matrix from our regularized objective (1), then JS will
converge to the same solution in the limit.

The comparison is on Movielens 10M dataset which
contain 107 ratings of 69878 users on 10677 movies.
Following the setup in [18], we use partition rb pro-
vided with the dataset which has 10 test ratings per
user. The regularization parameter λ in the PD
method is set to 50. For the JS method, the corre-
sponding value of the constant t = tr(X∗) = 30786
where X∗ is the optimum from the PD method that
fully optimizes all ξl before searching for additional
constraints.

In order to ensure that we perform a fair comparison
with JS, rather than updating ξl for all l = 1, 2, ..., k
at iteration k, only ξk is updated (the first variant in-
troduced above). In other words, all ξl are updated
only once when the corresponding constraint is incor-
porated. Figure 1-a compares the test RMSE of JS
and PD as a function of time. The test error of PD
decreases much faster than JS. Figure 1-b compares
the test error as a function of rank, i.e., as a function
of iteration rather than time. PD performs signifi-
cantly better than JS when rank is small at the begin-
ning owing to the better optimization step. In Figure
2-a, we compare the regularized primal objective func-
tion values J(W ) = L(W ) + λ‖W‖∗ as a function of
time. Note that the objectives used by the methods
are different and thus JS does not directly optimize
this function. However, it will converge to the same
limiting value at the optimum given how the parame-
ters t and λ are set. From the figure, J(W ) does not
converge to the optimum over the training set as the
limiting values should agree. This is also evident in
Figure 2-b that shows the training error as a function
of time. PD is consistently lower than JS.

We also compare our PD method to a recently pro-
posed GECO algorithm (see [19]). GECO seeks to
solve the rank constrained optimization problem

min
rank(W )≤r

Loss(W,Y ) (32)

It maintains a decomposition in the form W = UV T

and, at each iteration, increases the rank of U and V by
concatenating vectors u and v that correspond to the
largest singular values of the gradient of Loss(W,Y ).
Moreover, it optimizes the expanded U and V by ro-
tating and scaling the corresponding vectors. This so-
lidifying step is computationally expensive but nev-
ertheless improves the fixed-rank result. In order to
compare fairly with their method, we use the second
variant of our method. In other words, before adding
a new constraint in iteration k, we update all ξl in-
cluding bl for l = 1, 2, ...k for a fixed number of times
related to their algorithm (q times). Note that our
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Figure 1: a) test RMSE comparison of JS and PD as
a function of training time. b) test RMSE comparison
of JS and PD as a function of rank.

algorithm here is different from that used in compari-
son to JS. Due to the complexity of GECO, we used a
smaller dataset, Movielens 1M, which contain 106 rat-
ings of 6040 users about 3706 movies. Following the
setup in [19], 50% of the ratings are used for training,
and the rest for testing.

Figure 3 compares the test RMSE of GECO and PD.
GECO becomes very slow when the rank increases
(the complexity can be O(r6) as a function of rank
r). It already took 17 hours to get rank 9 solutions
from GECO, so we didn’t attempt to use it on bigger
datasets. Figure 3-b compares the test RMSE as a
function of rank. PD is substantially faster and needs
fewer constraints to perform well.

7 Discussion

Our primal-dual algorithm is monotone and heavily
exploits sparsity of observations for efficient compu-
tations. Constraints are added to the dual problem
in a sequential cutting plane fashion. The method
also maintains a low rank primal solution correspond-
ing to the partially constrained dual. We believe our
primal-dual method (PD) is particularly suitable for
sparse large scale problems, and empirical results con-
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Figure 2: a) objective J(W ) as a function of time. b)
training RMSE as a function of time.

firm that the stronger systematic optimization of each
constraint is beneficial in comparison to other recent
approaches.

There are a number of possible extensions of the ba-
sic approach. We already showed how non-negative
matrix factorization problems can be solved within
a similar framework with the caveat that the sepa-
ration problem is substantially harder in this case.
Other variations such as non-negative factorization
with sparse factors are also possible.

References

[1] J. Abernethy, F. Bach, T. Evgeniou and J. Vert, A
New Approach to Collaborative Filtering: Operator
Estimation with Spectral Regularization, Journal of
Machine Learning Research, Volume 10, 2009.

[2] A. Agarwal, S. N. Negahban, and M. J. Wain-
wright, Fast global convergence of gradient meth-
ods for high-dimensional statistical recovery, NIPS,
2010.

[3] A. Argyriou, C. A. Micchelli, and M. Pontil, On
Spectral Learning, Journal of Machine Learning
Research 11(2010), 905-923.

a)
0 2000 4000 6000 8000 10000 12000 14000

0.88

0.89

0.9

0.91

0.92

0.93

0.94

Time(s)

R
M

S
E

 

 

GECO

PD

b)
0 2 4 6 8 10

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Rank
R

M
S

E

 

 

GECO

PD

Figure 3: a) test RMSE comparison of GECO and PD
as a function of training time. b) test RMSE compar-
ison of GECO and PD as a function of rank.

[4] A. Beck and M. Teboulle, A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems, SIAM Journal on Imaging Sciences,
2009.

[5] D. S. Bernstein. Matrix Mathematics: Theory,
Facts, and Formulas with Application to Linear
System Theory, Princeton University Press, 2005.

[6] E. J. Candes and B. Recht, Exact matrix comple-
tion via convex optimization, Found. of Comput.
Math., 9 717-772, 2008.

[7] M. Fazel, H. Hindi, and S. Boyd, A rank minimiza-
tion heuristic with application to minimum order
system approximation, Proceedings American Con-
trol Conference, volume 6, pages 4734-4739, 2001.

[8] A. Goldberg, X. Zhu, B. Recht, J. Sui, and
R. Nowak, Transduction with matrix completion:
Three birds with one stone, NIPS, 2010.

[9] S. Ji and J. Ye, An accelerated gradient method for
trace norm minimization, ICML, 2009.

[10] A. S. Lewis, The Convex Analysis of Unitarily In-
variant Matrix Functions, Journal of Convex Anal-
ysis Volume 2 (1995), No.1/2, 173183.

1330



Yu Xin, Tommi Jaakkola

[11] S. Ma, D. Goldfarb, and L. Chen, Fixed point and
Bregman iterative methods for matrix rank mini-
mization, Technical Report, Department of IEOR,
Columbia University, October, 2008.

[12] B. M. Marlin, R. S. Zemel, S. Roweis, and M.
Slaney, Collaborative Filtering and the Missing at
Random Assumption, UAI, 2007.

[13] T. K. Pong, P. Tseng, S. Ji, and J. Ye, Trace
Norm Regularization: Reformulations, Algorithms,
and Multi-task Learning, SIAM Journal on Opti-
mization, 2009.

[14] N. Srebro, J. Rennie and T. Jaakkola, Maximum
Margin Matrix Factorizations, In Advances in Neu-
ral Information Processing Systems 17, 2005.

[15] K-C. Toh, S. Yun, An accelerated proximal gra-
dient algorithm for nuclear norm regularized least
squares problems, preprint, Department of Math-
ematics, National University of Singapore, March
2009.

[16] P. Tseng, Dual Coordinate Ascent Methods for
Non-strictly Convex Minimization, Mathematical
Programming, Vol. 59, pp. 231247, 1993

[17] G. A. Watson, Characterization of the subdiffer-
ential of some matrix norms, Linear Algebra and
its Applications, Volume 170, June 1992, Pages 33-
45.

[18] M. Jaggi and with Marek Sulovsk, A Simple Al-
gorithm for Nuclear Norm Regularized Problems,
ICML 2010.

[19] S. Shalev-Shwartz, A. Gonenand and O. Shamir
Large-Scale Convex Minimization with a Low-Rank
Constraint, ICML 2011.

[20] Vavasis, S. On the complexity of nonnegative ma-
trix factorization. arxiv.org, 0708.4149.

[21] J. B. Hiriart-Urruty and A. Seeger, A variational
approach to co-positive matrices, SIAM Review 52
(2010), no. 4, 593629.

[22] D. D. Lee and H. S. Seung. Algorithms for non-
negative matrix factorization. NIPS 2001.

[23] C. Boutsidis and E. Gallopoulos, SVD based ini-
tialization: A head start for nonnegative matrix
factorization, Pattern Recognition 2008.

1331


