Robust Multi-task Regression
 - Supplementary Material

October 6, 2011

We provide in this supplementary material proofs that are omitted in the submission.

A Proof of Lemma 5

Proof. By Condition 2 we have

$$
\sqrt{\phi_{\min }\left(S+S^{\prime}\right)} \geq 4 \sqrt{\left(\phi_{\max }\left(S^{\prime}\right)\right)\left(S / S^{\prime}\right)}
$$

which leads to

$$
\begin{aligned}
\kappa_{1} & =\frac{\sqrt{\phi_{\min }\left(S+S^{\prime}\right)}-3 \sqrt{\phi_{\max }\left(S^{\prime}\right) S / S^{\prime}}}{1+3 \sqrt{S / S^{\prime}}} \\
& \geq \frac{\sqrt{\phi_{\min }\left(S+S^{\prime}\right)}}{16} \geq \frac{\sqrt{\left(\phi_{\max }\left(S^{\prime}\right)\right)\left(S / S^{\prime}\right)}}{4}
\end{aligned}
$$

This established the first claim. Next, note that

$$
\begin{aligned}
\kappa_{2} / \kappa_{1} & =\frac{\frac{\sqrt{\phi_{\min }\left(S+S^{\prime}\right)}-3 \sqrt{\phi_{\max }\left(S^{\prime}\right) S / S^{\prime}}}{\sqrt{S^{\prime}}+3 \sqrt{S}}+\sqrt{\phi_{\max }\left(S^{\prime}\right) / S^{\prime}}}{\frac{\sqrt{\phi_{\min }\left(S+S^{\prime}\right)}-3 \sqrt{\phi_{\max }\left(S^{\prime}\right) S / S^{\prime}}}{1+3 \sqrt{S / S^{\prime}}}} \\
& =\frac{1}{\sqrt{S^{\prime}}}+\frac{\left(1+3 \sqrt{S / S^{\prime}}\right) \sqrt{\phi_{\max }\left(S^{\prime}\right) / S^{\prime}}}{\sqrt{\phi_{\min }\left(S+S^{\prime}\right)}-3 \sqrt{\phi_{\max }\left(S^{\prime}\right) S / S^{\prime}}} \\
& \leq \frac{1}{\sqrt{S^{\prime}}}+\frac{\left(1+3 \sqrt{S / S^{\prime}}\right) \sqrt{\phi_{\max }\left(S^{\prime}\right) / S^{\prime}}}{\sqrt{\phi_{\max }\left(S^{\prime}\right) S / S^{\prime}}} \\
& =\frac{4}{\sqrt{S^{\prime}}}+\frac{1}{\sqrt{S}} \leq \frac{5}{\sqrt{S}},
\end{aligned}
$$

where the last inequality holds from $S^{\prime} \geq S$.

B Proof of Lemma 6

Proof. To prove the lemma, we need the following two results. Lemma B. 1 is adapted from Theorem2.13 of [1], and Lemma B. 2 is from [2].

Lemma B.1. Let Γ be an $n \times q$ matrix, whose entries are all i.i.d. $\mathcal{N}(0,1)$ Gaussian variables; then

$$
\operatorname{Pr}\left(\|\Gamma\|_{o p}>\sqrt{n}+\sqrt{q}+\epsilon\right) \leq \exp \left(-\epsilon^{2} / 2\right) .
$$

Lemma B.2. Let U be a χ^{2} statistic with D degrees of freedom. For any positive x,

$$
\operatorname{Pr}(U-D \geq 2 \sqrt{D x}+2 x) \leq \exp (-x)
$$

We now proceed to prove Lemma 6. Note that $\left\|X^{\top} W\right\|_{\infty, 2} \leq \max _{i=1, \cdots, p}\left\|X_{i}\right\|_{2}\|W\|_{o p} \leq$ $\|W\|_{o p}$. Note that Lemma B. 1 implies that for W with i.i.d. $\mathcal{N}\left(0, \sigma^{2} / n\right)$ entries, we have with probability

$$
\begin{equation*}
\operatorname{Pr}\left(\|W\|_{o p} \geq 7 \sigma(1+\sqrt{q / n})\right) \leq \exp (-6(n+q) / 2) \leq 1 /\left(4 n^{3}\right) \tag{B.1}
\end{equation*}
$$

where the last inequality holds when $n \geq 2$. On the other hand, fix a X_{i}^{\top}, $X_{i}^{\top} W_{j} \sim \mathcal{N}\left(0,\left\|X_{i}\right\|_{2}^{2} \sigma^{2} / n\right)$, and hence

$$
\frac{\sqrt{n}}{\sigma\left\|X_{i}\right\|_{2}}\left\|X_{i}^{\prime} W\right\|_{2} \sim \chi_{q-1}
$$

By Lemma B.2, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left\|X_{i}^{\prime} W\right\|_{2} \geq \frac{\sigma(\sqrt{q}+\sqrt{8 \log (p n)})}{\sqrt{n}}\right) \\
\stackrel{(a)}{\leq} & \operatorname{Pr}\left(\left\|X_{i}^{\prime} W\right\|_{2} \geq \frac{\sigma\left\|X_{i}\right\|_{2}\left(\sqrt{q}+\sqrt{2 \log \left(p^{4} n^{4}\right)}\right)}{\sqrt{n}}\right) \\
= & \operatorname{Pr}\left(\frac{n\left\|X_{i}^{\prime} W\right\|_{2}^{2}}{\sigma^{2}\left\|X_{i}\right\|_{2}^{2}} \geq q+2 \sqrt{2 q \log p^{4} n^{4}}+2 \log \left(p^{4} n^{4}\right)\right) \\
\leq & \operatorname{Pr}\left(\frac{n\left\|X_{i}^{\prime} W\right\|_{2}^{2}}{\sigma^{2}\left\|X_{i}\right\|_{2}^{2}}-q \geq 2 \sqrt{q \log \left(p^{4} n^{4}\right)}+2 \log \left(p^{4} n^{4}\right)\right) \\
\stackrel{(b)}{\leq} & 1 /\left(n^{4} p^{4}\right) \leq 1 /\left(4 n^{3} p\right),
\end{aligned}
$$

which by union bound leads to

$$
\begin{equation*}
\operatorname{Pr}\left(\left\|X^{\top} W\right\|_{\infty, 2} \geq \frac{\sigma(\sqrt{q}+\sqrt{2 \log (p n)})}{\sqrt{n}}\right) \leq 1 /\left(4 n^{3}\right) . \tag{B.2}
\end{equation*}
$$

Here, (a) holds since $\left\|X_{i}\right\|_{2} \leq 1$ and (b) holds by applying to Lemma B. 2 to χ^{2} random variable $\frac{n\left\|X_{i}^{\prime} W\right\|_{2}^{2}}{\sigma^{2}\left\|X_{i}\right\|_{2}^{2}}$. Lemma 6 follows by a union bound on Equation (B.1) and (B.2).

C Proof of Example 1

In this appendix we show the validity of the claim in Example 1. Recall the following theorem from [1] (Thm. 2.13).

Theorem C.1. Given $m, n \in \mathbb{N}$ with $m \leq n$, put $\Theta=m / n$ and consider the $n \times m$ random matrix Γ whose entries are real, independent Gaussian random variable following $\mathcal{N}(0,1 / n)$. Let the singular value be $\sigma_{1}(\Gamma) \geq, \cdots, \geq \sigma_{m}(\Gamma)$. Then for any $t>0$,
$\operatorname{Pr}\left(\sigma_{1}(\Gamma) \geq 1+\sqrt{\Theta}+t\right) \leq \exp \left(-n t^{2} / 2\right) ; \quad \operatorname{Pr}\left(\sigma_{m}(\Gamma) \leq 1-\sqrt{\Theta}-t\right) \leq \exp \left(-n t^{2} / 2\right)$.
Then, fix any $I \subset[1: p]$ with $|I|=S+S^{\prime}$ and denote $M=X_{I}$ we have that M is a $\left(S+S^{\prime}\right) \times n$ random matrix with IID entries following $\mathcal{N}(0,1 / n)$. Thus, for any $t>0$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\phi_{\min }\left(S+S^{\prime}\right)<1-\sqrt{\left(S+S^{\prime}\right) / n}-t\right) \\
\leq & \binom{p}{S+S^{\prime}} \times \operatorname{Pr}\left(\sigma_{S+S^{\prime}}(M)<1-\sqrt{\left(S+S^{\prime}\right) / n}-t\right) \\
\leq & p^{S+S^{\prime}} \exp \left(-n t^{2} / 2\right)=\exp \left(\frac{2\left(S+S^{\prime}\right) \log p-n t^{2}}{2}\right)
\end{aligned}
$$

where the first inequality follows from a union bound on all subsets with cardinality $S+S^{\prime}$. Similarly

$$
\operatorname{Pr}\left(\phi_{\max }\left(S^{\prime}\right)>1+\sqrt{S^{\prime} / n}+t\right) \leq \exp \left(\frac{2 S^{\prime} \log p-n t^{2}}{2}\right)
$$

Set $t=\sqrt{4\left(S+S^{\prime}\right) \log p / n}$ we have that with probability at least $1-1 / p^{2}$,

$$
\begin{aligned}
& \phi_{\min }\left(S+S^{\prime}\right) \geq 1-\sqrt{\frac{S+S^{\prime}}{n}}-\sqrt{\frac{4\left(S+S^{\prime}\right) \log p}{n}} \geq 1-\sqrt{\frac{9\left(S+S^{\prime}\right) \log p}{n}} \\
& \phi_{\max }\left(S^{\prime}\right) \leq 1+\sqrt{\frac{S^{\prime}}{n}}+\sqrt{\frac{4\left(S+S^{\prime}\right) \log p}{n}} \leq 1+\sqrt{\frac{9\left(S+S^{\prime}\right) \log p}{n}}
\end{aligned}
$$

When $S \log p \leq n / 1764$ and $S^{\prime}=48 S$, we have that $\left(S+S^{\prime}\right) \log p / n \leq 1 / 36$ which implies that $\phi_{\min }\left(S+S^{\prime}\right) \geq 1 / 2$ and $\phi_{\max }\left(S^{\prime}\right) \leq 3 / 2$. Hence

$$
S^{\prime} \phi_{\min }\left(S+S^{\prime}\right) \geq 16 S \phi_{\max }\left(S^{\prime}\right)
$$

as claimed.

References

[1] K. Davidson and S. Szarek. Local operator theory, random matrices and banach spaces. In W. Johnson and J. Lindenstrauss, editors, Handbook on the Geometry of Banach Spaces, pages 317-366. Elsvier, 2001.
[2] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional of by model selection. Annals of Statistics, 28:1302-1338, 2000.

