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Abstract

Some supervised learning tasks do not fit
the usual single annotator scenario. In these
problems, ground-truth may not exist and
multiple annotators are generally available.
A few approaches have been proposed to ad-
dress this learning problem. In this setting
active learning (AL), the problem of opti-
mally selecting unlabeled samples for label-
ing, offers new challenges and has received
little attention. In multiple annotator AL, it
is not sufficient to select a sample for labeling
since, in addition, an optimal annotator must
also be selected. This setting is of great inter-
est as annotators’ expertise generally varies
and could depend on the given sample it-
self; additionally, some annotators may be
adversarial. Thus, clearly the information
provided by some annotators should be more
valuable than that provided by others and it
could vary across data points. We propose
an AL approach for this new scenario mo-
tivated by information theoretic principles.
Specifically, we focus on maximizing the in-
formation that an annotator label provides
about the true (but unknown) label of the
data point. We develop this concept, propose
an algorithm for active learning, and experi-
mentally validate the proposed approach.

1 Introduction

The traditional supervised learning scenario assumes
that there is a single teacher (or domain expert) that
provides the necessary supervision. Such expert labels
are then assumed to be the ground-truth utilized to
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build a learning model. In certain applications, such
ground-truth labels may not be available and instead
multiple experts/non-experts (annotators) provide the
necessary supervision. For example, in medical image
diagnosis, often radiologists disagree on a diagnosis un-
less a biopsy is made; this ground-truth can be impos-
sible/expensive to collect. In addition, it is common
for annotators to be more certain about some inputs.
For example, radiologists are often experienced in cer-
tain medical conditions only; and thus, their opinion
should be considered more valuable for a (usually un-
known) subset of all the cases.

It is now increasingly easier to share and collect data
from several sources; and consequently, possible to col-
lect information (such as annotations) not just from
one expert but by many experts and non-experts. This
has fueled the phenomena such as Crowdsourcing [8]
and, more concretely, large-scale collaboration tools
such as Amazon Mechanical Turk (AMT). Other forms
of multiple source supervision include opinions, re-
views, product ratings, and many implicit forms of
on-line user interaction.

Machine learning approaches that address the
multiple-annotator scenario in various settings have
gained great interest recently (e.g., [14, 24, 22, 9]).
However, a consistent strategy for the active learning
problem [11, 12] has been missing to a large extent.
In active learning, an algorithm is allowed to choose
the data from which it learns. The most common set-
ting is that where unlabeled data points are given and
some of them must be chosen to be labeled by an ora-
cle (e.g., an expert). In the traditional active learning
problem, an optimal sample is sought to be labeled by
a unique annotator. In contrast, this paper addresses
active learning from multiple annotators.

The new multiple annotator paradigm posits new chal-
lenges to the active learning algorithm – not only do we
need to select the optimal sample to label but also the
optimal annotator to query. Having multiple annota-
tors adds an interesting dimension to active learning
because some annotators may be more reliable than
others, some may be malicious, and their expertise
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may vary with the observed sample. Still, as labels
have a cost, we would like to efficiently select points
to be labeled to attain the most gain or achieve the
best accuracy at a fixed cost.

There are two typical AL selection scenarios: (a) pool-
based active learning: when examples can be chosen
from an existing unlabeled point set and (b) on-line or
sequential active learning: when a decision to label an
example is made sequentially as each example becomes
available. We focus on pool-based active learning.

Under certain assumptions active learning requires
O(log(1/ǫ)) labeled examples to find a classification
boundary providing ǫ error while passive learning re-
quires O(1/ǫ) labeled examples [7]. Even though gen-
eral theoretical guarantees on efficiency are available
for a limited class of problems, empirical evidence sug-
gests that active learning is efficient in common practi-
cal scenarios, where the objective is often that of max-
imizing accuracy given a budget.

Active learning (AL) methods can be divided into dif-
ferent categories depending on the strategy employed
to select candidate examples. Active learning by un-
certainty sampling [10, 2] selects the unlabeled data
point whose label has highest uncertainty given the
current model. Query-by-Committee (QBC) active
learning [19, 7], selects data points that can optimally
reduce the version space, a measure representing the
volume of parameters consistent with the data. This
results in the selection of points for which indepen-
dently trained models disagree the most about their
labels. Expected error reduction [16] aims to find an
example that minimizes the expected generalization
error (sometimes called risk) or reducing the expected
total number of incorrect predictions. A related cri-
terion, expected model change chooses the data point
that when labeled maximizes the estimate of model
change [18]. For some models this is equivalent to
choosing a candidate unlabeled example that gener-
ates the objective function gradient of the largest mag-
nitude. Some of the approaches above can also be tied
to information theoretic criteria, in particular QBC.

In this paper we consider a more direct use of the mu-
tual information criterion [3] and define the problem
explicitly to address the multiple annotator situation,
with the goal of selecting the most informative labels
based on the annotator characteristics. Thus, anno-
tator and data point selection are optimized simulta-
neously. Specifically, for the available data points, we
focus on maximizing the information that the chosen
annotator label provides about the true (but unknown)
point label.

Various ideas similar in spirit to the active learning sce-
nario include: repeated labeling [21, 5, 20], the process

of identifying labels that should be revised in order to
improve classification performance, and more recently
[13], a manner of learning where annotators are chosen
randomly and then their responses corroborated using
a separate model.

The presented approach shares the motivation of [23]
in the sense that both approaches address the multi-
labeler active learning scenario, but they are different
as [23] focuses on a form of uncertainty active learning.
We compare with this approach in the experiments sec-
tion. This paper is related to a lesser extent to [6, 1].
The approach in [6] is in the same class as [23] with
respect to the use of the uncertainty sampling princi-
ple. However, [6] requires querying multiple labelers
for every point, since the reward function depends on
majority voting. The proposed approach does not re-
quire querying multiple labelers (this is likely waste-
ful) and does not need majority voting. Previous work
suggests that majority voting is clearly sub-optimal
([15, 24, 22]). Finally, the work in [1] compares anno-
tator selection based also on classifier uncertainty and
(additionally) disagreement; however it focuses on the
selection of data points and not on the selection of
annotators.

2 Formulation

We consider a set of N data points X = {x1, . . . ,xN}
drawn independently from an input distribution. Let

us denote Y = {y(t)i }it with y
(t)
i the label for the i-

th data point given by annotator t. In the setting
addressed in this paper the labels from individual la-
belers might be incorrect, missing, or inconsistent with
respect to each other. We introduce additional vari-
ables Z = {z1, . . . , zN} to represent the true but usu-
ally unknown label for the corresponding data point.

We let xi and zi for i ∈ {1, ...N} be random vari-
ables in the input space X and output space Z respec-

tively. Similarly, we let y
(t)
i be random variables over

the space of labels Y, where t ∈ {1, ..., T }. If we do
not have access to the ground-truth, all of the variables
zi are unobserved. We concentrate on this more gen-
eral case; however, in some problem instances partial

ground-truth may be available. Some labels y
(t)
i are

observed, but in general it is expected that they are
sparse and thus acquiring them optimally is of interest.

2.1 A probabilistic model for multiple
labelers

In modeling multiple annotators, we consider the an-
notation provided by labeler t to depend on the true
(but usually unknown) label z and the input data point
x. Our motivation for this is that annotators may la-
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Figure 1: Graphical Model for x, y, and z respec-
tively inputs, annotator-specific labels, and ground
truth label (for simplicity α, β, {γt}, and {wt}, with
t ∈ {1, .., T }, are excluded)

bel certain data points with better accuracy than other
data points and that this accuracy may depend on the
properties of the data point itself. That is, their accu-
racy depend on the input being presented. In addition,
labelers are assumed independent given the input data
point and the true point label.

These modeling considerations were proposed in [24]
(exclusively for standard supervised learning) and are
represented in the graphical model given in Figure 1.
We will use this representation to develop and evaluate
an active learning strategy.

Throughout this paper, we will be interested in the
conditional distribution for the observed labels YO ⊂
Y conditioned on the input data. One can show that
this distribution is given by:

p(YO|X) =
∏

i

∑

zi

p(zi|xi)
∏

t|t∈Ti

p(y
(t)
i |xi, zi), (1)

where we have used the conditional independence as-
sumptions implied by the given graphical model and
Ti is the set of annotators that provided a label for the
i-th data point.

For binary classification, a Bernoulli conditional dis-
tribution is an appropriate choice for the conditional
distribution of annotator labels:

p(y
(t)
i |xi, zi) = (1− ηt(x))

|y(t)

i
−zi|ηt(x)

1−|y(t)

i
−zi|,

(2)
with ηt(x) a logistic function of xi and t:

ηt(x) = (1 + exp(−wT
t xi − γt))

−1. (3)

Similarly, for the conditional distribution of the true
label z|x we choose the standard logistic regression
model:

p(zi = 1|xi) = (1 + exp (−αTxi − β))−1. (4)

2.2 Active Learning

We utilize a pool-based active learning modality, where
a number of data points available for labeling are
known by the algorithm at a given moment in time. As
some data points may not have been labeled by some
annotators, we choose to represent the set of unob-
served labels rather the set of unlabeled points. There-
fore, for iteration τ we let the set YU (τ) ⊂ Y with

U = {(k, s) ∈ {1, ..., N}× {1, ...T }|y(s)k is unobserved}
to represent the labels that are unknown to the learn-
ing algorithm.

As this is an iterative process, the set U could vary
across iterations. At each iteration τ , one tuple
(k∗, s∗) ∈ U(τ) is chosen and the appropriate data
point xk∗ is shown to labeler t∗ for annotation. Thus,

after this, the label y
(s∗)
k∗ is no longer unobserved. Note

that unlike the standard active learning problem, here
both the data point and the labeler must be selected,
rather than just a data point. In this iterative process,
data points are chosen until a labeling budget has been
depleted.

We consider the mutual information [3] as an appro-
priate criterion for choosing the tuple (k∗, s∗) ∈ U(τ).
Given this, the active learning problem can be cast as
follows:

(k∗, s∗) = arg max
(k,s)∈U

I(zk; [y
(s)
k , xk]|X,YO), (5)

where the information score is conditioned on having
observed X and YO: the available data points and the
labels provided by any annotator. We have assumed
a given τ and thus removed U ’s dependency on it to
simplify the notation.

This maximization can be expressed in terms of the
corresponding conditional entropies (H) as follows:

max
k,s

H(zk|X,YO)−H(zk|[ysk, xk];X,YO)

= max
k,s

H(zk|θ) −H(zk|[ysk, xk]; θ)

= max
k,s

∑

zk,ys
k

p(zk|[ysk, xk]; θ) log p(zk|[ysk, xk]; θ)

−
∑

zk

p(zk|θ) log p(zk|θ), (6)

where a semicolon is employed to separate random
variables from paramters for clarity (where required).

In the above we have utilized a maximum likelihood
point estimate for the model parameters θ to simplify
the calculation of the information score. We are im-
plying that all the information provided by the dataset

1352



Active Learning from Multiple Knowledge Sources

is summarized in the model parameters θ given the
proposed model structure. This could potentially be
extended to incorporate a distribution over θ condi-
tioned on the data X and YO in a MAP or Bayesian
formulation.

The first term can be computed by using Bayes’ rule:

p(zk|ysk,xk; θ) =
p(zk|xk; θ)p(y

s
k|xk, zk; θ)∑

zk
p(zk|xk; θ)p(ysk|xk, zk; θ)

. (7)

The second term can be estimated by observing
p(zk|θ) =

∫
p(zk|xk; θ)p(xk), since θ does not affect

the prior p(xk). An approximation q(zk) ≈ p(zk|θ)
can be obtained using X as a suitable sample from the
prior distribution. Thus, we let:

q(zk) =
1

N

∑

xk∈X

p(zk|xk; θ). (8)

Note that for this we have also made the standard as-
sumption that the true distribution for z is consistent
with the employed model.

Once these quantities have been calculated, the origi-
nal optimization problem can be expressed in a simple
manner:

(k∗, s∗) = argmax
k,s
−
∑

zk

q(zk) log q(zk)

+
∑

zk,ys
k

p(zk|ysk,xk; θ) log p(zk|ysk,xk; θ).(9)

This can be computed in O(NT ) once the appropriate
distributions in each term have been obtained. The
required distributions for the two terms in the objec-
tive function require O(|Z||X ||X |) and O(|Z||Y||X |)
respectively for a given θ. For an efficient implemen-
tation, we calculate (for the first term) the entropy
H(zk) at every iteration for each data point xk that
could be labeled. Likewise (for the second term), we
calculate the appropriate entropy for each pair k and
s that is still unlabeled. The first is a vector of size at
most N , the second is a table of size at most N × T .
Note that after a data point is selected for labeling by
an annotator, this point may not necessarily be elim-
inated from the pool as the same data point may be
selected in the future for labeling by a different anno-
tator.

2.3 Learning and Classification

We utilize the maximum likelihood learning criterion
to estimate θ = {α, β, {wt}, {γt}}. The Expectation
Maximization (EM) algorithm [4] is employed to maxi-
mize the conditional distribution for partially observed

Algorithm 1 ML+CI* Algorithm.

Inputs: data set X, available annotations YO, and
missing annotations U .
Train multiple annotator model with preset training
data.
while stopping condition not met do
O = UC //C: set complement
Find optimal label (k∗, s∗) ∈ U to request which
maximizes equation (9) conditioned on observa-
tions X and YO

Request label y
(s∗)
k∗ for data point xk∗ from anno-

tator s∗

Update trained model by re-training with the new

sample [xk∗ , y
(s∗)
k∗ ].

U ← U − {(k∗, s∗)}
i = i+ 1.

end while
return

labels, Eqn. 1. The mathematical derivation is rather
standard and is omitted due to space limitations. Note
that the objective function is different from that uti-
lized in [24] where the difference stems from the un-
availability of all the annotations. One can show that
the problem of inferring z for a new data point x not in
the training set is equivalent to applying Eqn. 4 with
input x.

3 Experiments

In this section, we investigate how successfully our
proposed algorithm uses conditional information for
active learning. As we mentioned in our introduc-
tion, different annotators may have varying expertise
and some annotators may even be (intentionally) ma-
licious. In this new active learning setting, not only
do we select a sample to label at each step but also
the corresponding “best” annotator to label this sam-
ple. In this section, we also explore how robust our
proposed algorithm is to malicious or adversarial an-
notators.

For the rest of the paper we will refer to our algo-
rithm as ML+CI*. The acronym before the plus sign
(ML) means Multiple Labeler and refers to the na-
ture of the classification algorithm, the acronym after
the plus sign refers to the active learning strategy em-
ployed by the corresponding algorithm. In our case CI
stands for conditional information and * indicates
that our algorithm selects the “best” available labeler
simultaneously.

In designing our algorithm, we found that there are
several possible ways for selecting the samples and an-
notators. In this empirical study, we compare our ap-
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Figure 2: Accuracy and AUC for multi-labeler datasets as a function of number of active learning iterations.

proach to these possible alternative models/baselines
(where we apply a naming convention, multi-labeler
model + active learning model):

1. ML+QBC (Multi-Labeler utilizing Query by
Committee): This method utilizes the same
multiple-labeler model (Eqn. 4) as our approach
but uses query by committee to perform active
learning. We used M = 5 committee classifiers by
randomly selecting 200 out of 300 points from our
training data and an additional classifier trained
on all training data as the final one for making
predictions. In each step, it selects the sample for
which the M classifiers disagree the most based
on Kullback-Liebler divergence[3]. Then, it ran-
domly picks an annotator to label the sample,
without regard for annotator differences.

2. ML+Uncert* (Multi-Labeler utilizing Uncer-
tainty): This method utilizes the same multiple-
labeler model (Eqn. 4) as our approach but selects
the most uncertain sample. This means, it selects
that sample that is closest to the boundary. Then,
it queries the annotator that has the largest con-
fidence based on η (see Eqn. 3). This is the same
as the method in [23].

3. ML+Random Pick: This method utilizes the same
multiple-labeler model as our approach but se-
lects samples and annotators uniformly at ran-
dom. This serves as a baseline approach.

3.1 Learning Performance

In this section we compare learning performance in
terms of how efficient the same underlying model
learns using the various competing active learning
strategies described above. Note that all of the com-
pared approaches use a multi-labeler model that allows
for learning the annotator expertise. This was done so
that the observed differences in performance can be at-
tributed to differences in the active learning strategies
compared.

3.1.1 Scientific text data

We test the different methods on scientific texts
(PubMed and GeneWays corpus) prepared and made
publicly available by [17]. It contains a corpus of
10, 000 sentences each that has been annotated by 3
out of 8 available labelers. For each sentence there
are several available labels. Here, we use the polarity,
focus, and evidence labels and binarize them into two
classes. We utilize a 1000 examples subset where each
sentence have been labeled by five annotators. For
each available sentence, we calculated the frequency
of occurrence of the most common words. After pre-
processing and normalization of the occurrences, we
ended up with 1000 samples and 292 features. We
randomly selected 300 samples as the initial training
for the four different competing methods mentioned
above, 300 points for active learning sample selection,
and the remaining 400 points to test the methods (i.e.,
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Figure 3: Accuracy and AUC for multi-labeler AF
problem as a function of number of active learning
iterations.

to measure the test accuracy and area under the re-
ceiver operating characteristic curve (AUC)) in each
selection step. To test our active learning approach,
we plot the test accuracies of the various methods after
each active learning step. The average test set accu-
racy and AUC for the various (methods,tasks) pairs
at each iteration is shown in Fig. 2. The classification
problems are polarity, evidence and focus respectively.

As shown in the figures, our ML+CI* model achieved
the best overall performance; the second overall best
performance is achieved by the ML+QBC model.
ML+CI* yields the best performance since it optimizes
for both the sample and the annotator that allow the
classifier to gain the most information simultaneously
after every active learning step. ML+QBC achieves a
relatively good performance because like our model, it
selects the most informative sample; however, it ran-
domly selects an annotator to query. In other words, it
assumes all annotators are equally good. ML+Uncert*
selects the most uncertain sample and the most confi-
dent annotator. However, choosing the most uncertain
sample, in some cases, may be suboptimal for improv-
ing classification performance, due to noise, outliers,
or unimportant regions of interest.

3.1.2 Medical text data

We also tested the different methods on medical text
data related to automatic detection of Atrial Fibrilla-
tion (cardiac arrhythmia of abnormal heart rhythm)
from unstructured medical text. This is a representa-
tive example of a common and very relevant area in
medical text analysis where the goal is to ascertain or
infer that a piece of text (a sentence, passage, or doc-
ument) refers to a particular, given topic or concept,
in this case, atrial fibrillation (AF).

In this experiment we are using actual electronic med-
ical records (EMR) from various medium/large-size
hospitals. We designed this experiment to work at the
passage level. A passage is a sequence of word/tokens
extracted from a document. Thus, each training point
represents a passage-based observation.

Our dataset consists of a set of 1058 passages from
a medical database containing a variety of different
medical records: discharge notes, visit notes, bills, etc.
The passages have been annotated by an expert labeler
(nurse abstractor) and four non-expert labelers. Each
passage is labeled into one of two categories: whether
the passage is relevant in determining (or providing
clear evidence) that the patient has a history of AF or
not. The text to be analyzed is represented based on
a combination of the document metadata (document
type, date, formatting information) and contextual in-
formation. For a passage of interest, the context is
defined as the section the passage is in, the distribu-
tion of words in the passage, and the relationships be-
tween these words. When a document is analyzed, two
main elements are identified: (1) document metadata
and (2) the actual text in the document (the content).
These are represented as a vector of real numbers.

After preprocessing, cleaning and normalization of the
resulting representative vectors, we ended up with 998
samples and 323 features. We randomly selected 30
samples as the initial training for the four different
competing methods mentioned above, 300 points for
active learning sample selection (however, we stop af-
ter 100 samples have been selected), and the remaining
points to test the methods. Like in the previous experi-
ment, we test our active learning approach and plot the
test accuracies of the various methods after each ac-
tive learning step. The results, in Fig. 3, are consistent
with the earlier results, and show a clearer difference
between the proposed method and those compared,
further helping validate the approach.

3.2 Adversarial Annotators

In this section, we investigate how adversarial labelers
can hurt the performance of our approach, ML+CI*.
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Figure 4: Left: Model accuracy (2/5 adversaries); Center: proportion of adversaries queried; Right: ML+CI*
accuracy (2/5 and 5/5 adversaries). Note that ML+CI*(5/5) outperforms ML+QBC(2/5).

We conjecture that since our model selects annotators
in each learning step, it can avoid or decrease the in-
fluence of these “bad” annotators.

To simulate adversarial annotators, we randomly flip
labels of points in the active learning pool with prob-
ability, pǫ. We performed the following experiments:

• We compared the performance of ML+CI* (for
each active learning step) to ML+QBC as we vary
pǫ ∈ {0.1, 0.2, 0.3, 0.4} on two annotators. This
means that two of the annotators become adver-
sarial with different degrees of “maliciousness” de-
pending on the value of pǫ. Larger pǫ leads to
more aggressive adversaries. Due to limited space,
we utilize ML+QBC as the comparative method
because it had the second best performance in
the previous set of experiments. To save space,
we also show only the results on evidence. The
results for the other labels provide similar con-
clusions. Results are shown in Figure 4(Left).
These figures confirm that indeed ML+CI* helps
reduce the effects from bad annotators compared
to ML+QBC.

• In Figure 4(Right), we provide a bar plot report-
ing how many times each method selects adversar-
ial annotators as we vary the flipping probability
pǫ. This results verify that our approachML+CI*
is able to avoid malicious annotators better than
ML+QBC.

• In Figure 4(Center), we show a comparison of
performances of our approach ML+CI* when a)
all five annotators are malicious and when b)
only two annotators are malicious. As expected,
ML+CI* would perform worse as the flipping
probability is increased and the drop in perfor-
mance is less when there are fewer adversaries,
however the model maintains an acceptable per-
formance that degrades slowly even when all la-
belers are not very accurate.

4 Conclusions

In this paper we have developed an approach for active
learning in a multiple-annotator setting. This is one
of the first attempts to formalize this active learning
problem. In this new scenario, contrary to the tra-
ditional single labeler setting where only an optimal
sample needs to be selected for labeling, an optimal
(sample, annotator) pair must be determined. The
chosen annotator is queried to label the selected sam-
ple. Having multiple annotators adds an interesting
dimension to active learning because some annotators
may be more reliable than others, some may be mali-
cious, and their expertise may vary with the observed
sample. Thus, the information provided by some anno-
tators is more valuable than that provided by others;
moreover, this may depend on the specific unlabeled
sample being considered.

Our approach is based on maximizing the information
that an annotator label provides about the true (but
unknown) label of the data point. We validated our
approach on real medical text data that have been la-
beled by multiple annotators. In this data, the anno-
tators kept for learning are different from those used
for test/evaluation. Our results show that the pro-
posed approach outperforms baseline methods (a vari-
ant of our multiple-annotator active learning algorithm
but one that selects the most uncertain sample, a
query-by-committee approach, and random selection)
in terms of both accuracy and area-under-the-curve.
Similarly, our empirical study comparing the resilience
of these methods to malicious annotators reveals that
our approach is more robust compared to the com-
peting methods. Moreover, our approach is able to
largely avoid querying malicious annotators automat-
ically. We believe that this study can motivate inter-
esting questions/directions for future research.

1356



Active Learning from Multiple Knowledge Sources

References

[1] A. Brew, D. Greene, and P. Cunningham. The in-
teraction between supervised learning and crowd-
sourcing. In NIPS Workshop on Comp. Social
Science and the Wisdom of Crowds, 2010.

[2] D. Cohn, Z. Ghahramani, and M. Jordan. Ac-
tive learning with statistical models. Journal of
Artificial Intelligence Research, 4:129–145, 1996.

[3] T. Cover, T. M., and J. A. Thomas. Elements
of information theory. Wiley Interscience, New
York, NY, USA, 1991.

[4] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood estimation from incomplete data. Jour-
nal of the Royal Stat. Soc. (B), 39(1), 1977.

[5] P. Donmez and J. G. Carbonell. Proactive learn-
ing: Cost-sensitive active learning with multiple
imperfect oracles. In Conference on Information
and Knowledge Management (CIKM), pages 619–
628, 2008.

[6] P. Donmez, J. G. Carbonell, and J. Schneider. Ef-
ficiently learning the accuracy of labeling sources
for selective sampling. In Knowledge Discovery
and Data Mining (KDD), 2009.

[7] Y. Freund, S. Seung, E. Shamir, and N. Tishby.
Selective sampling using the query by committee
algorithm. Machine Learning, 2-3:133–168, 1997.

[8] J. Howe. Crowdsourcing: Why the Power of the
Crowd Is Driving the Future of Business. Crown
Business, 2008.

[9] G. Kasneci, J. V. Gael, D. Stern, and T. Graepel.
CoBayes: Bayesian knowledge corroboration with
assessors of unknown areas of expertise. In Con-
ference on Web Search and Data Mining, pages
465–474, 2011.

[10] D. Lewis and W. Gale. A sequential algorithm
for training text classifiers. In SIGIR, pages 3–
12, 1994.

[11] D. Lindley. On a measure of the information pro-
vided by an experiment. Ann. Math. Stat, 27:986–
1005, 1956.

[12] D. MacKay. Information-based objective func-
tions for active data selection. Neural Compu-
tation, 4:590–604, 1992.

[13] U. Paquet, J. Van Gael, D. Stern, G. Kasneci,
R. Herbrich, and T. Graepel. Vuvuzelas and ac-
tive learning for online classification. In NIPS
Workshop on Comp. Social Science and the Wis-
dom of Crowds, 2010.

[14] V. C. Raykar, S. Yu, L. Zhao, A. Jerebko,
C. Florin, G. Hermosillo-Valadez, L. Bogoni, and
L. Moy. Supervised learning from multiple ex-
perts: Whom to trust when everyone lies a bit.
In International Conference on Machine Learn-
ing, pages 889–896, 2009.

[15] V. C. Raykar, S. Yu, L. Zhao, A. Jerebko,
C. Florin, G. Hermosillo-Valadez, L. Bogoni, and
L. Moy. Supervised learning from multiple ex-
perts: Whom to trust when everyone lies a bit.
In Int. Conference on Machine Learning (ICML),
pages 889–896, 2009.

[16] N. Roy and A. McCallum. Toward optimal ac-
tive learning through sampling estimation of er-
ror reduction. In 18th International Conference
on Machine Learning, pages 444–448, 2001.

[17] A. Rzhetsky, H. Shatkay, and W. J. Wilbur. How
to get the most out of your curation effort. PLoS
Computational Biology, 5(5):e1000391, 2009.

[18] B. Settles, M. Craven, and S. Ray. Multiple-
instance active learning. In In Advances in Neu-
ral Information Processing Systems (NIPS, pages
1289–1296. MIT Press, 2008.

[19] S. Seung, M. Opper, and H. Sompolinsky. Query
by committee. In Fifth Workshop on Computa-
tional Learning Theory, pages 287–94, 1992.

[20] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? Improving data quality and data
mining using multiple, noisy labelers. In Knowl-
edge Discovery and Data Mining (KDD), pages
614–622, 2008.

[21] P. Smyth, U. Fayyad, M. Burl, P. Perona, and
P. Baldi. Inferring ground truth from subjective
labeling of Venus images. In Advances in Neural
Information Processing Systems, volume 7, pages
1085–1092, 1995.

[22] P. Welinder, S. Branson, S. Belongie, and P. Per-
ona. The multidimensional wisdom of crowds. In
Advances in Neural Information Processing Sys-
tems, 2011.

[23] Y. Yan, R. Rosales, G. Fung, and J. Dy. Active
learning from crowds. In International Conference
on Machine Learning, 2011.

[24] Y. Yan, R. Rosales, G. Fung, M. Schmidt, G. Her-
mosillo, L. Bogoni, L. Moy, and J. Dy. Mod-
eling annotator expertise: Learning when every-
body knows a bit of something. In International
Conference on Artificial Intelligence and Statis-
tics, pages 932–939, 2010.

1357


