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Abstract

We consider the multiple-response regression
problem, where the response is subject to
sparse gross errors, in the high-dimensional
setup. We propose a tractable regularized
M-estimator that is robust to such error,
where the sum of two individual regulariza-
tion terms are used: the first one encourages
row-sparse regression parameters, and the
second one encourages a sparse error term.
We obtain non-asymptotical estimation error
bounds of the proposed method. To the best
of our knowledge, this is the first analysis
of the robust multi-task regression problem
with gross errors.

1 Introduction

The past decade has witnessed a surge of research in-
terest in analyzing high-dimensional data – data sets
where the ambient dimension of the problem p is either
close to or even substantially larger than the sample
size n, due to a broad array of applications (e.g., Tib-
shirani, 1996; Candès et al., 2006; Candès & Tao, 2007;
Donoho, 2006; Wainwright, 2009 and many others).
Under such high-dimensional scaling, many standard
statistical learning problems become ill-posed, and it
is therefore vital to exploit any low-dimensional struc-
ture of the problems, such as sparsity (Candès et al.,
2006; Tropp, 2006; Bickel et al., 2009), low-rank struc-
ture (Recht et al., 2010; Candès & Recht, 2009; Ke-
shavan et al., 2010) or group sparsity (Yuan & Lin,
2006; Bach, 2008).

The focus of this paper is multi-task learning (Caru-
ana, 1997; Argyriou et al., 2008), and specifically
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multiple-response regression. Here, we have q > 1 re-
sponse variables to regress, and a common set of p
covariates (i.e., features). Typically, the q tasks are
believed to share certain structures, so that the per-
formance of each learning task can be improved by
exploiting this “intrinsic relatedness” while learning
these tasks together. In particular, the setting we fo-
cus on is where the response variables have simulta-
neously sparse structure: each task involves a sparse
set of relevant features, and there is a large overlap
of these relevant features across the different tasks.
This “simultaneous sparsity” model arises naturally
in variety of applications including sparse signal recov-
ery (Tropp et al., 2006), graphical models (Ravikumar
et al., 2010) and learning with kernels (Bach, 2008).
As standard, we represent the multiple regression pa-
rameters as a matrix Θ, where each column corre-
sponds to a task, and each row to a feature. Because
of the simultaneous sparse structure, one wants the
matrix to be row-sparse (i.e., most rows are all-zero),
which can be achieved using either the ℓ1/ℓ2 norm (Ar-
gyriou et al., 2008) or the ℓ1/ℓ∞ norm (Negahban &
Wainwright, 2008) as a regularizer.

While powerful, this paradigm can be vulnerable to ob-
servation errors on the response variables. Particularly
harmful are gross errors that may only affect a few ob-
servations, but in an otherwise uncontrolled and even
adversarial manner. We address precisely this prob-
lem. Our approach is indeed intuitive: without gross
errors, one would expect that Y ≈ XΘ where Y is
the responses and X the covariates. Hence, with gross
errors the response should satisfy that Y ≈ XΘ + G,
where the unknown matrix G is the gross error. Since
the regression parameter Θ is row-sparse, and the gross
error G is sparse, it is natural to consider the following
formulation

Minimize:Θ,G ‖Y −XΘ−G‖2F + λ‖Θ‖1,2 + ρ‖G‖1,

where ‖Θ‖1,2 =
∑

i ‖Θi,·‖2 is the sum of the ℓ2 norm
of the rows, and ‖G‖1 =

∑
i,j |Gij | is the vector ℓ1

norm of G. We show in this paper, through both the-
oretical analysis and numerical simulation, that this
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intuitive formulation well addresses the multi-task re-
gression with gross-error problem. To the best of our
knowledge, this is the fist analysis of such problem.

Before concluding the introduction, we discuss some
related work. A first thought to tackle the proposed
problem would be to use regular ℓ1,2 based multi-
task regression but with a robust ℓ1 loss, which down-
weights the effects of the outliers. While this method
may provide an alternative way to estimate Θ, it does
not attempt to estimate the outlier matrix G. Note
that the latter is often of interest in application such
as finance or computer vision. Using ℓ1 norm to cor-
rect gross error is not a new idea. In Candès et al.
(2005); Wright and Ma (2010), the authors consid-
ered the univariate response case (i.e., q = 1) with
gross error. However, the formulation and the analy-
sis is restricted to the noiseless case. Lee et al. (2011)
studied adding case-specific parameters to the usual
least-squares function in the univariate response case,
which is indeed a special case of our formulation. They
pointed out a connection of this formulation to the Hu-
ber’s M-estimation. However, no theoretical results for
their estimates were given. In a recent paper, Jalali
et al. (2010) studied a related formulation in multi-
task regression setup, where instead of having gross
error in the response, they considered the case that
the parameter matrix itself is subject to gross error.
From a theoretic perspective, their analysis differed
from ours as they focused on support recovery, which
typically requires stronger assumptions.

Also relevant to this work is the recent study of de-
composition of structured matrices from their summa-
tion. Chandrasekaran et al. (2011); Candès et al.
(2011); Xu et al. (2010) studied the problem of de-
composing a matrix into the sum of a low rank matrix
and a sparse/column sparse matrix, in the noiseless
case. The noisy case was investigated in Agarwal et al.
(2011). While these works are close to ours in spirit,
the regression setup investigated in this paper brings
additional difficulties that need to be taken care of.
Also, their models pose a different assumption that
the coefficient matrix Θ is low-rank.

Notations: Most of our notations are standard. In
addition, we frequently use subscripts to denote pro-
jecting a matrix to a subspace. For instance, if I is
an index set of entries, then AI stands for the matrix
that set Ai,j to zero for all (i, j) 6∈ I. The comple-
mentary of an index set I is denoted by I⊥. We use
[a : b] to represent the set of all integers between a and
b (inclusive).

2 Problem Formulation and the Main
Results

We study the following multi-task regression problem
with gross errors. We observe the response matrix
Y ∈ Rn×q and the covariate matrix X ∈ Rn×p such
that

Y = XΘ∗ +W +G∗.

Here, Θ∗ ∈ Rp×q is an unknown linear relationship
between the predictor and the response. Matrix W ∈
Rn×q is the noise matrix, assumed to be “small”; and
G∗ is a matrix correspond to “gross” error. As dis-
cussed in the previous section, we assume that Θ∗ is
approximately row sparse, and G∗ is entry-wise sparse.
To estimate Θ∗ and G∗, we propose the following M-
estimator,

(Θ̂, Ĝ) = argmin
Θ,G

‖Y −XΘ−G‖2F + λ‖Θ‖1,2 + ρ‖G‖1.
(1)

Here, ‖ · ‖F is the Frobenius norm, ‖ · ‖1 is the entry-
wise ℓ1 norm, and ‖ · ‖1,2 is the summation of ℓ2 norm
of rows of a matrix. Notice that such formulation is
computational friendly, as it is a convex program in-
volving only linear and quadratic functions.

Intuitively one would expect, due to the two regular-
ization terms, that Θ̂ is row-sparse, and Ĝ is entry-wise
sparse. Our hope is that this row sparse Θ̂ is close to
Θ∗, and so is Ĝ to G∗. However, as in previous related
work in matrix decomposition (Agarwal et al., 2011;
Xu et al., 2010; Candès et al., 2011; Chandrasekaran
et al., 2011), some additional assumptions are nec-
essary. Indeed, suppose that XΘ∗ itself is a sparse-
matrix, and G∗ = −XΘ∗, then even in the noiseless
case (i.e., W = 0, and consequently Y = 0), estimating
Θ∗ is impossible. To rule out such degenerate cases,
we impose an “incoherence condition”. We follow a
similar line as Agarwal et al. (2011), and require that
‖XΘ∗‖∞ is not large: there exists τ ∈ R such that

‖XΘ∗‖∞ ≤ τ.

Consequently, we study in this paper a class of es-
timators as in Formulation (1), under the constraint
that ‖XΘ‖∞ ≤ τ. Notice that the boundeness of in-
finity norm assumption is reasonable when the signal
X∗ is bounded, and can be weakened to the bounded-
ness of the infinity norm with probability approaching
one. In addition, we need the restricted eigenvalues of
X to establish our results. Restricted maximum and
minimum eigenvalue are defined as

φmin(t) , min
z∈Rp\{0},‖z‖0≤t

‖Xz‖22
‖z‖22

;

φmax(t) , max
z∈Rp\{0},‖z‖0≤t

‖Xz‖22
‖z‖22

.
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Main results

The main result of this paper is a non-asymptotic guar-
antee of the estimation error of the proposed method.
That is, to bound

∆̂G , Ĝ−G∗; and ∆̂Θ , Θ̂−Θ∗.

Theorem 1. Let A be a subset of row-index of Θ
with |A| = S, and M be a subset of entry-index of
G with |M | = s. Suppose λ ≥ 4‖X⊤W‖∞,2 and
ρ ≥ 4‖W‖∞+8τ , then there exists a universal constant
c such that for any S′ ∈ [1 : p],

‖∆̂G‖F ≤ 6ρ
√
s+

√
6ρ‖G∗

M⊥‖1 ;

‖∆̂Θ‖F ≤

max





c[λ
√
S +

√
λ‖Θ∗

A⊥‖1,2 + ρ
√
s+

√
ρ‖G∗

M⊥‖1]
min(κ1(S′), 1)

,

[6ρκ2(S
′)
√
s/λ− 3][6ρ

√
s+

√
6ρ‖G∗

M⊥‖1]
κ1(S′)

,

16κ2

{
‖Θ∗

A⊥‖1,2 + ρ
λ‖G∗

M⊥‖1
}

κ1(S′)

}
.

Here, the coefficient κ1(S
′) and κ2(S

′) are defined as

κ1(S
′) ,

√
φmin(S + S′)− c0

√
φmax(S′)S/S′

1 + c0
√
S/S′ ,

κ2(S
′) ,

√
φmin(S + S′)− c0

√
φmax(S′)S/S′

√
S′ + c0

√
S

+
√
φmax(S′)/S′. (2)

Note that A and M are arbitrary, and in particular
need not coincide with the row-support of Θ∗ and the
support of G∗. Therefore, Theorem 1 also applies to
the case where Θ∗ is approximately row-sparse and
G∗ is approximately sparse. Similarly, we make no
assumption on W either.

To illustrate Theorem 1, we provide results for the
following specialized case:

Condition 1. The following holds: (1) Θ∗ has S non-
zero rows; (2) G∗ has s non-zero elements; (3) W has
i.i.d. N (0, σ2/n) entries; (4) the ℓ2 norm of each col-
umn of X is upper-bounded by 1.

Condition 2. There exists S′ ≥ S such that
S′φmin(S + S′) ≥ 16Sφmax(S

′).

Theorem 2. Under Condition 1 and 2, let λ0 ,
min

(
σ(

√
q+

√
8 log pn)√
n

, 7σ(1 +
√
q/n)

)
. Set the param-

eters ρ and λ as ρ = 16σ
√

log(nq)
n + 8τ , and λ =

max
(
4λ0,

ρ
√
s√
S

)
. Then we have with probability 1 −

1/n3,

‖∆̂G‖F ≤ c1σ

√
s log(nq)

n
+ c1τ,

‖∆̂Θ‖F ≤ c2σ

√
s log(nq)

n
+ c2τ + c2σ

√
Sq/n

+ c2σ
√
Smin(

√
log(pn)/n, 1).

Here, c1, c2 are upper-bounded by c0/
√
φmin(S + S′)

for a universal constant c0.

Note that Assumption 2 is standard in literature, and
is satisfied by many design matrices, such as Gaussian
random matrices. Notice that the rate of S, p and n
are standard.

Example 1. Consider a random design case, where
Xij are IID following N (0, 1/n). If S log p ≤
(1/1764)n, then Assumption 2 holds for S′ = 48S
with probability at least 1 − 1/p2. Furthermore,
φmin(S + S′) ≥ 1/2.

3 Simulation

We conduct a simple simulation study to compare the
robust multiple-task regression with the usual multi-
task regression that ignores gross errors. To this
end, we generate Xij from the normal distribution
N (0, 1/n) and the entries of Θ are from iid N (0, 1).
The errors Wij are generated from N (0, 1/n), here n
is the number of samples, and we let n = 50. The gross
errors are either uniform random numbers on [0, 5] or
fixed as 3. We either fix s or S. For the first case, we
randomly select s = 200 entries of G∗ and randomly
select S rows of Θ∗ with S = 10, 15, 20, 25 or 30
by setting the rest rows of Θ∗ as zero. For the second
case, we randomly select s = 200, 400, 600, 800 or
1000 entries in G∗ as errors and choose S = 20 rows
of Θ∗.

To choose λ and ρ, we generate randomly a new
dataset (with same number of samples) Ỹ = X̃Θ∗+W̃
where X̃ and W̃ are generated in the same way as X
and W respectively, that is devoted to tuning the pa-
rameters. We then choose these two tuning parame-
ters that minimize the prediction error on Ỹ in terms
of the squared Frobenius norm. This scheme is similar
to cross validation with the extra benefit that unlike
cross validation, the parameter is not tuned over the
original data-set, hence avoids over-fitting the data.

The accuracy in terms of estimating Θ∗ is measured
by the ratio of the squared Frobenius norm of Θ∗ − Θ̂
for an estimate Θ̂. The robust multi-task regression
is better if this ratio is smaller than one. From Fig-
ure 1, clearly, the proposed method outperforms the
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standard multi-task regression by a large margin when
either Θ is column-sparse or G is sparse, regardless
of how the gross error is generated. This simulation
result agrees with our theoretical analysis – that the
proposed method is a promising approach to handle
gross error in multi-task learning setup.

4 Conclusion

We have proposed a tractable approach for high-
dimensional robust multiple-response regression. Our
method exploits the joint sparsity of the features across
the responses, and handles gross errors via regulariza-
tion in a natural manner. Theoretical analysis con-
firms that this method possesses favorable properties
even when the dimensionality is high.

A technical assumption we made is ‖XΘ∗‖∞ ≤ τ ,
which can be restrictive. A future direction for re-
search is to relax this assumption.

5 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Fol-
lowing a now-standard technique introduced in Negah-
ban et al. (2009), it contains three parts: we first show
that under appropriate selection of the regularization
parameters, the estimator deviation satisfies “conic
constraints”. That is, the difference between the esti-
mator and the ground truth will (approximately) be-
long to a cone. We then establish restricted eigenvalue
condition and restricted strong convexity for all vec-
tors satisfying such conic constraints. Based on these
intermediate results, we establish Theorem 1.

5.1 Conic constraint

Note that we aim to estimate simultaneously G∗ and
Θ∗. Hence, we establish two conic constraints in this
section. The first one bounds the direction of devia-
tion of G, and the second one bounds the deviation of
(Θ, G) jointly.

Lemma 1. If ρ ≥ 4‖W‖∞ + 8τ , then we have
‖∆̂G

M⊥‖1 ≤ 3‖∆̂G
M‖1 + 4‖G∗

M⊥‖1.

Proof. By optimality of (Θ̂, Ĝ) we have

‖Y −XΘ̂− Ĝ‖2F + λ‖Θ̂‖1,2 + ρ‖Ĝ‖1
≤‖Y −XΘ̂−G∗‖2F + λ‖Θ̂‖1,2 + ρ‖G∗‖1.

Re-arranging the inequality, we have that

ρ(‖Ĝ‖1 − ‖G∗‖)
≤〈Ĝ−G∗, 2Y − 2XΘ̂− (Ĝ+G∗)〉
=2〈Ĝ−G∗, W 〉+ 2〈Ĝ−G∗, X(Θ∗ − Θ̂)〉

− 〈Ĝ−G∗, Ĝ−G∗〉
(a)

≤2(‖W‖∞ + 2max
Θ

‖XΘ‖∞)‖∆̂G‖1

≤ρ

2
‖∆̂G‖1 ≤ ρ

2
(‖∆̂G

M‖+ ‖∆̂G
M⊥‖),

(3)

where (a) holds from the fact that ‖XΘ‖∞ ≤ τ . Fur-
ther notice that

‖Ĝ‖1 − ‖G∗‖1
=‖G∗

M + ∆̂G
M‖+ ‖G∗

M⊥ + ∆̂G
M⊥‖1 − ‖G∗

M +G∗
M⊥‖

≥‖G∗
M‖1 − ‖∆̂G

M‖1 + ‖∆̂G
M⊥‖1 − ‖G∗

M⊥‖1
− ‖G∗

M‖1 − ‖G∗
M⊥‖1

=‖∆̂G
M⊥‖1 − ‖∆̂G

M‖1 − 2‖G∗
M⊥‖1.

(4)

Combining Equation (3) and (4) yields ‖∆̂G
M⊥‖1 ≤

3‖∆̂G
M‖1 + 4‖G∗

M⊥‖1, as claimed.

Denote Φ(Θ, G) , ‖Θ‖1,2 + ρ
λ‖G‖1, which can be re-

garded as one joint regularization term of (∆̂Θ, ∆̂G).
We then establish a similar conic constraint.

Lemma 2. The following holds

Φ(Θ∗, G∗)− Φ(Θ̂, Ĝ) ≤ Φ(∆̂Θ
A, ∆̂

G
M )

+‖Θ∗
A⊥‖1,2 +

ρ

λ
‖G∗

M⊥‖1. (5)

Furthermore, if λ ≥ 4‖X⊤W‖∞,2 and ρ ≥ 4‖W‖∞ +
8τ , then we have

Φ(∆̂Θ
A⊥ , ∆̂

G
M⊥) ≤ 3Φ(∆̂Θ

A, ∆̂
G
M )

+4
{
‖Θ∗

A⊥‖1,2 +
ρ

λ
‖G∗

M⊥‖1
}
. (6)

Proof. Equation (5) holds from the following algebra:

Φ(Θ∗, G∗)− Φ(Θ̂, Ĝ)

=Φ(Θ∗
A, G

∗
M ) + Φ(Θ∗

A⊥ , G
∗
M⊥)− Φ(Θ̂A, ĜM )

− Φ(Θ̂A⊥ , ĜM⊥)

≤Φ(Θ∗
A − Θ̂A, G

∗
M − ĜM ) + Φ(Θ∗

A⊥ , G
∗
M⊥)

=Φ(∆̂Θ
A, ∆̂

G
M ) + ‖Θ∗

A⊥‖1,2 +
ρ

λ
‖G∗

M⊥‖1.

To show Equation (6), by optimality of (Θ̂, Ĝ), we have

‖Y −XΘ̂− Ĝ‖2F + λ‖Θ̂‖1,2 + ρ‖Ĝ‖1
≤‖Y −XΘ∗ −G∗‖2F + λ‖Θ∗‖1,2 + ρ‖G∗‖1.
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Figure 1: The ratio of error (measured by squared Frobenius norm) of the robust multi-task learning to that of
the standard multi-task learning. The mean and the 95% confidence intervals are plotted.

Re-arranging the equation, we get

λ(Φ(Θ̂, Ĝ)− Φ(Θ∗, G∗))

≤〈X∆̂Θ + ∆̂G, 2Y −X(Θ̂ + Θ∗)− (Ĝ+G∗)〉
=〈X∆̂Θ + ∆̂G, 2W − [X∆̂Θ + ∆̂G]〉
≤〈X∆̂Θ + ∆̂G, 2W 〉
≤2‖X⊤W‖∞,2‖∆̂Θ‖1,2 + 2‖W‖∞‖∆̂G‖1

≤λ

2
‖∆̂Θ‖1,2 +

ρ

2
‖∆̂G‖1 =

λ

2
Φ(∆̂Θ, ∆̂G).

(7)

On the other hand, notice the following holds

Φ(Θ̂, Ĝ)− Φ(Θ∗, G∗)

=Φ(Θ̂A, ĜM ) + Φ(Θ̂A⊥ , ĜM⊥)− Φ(Θ∗
A, G

∗
M )

− Φ(Θ∗
A⊥ , G

∗
M⊥)

≥Φ(Θ∗
A, G

∗
M )− Φ(∆̂Θ

A, ∆̂
G
M ) + Φ(∆̂Θ

A⊥ , ∆̂
G
M⊥)

− Φ(Θ∗
A⊥ , G

∗
M⊥)− Φ(Θ∗

A, G
∗
M )− Φ(Θ∗

A⊥ , G
∗
M⊥)

=Φ(∆̂Θ
A⊥ , ∆̂

G
M⊥)− Φ(∆̂Θ

A, ∆̂
G
M )− 2Φ(Θ∗

A⊥ , G
∗
M⊥).

Combining this with Equation (7), we get

Φ(∆̂Θ
A⊥ , ∆̂

G
M⊥)− Φ(∆̂Θ

A, ∆̂
G
M )− 2Φ(Θ∗

A⊥ , G
∗
M⊥)

≤1

2
Φ(∆̂Θ, ∆̂G) ≤ 1

2
[Φ(∆̂Θ

A, ∆̂
G
M ) + Φ(∆̂Θ

A⊥ , ∆̂
G
M⊥)],

which by re-arranging implies Equation (6).

5.2 Restricted Strong Convexity

We show in this section that when the conic constraints
are satisfied, we can upper bound ‖∆̂Θ‖F by a func-
tion of ‖X∆̂Θ+∆̂G‖F . Such kind of results are termed
as restricted strong convexity in literature (Negahban
et al., 2009). To establish this, we first show the fol-
lowing lemma that relates ‖Θ‖F to ‖XΘ‖F for any Θ
that satisfies the conic constraints. This result extend
the restricted eigenvalue condition in the single-task
regression setup (Bickel et al., 2009) to the multi-task
regression problem. The restricted strong convexity
holds by specializing the restricted eigenvalue condi-
tion to (∆̂Θ, ∆̂G).

Lemma 3. Let J0 ⊂ [1 : p] with |J0| = S be a
row-index set, and Θ ∈ Rp×q satisfies ‖ΘJ⊥

0
‖1,2 ≤

α0‖ΘJ0‖1,2 + α1 for some α0 and α1. Then we have
for any S′ ∈ [0 : p],

‖XΘ‖F ≥
√
φmin(S + S′)− α0

√
φmax(S′)S/S′

1 + α0

√
S/S′ ‖Θ‖F

−
[√

φmin(S + S′)− α0

√
φmax(S′)S/S′

√
S′ + α0

√
S

+
√
φmax(S′)/S′

]
α1.

(8)
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Proof. Fix S′ ∈ [1 : p]. Partition J⊥
0 into K subsets,

each of size S′ and the last subset of size ≤ S′, such
that Jk is the set of indices corresponding to S′ largest
in ℓ2 norm of rows of Θ outside

⋃k−1
j=0 Jj . Let J01 ,

J0
⋃
J1. We have

‖XΘ‖F ≥ ‖XΘJ01‖F −
K∑

k=2

‖XΘJk
‖F

≥ ‖XΘJ01‖F −
K∑

k=2

√
φmax(S′)‖ΘJk

‖F .
(9)

Here the last inequality holds from the following,
where we denote the i-th column of ΘJk

by Θi
Jk

‖XΘJk
‖F =

√√√√
q∑

i=1

‖XΘi
Jk
‖22

≤

√√√√
q∑

i=1

φmax(S′)‖Θi
Jk
‖22 =

√
φmax(S′)‖ΘJk

‖F .

Now let θJk−1
be the last row (i.e., the row with the

smallest ℓ2 norm) of ΘJk−1
, and we have

‖ΘJk
‖F ≤

√
S′‖θJk−1

‖22
=

√
S′‖θJk−1

‖2 ≤ ‖ΘJk−1
‖1,2/

√
S′,

which implies

K∑

k=2

‖ΘJk
‖F ≤

K∑

k=2

‖ΘJk−1
‖1,2/

√
S′ ≤ ‖ΘJ⊥

0
‖1,2/

√
S′. (10)

Furthermore, we have the following

‖XΘJ01‖F =

√√√√
q∑

i=1

‖XΘi
J01

‖22

≥

√√√√
q∑

i=1

φmin(S + S′)‖Θi
J01

‖22 =
√
φmin(S + S′)‖ΘJ01‖F .

Substituting this and Equation (10) into Equation (9),

we have

‖XΘ‖F
≥
√
φmin(S + S′)‖ΘJ01‖F −

√
φmax(S′)‖ΘJ⊥

0
‖1,2/

√
S′

≥
√
φmin(S + S′)‖ΘJ01‖F
−
√
φmax(S′)/S′(α0‖ΘJ0‖1,2 + α1)

≥
√
φmin(S + S′)‖ΘJ01‖F
−
√
φmax(S′)/S′(

√
Sα0‖ΘJ0‖F + α1)

≥
√
φmin(S + S′)‖ΘJ01‖F
−
√
φmax(S′)/S′(

√
Sα0‖ΘJ01‖F + α1)

=
[√

φmin(S + S′)− α0

√
φmax(S′)S/S′

]
‖ΘJ01‖F

−
√
φmax(S′)/S′α1,

(11)

where in the second inequality we used the assumption
that Θ satisfies a conic constraint. Next notice that

‖ΘJ01‖F ≥‖Θ‖F −
K∑

k=2

‖ΘJk
‖F

≥‖Θ‖F − ‖ΘJc
0
‖1,2/

√
S′

≥‖Θ‖F − (α0‖ΘJ0‖1,2 + α1)/
√
S′

≥‖Θ‖F − α0

√
S/S′‖ΘJ0‖F − α1/

√
S′

≥‖Θ‖F − α0

√
S/S′‖ΘJ01‖F − α1/

√
S′,

where in the second inequality we again use Equa-
tion (10). Re-arranging the terms we get,

‖ΘJ01‖F ≥ ‖Θ‖F
1 + α0

√
S/S′ −

α1√
S′ + α0

√
S
.

Substitute this into Equation (11), we conclude that
Equation (8) holds, which proves the lemma.

Recall definitions of κ1(·) and κ2(·). Thus, Equa-
tion (8) can be simplified as ‖XΘ‖F ≥ κ1(S

′)‖Θ‖F −
κ2(S

′)a1. The next lemma established an upper bound
of ‖∆̂Θ‖F .
Lemma 4 (Restricted Strong Convexity). Fix
S′. If Φ(∆̂Θ

A⊥ , ∆̂
G
M⊥) ≤ c0Φ(∆̂

Θ
A, ∆̂

G
M ) + c1, for some

c0, c1 and

‖∆̂Θ‖F ≥

max

{
2[c0ρκ2(S

′)
√
s/λ− 1]

κ1(S′)
‖∆̂G‖F ,

4κ2(S
′)c1

κ1(S′)

}
,

(12)

then we have

‖∆̂Θ‖2F ≤ 32

κ1(S′)2
‖X∆̂Θ+∆̂G‖2F +2‖X∆̂Θ‖∞‖∆̂G‖1.
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Proof. We first note the following,

‖X∆̂Θ + ∆̂G‖2F ≥ ‖X∆̂Θ‖2F + ‖∆̂G‖2F +2〈X∆̂Θ, ∆̂G〉.
(13)

The assumption Φ(∆̂Θ
A⊥ , ∆̂

G
M⊥) ≤ c0Φ(∆̂

Θ
A, ∆̂

G
M ) + c1

leads to

‖∆̂Θ
A⊥‖1,2 ≤ c0‖∆̂Θ

A‖1,2+
{ρ

λ

[
c0‖∆̂G

M‖1 − ‖∆̂G
M⊥‖1

]
+ c1

}
.

By Lemma 3, we thus have

‖X∆̂Θ‖F ≥ κ1(S
′)‖∆̂Θ‖F

− κ2(S
′)
{ρ

λ

[
c0‖∆̂G

M‖1 − ‖∆̂G
M⊥‖1

]
+ c1

}
.

Simplifying the right-hand-side using c0‖∆̂G
M‖1 −

‖∆̂G
M⊥‖1 ≤ c0

√
s‖∆̂G‖F , we get

‖X∆̂Θ‖F + ‖∆̂G‖F

≥κ1(S
′)‖∆̂Θ‖F − (

c0ρκ2(S
′)
√
s

λ
− 1)‖∆̂G‖F − κ2(S

′)c1

≥κ1(S
′)

4
‖∆̂Θ‖F ,

where the last inequality follows from Equation (12).
This leads to

‖∆̂Θ‖2F ≤ 16

κ1(S′)2
[‖X∆̂Θ‖F + ‖∆̂G‖]2

≤ 32

κ1(S′)2
‖X∆̂Θ‖2F +

32

κ1(S′)2
‖∆̂G‖2F .

Substituting this into Equation (13) establishes the
lemma.

5.3 Proof of the Main Theorem

Proof of Theorem 1. We first bound ‖∆̂G‖F . From
the optimality of (Θ̂, Ĝ), we have that

‖Y −XΘ̂− Ĝ‖2F + λ‖Θ̂‖1,2 + ρ‖Ĝ‖1
≤‖Y −XΘ̂−G∗‖2F + λ‖Θ̂‖1,2 + ρ‖G∗‖1.

Re-arranging the terms, we get

〈G∗ − Ĝ, 2Y − 2XΘ̂− (Ĝ+G∗)〉
+ ρ(‖Ĝ‖1 − ‖G∗‖1) ≤ 0.

Recall that W = Y −XΘ∗ −G∗, we have that

2〈−∆̂G,W 〉+ 2〈−∆̂G,−X∆̂Θ〉
+ ‖∆̂G‖2F + ρ(‖Ĝ‖1 − ‖G∗‖1) ≤ 0,

which implies

‖∆̂G‖2F
≤2‖W‖∞‖∆̂G‖1 + 2‖X∆̂Θ‖∞‖∆̂G‖1 + ρ‖∆̂G‖1

≤3

2
ρ‖∆̂G‖1

≤3

2
ρ(4‖∆̂G

M‖1 + 4‖G∗
M⊥‖1)

≤6ρ(
√
s‖∆̂G‖F + ‖G∗

M⊥‖1).

Solving quadratic yields

‖∆̂G‖F ≤ 6ρ
√
s+

√
6ρ‖G∗

M⊥‖1. (14)

Following similar steps, we bound the combined error
in estimating (XΘ∗+G∗). By optimality of (Θ̂, Ĝ) we
have

‖Y −XΘ̂− Ĝ‖2F + λ‖Θ̂‖1,2 + ρ‖Ĝ‖1
≤‖Y −XΘ∗ −G∗‖2F + λ‖Θ∗‖1,2 + ρ‖G∗‖1.

Re-arranging leads to

‖X∆̂Θ + ∆̂G‖2F
≤2〈W, X∆̂Θ + ∆̂G〉+ λ(Φ(Θ∗, G∗)− Φ(Θ̂, Ĝ))

≤2‖X⊤W‖∞,2‖∆̂Θ‖1,2 + 2‖W‖∞‖∆̂G‖1
+ λ(Φ(Θ∗, G∗)− Φ(Θ̂, Ĝ))

≤λ

2
‖∆̂Θ‖1,2 +

ρ

2
‖∆̂G‖1 + λ(Φ(∆̂Θ

A, ∆̂
G
M )

+ ‖Θ∗
A⊥‖1,2 +

ρ

λ
‖G∗

M⊥‖1),

where we used Equation (5) for the last inequality.
Note that λ

2 ‖∆̂Θ‖1,2+ ρ
2‖∆̂G‖1 = λ

2Φ(∆̂
Θ, ∆̂G), hence

by Equation (6) we have

‖X∆̂Θ + ∆̂G‖2F
≤3λ(Φ(∆̂Θ

A, ∆̂
G
M ) + ‖Θ∗

A⊥‖1,2 +
ρ

λ
‖G∗

M⊥‖1)

=3λ‖∆̂Θ
A‖1,2 + 3ρ‖∆̂G

M‖1 + 3λ‖Θ∗
A⊥‖1,2

+ 3ρ‖G∗
M⊥‖1

≤3λ
√
S‖∆̂Θ‖F + 3ρ

√
s‖∆̂G‖F + 3λ‖Θ∗

A⊥‖1,2
+ 3ρ‖G∗

M⊥‖1.

(15)

Now applying Lemma 4, we have that conditioned on

‖∆̂Θ‖F ≥

max

{
2[c0ρκ2(S

′)
√
s/λ− 1]

κ1(S′)
‖∆̂G‖F ,

4κ2(S
′)c1

κ1(S′)

}
,

with c0 = 3 and c1 = 4
{
‖Θ∗

A⊥‖1,2 + ρ
λ‖G∗

M⊥‖1
}
(de-

note this event by E), the following holds

‖∆̂Θ‖2F
≤ 32

κ1(S′)2
‖X∆̂Θ + ∆̂G‖2F + 2‖X∆̂Θ‖∞‖∆̂G‖1

≤ 96

κ1(S′)2
λ
√
S‖∆̂Θ‖F + [

96

κ1(S′)2
+ 1]ρ

√
s‖∆̂G‖F

+
96

κ1(S′)2
λ‖Θ∗

A⊥‖1,2 + [
96

κ1(S′)2
+ 1]ρ‖G∗

M⊥‖1,

where in the last inequality we used Equation (15) and
the fact that

‖X∆̂Θ‖∞‖∆̂G‖1 ≤ ρ

4
‖∆̂G‖1 ≤ ρ

4
(4
√
s‖∆̂G‖F+4‖G∗

M⊥‖1).
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Using the bound in Equation (14), Equation (16) im-
plies that for a universal c′,

‖∆̂Θ‖2F ≤ c′

min(κ1(S′)2, 1)

×
[
λ
√
S‖∆̂Θ‖F + λ‖Θ∗

A⊥‖1,2 + ρ2s+ ρ‖G∗
M⊥‖1

]
,

which leads to under E , for a universal constant c,

‖∆̂Θ‖F ≤ c

min(κ1(S′), 1)

×
[
λ
√
S +

√
λ‖Θ∗

A⊥‖1,2 + ρ
√
s+

√
ρ‖G∗

M⊥‖1
]
.

Notice that Ec is the event that

‖∆̂Θ‖F ≤

max




[6ρκ2(S

′)
√
s/λ− 3][6ρ

√
s+

√
6ρ‖G∗

M⊥‖1]
κ1(S′)

,

16κ2(S
′)
{
‖Θ∗

A⊥‖1,2 + ρ
λ‖G∗

M⊥‖1
}

κ1(S′)

}
.

We thus establish the bound of ‖∆̂Θ‖F as claimed in
the theorem.

6 Proof of Theorem 2

In this section we prove Theorem 2, which involved
two components: simplifying κ1(S

′) and κ2(S
′), and

bounding ρ and λ. Due to space constraints, we defer
the proofs of intermediate results to the supplementary
material.

Lemma 5. Under Condition 2, we have κ1(S
′) ≥

1
16

√
φmin(S + S′), and κ2(S

′)
κ1(S′) ≤ 5√

S
.

Lemma 6. Under Condition 1, for any n, p ≥ 2, we
have with probability 1− 1/(2n3)

‖X⊤W‖∞,2 ≤ min

(
σ(
√
q +

√
8 log pn)√
n

, 7σ(1 +
√
q/n)

)
.

Proof of Theorem 2. We first show that ρ and λ, as set
in the theorem, satisfies the condition of Theorem 1.
Recall that for a standard Normal random variable
x̄ ∼ N (0, 1), the following holds for all x0 > 0

Pr(x̄ ≥ x0) ≤
1

x0

1√
2π

exp(−x2
0/2).

Thus, since Wij ∼ N (0, σ2/n), we have

Pr
(
‖W‖∞ ≥ 4σ

√
log(nq)/n

)

≤ 2nqPr(x̄ ≥
√
16 log(nq))

≤ 2nq√
32π log(nq)

exp(−8 log(nq)) ≤ 1/(2n3).

This, combined with Lemma 6, shows that with prob-
ability 1/n3 we have

ρ ≥ 4‖W‖∞ + 8τ ; λ ≥ 4‖X⊤W‖∞,2.

Apply Theorem 1 we have ‖∆̂G‖F ≤ 6ρ
√
s ≤

c1σ
√

s log(nq)
n + c1α, which establishes the first claim.

We now turn to the second claim. Apply Theorem 1
we have

‖∆̂Θ‖F ≤
max

(
c[λ

√
S + ρ

√
s]/min(κ1, 1), 36ρ

2sκ2/(λκ1)
)
.

Since κ1 is lower-bounded by 1/(16
√
φmin(S + S′)),

we have that

c[λ
√
S + ρ

√
s]/min(κ1, 1)

≤[c′ρ
√
s+ c′λ

√
S]/

√
φmin(S + S′)

≤2c′ρ
√
s+ 4c′λ0

√
S/

√
φmin(S + S′),

Here the last inequality is due to the value of λ. Recall
κ2/κ1 ≤ 5/

√
S from Lemma 5, and hence

36ρ2sκ2/(λκ1) ≤ 180[ρ
√
s]
ρ
√
s

λ
√
S

≤ c′′ρ
√
s.

Here the last inequality holds from definition of λ.
Thus we conclude that for some universal constant c

‖∆̂Θ‖F ≤ c[ρ
√
s+ λ0

√
S]/

√
φmin(S + S′).

The Theorem follows by substituting ρ and λ0 into the
equation.
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