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Abstract

Reducing the number of labeled examples re-
quired to learn accurate prediction models is
an important problem in structured output
prediction. In this paper we propose a new
transductive structural SVM algorithm that
learns by incorporating prior knowledge con-
straints on unlabeled data. Our formulation
supports different types of prior knowledge
constraints, and can be trained efficiently.
Experiments on two citation and advertise-
ment segmentation tasks show that our trans-
ductive structural SVM can learn effectively
from unlabeled data, achieving similar pre-
diction accuracies when compared against
other state-of-art algorithms.

1 Introduction

Structural support vector machine (structural SVM)
[18] is a widely used algorithm for learning structured
output prediction models due to its simplicity and high
prediction accuracy for many applications. However,
thus far there is no published method to incorporate
prior knowledge about the structured output learning
problem into the training of structural SVMs. Prior
knowledge is particularly useful when labeled data are
scarce or expensive to collect, which is the case for
structured output learning. Moreover, although the
space of all possible outputs is huge (typically expo-
nential in input length), the space of ‘proper’ outputs
is usually much smaller because the output domain is
in practice highly constrained. In sequence labeling
problems including part-of-speech tagging, segmenta-
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tion of citations and classified advertisements, many
of the possible output sequences can be ruled out by
simple domain knowledge. For example, most proper
English sentences contain a noun and a verb, while
segment boundaries in citations are usually marked by
punctuation marks and the segments have to follow a
certain order. Any output sequences that violate these
rules are highly unlikely to be correct. These facts
have been exploited by different researchers [3, 14, 1]
to improve semi-supervised learning.

In this paper we propose a new method for incor-
porating these prior knowledge as (soft) constraints
in the training of structural SVMs. The key idea of
our approach is to decompose the penalty for violat-
ing these prior knowledge constriants as the sum of
a quadratic penalty term and a simplified constraint
violation penalty involving auxiliary variables. This
results in a tractable optimization problem that we
can solve efficiently with DC programming methods.

Our transductive structural SVM allows flexible types
of prior knowledge constraints to be expressed. It
can handle both constraints on individual examples
(e.g., each sentence has to contain at least one verb)
and sample-based expectation constraints (e.g., the
average number of nouns over all sentences has to
be greater than the average number of verbs). For
most types of constriants, inference during training
can be performed efficiently via dynamic programming
or beam search. Interestingly, our method also sug-
gests a new formulation for learning structural SVMs
for supervised sequence/graph labeling, by encoding
the labels as constraints on outputs.

Experiments on two citation and advertisement seg-
mentation tasks show that our transductive structural
SVM can learn effectively from enforcing constraints
over unlabeled data, improving the prediction accu-
racies quite substantially when the number of labeled
examples is small. It achieves similar prediction ac-
curacies when compared against other state-of-art al-
gorithms. Our experiments also show that, when the
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labels in a sequence labeling task are encoded as con-
straints, our transductive structural SVM is able to
learn a model with prediction accuracies almost iden-
tical with a standard supervised structural SVM.

2 Related Works

Most of the related works on applying constraints
in semi-supervised learning come from the natural
language processing and information retrieval com-
munities, where reducing the labeling effort required
to train good prediction models is a top priority.
Chang et al. [3] introduced constraint-driven learn-
ing (CODL), a self-training style algorithm for semi-
supervised learning. They applied constraints to im-
prove the labeling of a pool of unlabeled examples,
before the unlabeled examples were added to re-train
the model. CODL optimizes an approximate likeli-
hood based on n-best list.

Bellare et al. [1] proposed an alternating projection al-
gorithm for learning with expectation constraints over
unlabeled data. The expectation constraints are main-
tained over an auxiliary distribution q instead of the
predictive distribution p, and the KL-divergence be-
tween p and q are minimized as part of the objec-
tive. This arrangement provides improved computa-
tional efficiency over their original Generalized Expec-
tation criterion [14]. Ganchev et al. [5] also proposed a
method called posterior regularization, which utilizes
a very similar training objective.

Liang et al. [12] proposed a Bayesian model that treats
various information such as labeled data, labeled fea-
tures, and constraints as measurements that can be ap-
plied in learning. Direct optimization of this Bayesian
model is intractable and they proposed approximate
inference methods for it.

Unlike CODL which focuses on constraints on in-
dividual examples, our transductive structural SVM
can handle both example-based and expectation con-
straints under the same framework via the introduc-
tion of auxiliary variables. Our use of auxiliary vari-
ables is similar to the use of auxiliary distribution q
in [1], but instead of minimizing the KL-divergence we
minimize the quadratic distance between the auxiliary
variables and the model predictions instead.

Previously Zien et al. [21] also considered the problem
of transductive learning of structural SVMs. But their
formulation was based on the large-margin assump-
tion used in semi-supervised classification and cannot
incorporate domain-dependent prior knowledge.

3 Structural SVM with Constraints

Suppose we are given a set of labeled training exam-
ples {(x1, y1), . . . , (xn, yn)}, structural SVM (margin-
rescaling) [18] learns a weight vector ~w by solving the
following convex optimization problem:

min
~w

1

2
‖~w‖2 +

C

n

n∑

i=1

max
ŷ∈Y

[∆(yi, ŷ) + ~w · δΦi(ŷ)], (1)

where we use the shorthand δΦi(ŷ) to denote Φ(xi, ŷ)−
Φ(xi, yi). The joint feature map Φ(x, y) extracts rel-
evant features measuring the compatibility of input x
and output y, scored by the weight vector ~w. The loss
function ∆(y, ŷ) measures the cost of predicting an al-
ternative output ŷ instead of the reference output y.
Denoting the prediction output for a fixed weight vec-
tor ~w for a given input x as y(x; ~w), where

y(x; ~w) = argmaxŷ∈Y ~w · Φ(x, ŷ),

it is well known that the prediction loss for training
example xi is upper-bounded by the second term in
Eq (1) [18]:

∆(yi, y(xi; ~w)) ≤ max
ŷ∈Y

[∆(yi, ŷ) + ~w · δΦi(ŷ)].

Thus the structural SVM optimization problem mini-
mizes a sum of convex upper bounds of the prediction
loss ∆(yi, y(xi; ~w)) over the training set, subject to
regularization over the norm of the weight vector ~w.
This algorithm gives state-of-art performance in many
structured output prediction applications [18, 16].

3.1 Prior Knowledge as Constraints

Suppose in addition to the labeled training data
{(x1, y1), . . . , (xn, yn)}, we are given a set of unlabeled
data of size m {xn+1, . . . , xn+m}. In addition to min-
imizing an upper bound over the loss function ∆ on
the labeled data, we might also want to ensure that
the predictions y(xj ; ~w) over the unlabeled data are
‘proper’ and satisfy certain constraints according to
our prior knowledge. For example, in part-of-speech
tagging, we might want to ensure that each output
y(xj ; ~w) contains at least one verb. Let φ : X ×Y → R
be a function that counts the number of verbs in an
output sequence. This constraint can be expressed as:

φ(xj , y(xj ; ~w)) ≥ 1 for n+ 1 ≤ j ≤ n+m, (2)

and can be incorporated in the structural SVM opti-
mization problem in Eq (1). As another example, in
handwriting recognition, we might want to ensure the
3-gram letter frequencies of the outputs to match those
from English documents from the same domain. Let
φ : X ×Y → Rd be a function that counts the number

1368



Chun-Nam Yu

of each type of 3-grams in the output (with d = 263),
we can express the above constraint as:

1

m

n+m∑

j=n+1

φ(xj , y(xj ; ~w)) = ~a, (3)

where ~a ∈ Rd is a 3-gram frequency vector estimated
from a large corpus in the same domain.

Instead of the hard constraints in Eqs (2) and (3)
above, in practice a more common approach is to pe-
nalize their corresponding soft version based on the
hinge loss and L1-norm difference:

[1− φ(xj , y(xj ; ~w))]+, (4)∥∥∥∥∥∥
1

m

n+m∑

j=n+1

φ(xj , y(xj ; ~w))− ~a

∥∥∥∥∥∥
1

. (5)

3.2 Penalizing Constraint Violations with
Auxiliary Variables

The major difficulty in dealing with constraints in Eqs
(4) and (5) comes from φ(xj , y(xj ; ~w)), which is usually
a non-convex and discontinuous function of ~w. This
makes it very hard to solve for ~w with these constraints
incorporated. To make progress on this problem, let
us assume we encode the constraints in Eqs (4) and
(5) as a constraint penalty function Γ : Rd×m → R:

Γ(φn+1(y(xn+1; ~w)), . . . , φn+m(y(xn+m; ~w))),

where we introduce the shorthand φj(y) for φ(xj , y).

We assume Γ is convex and Lipschitz-continuous with
Lipschitz constant L. This holds for the type of (soft)
linear equality and inequality constraints we have con-
sidered so far. We can then incorporate the constraint
penalty function into Eq (1):

min
~w

1

2
‖~w‖2 +

C1

n

n∑

i=1

max
ŷ∈Y

[∆(yi, ŷ) + ~w · δΦi(ŷ)]

+C2Γ(φn+1(y(xn+1; ~w)), . . . ,φn+m(y(xn+m; ~w))), (6)

where C1, C2 are regularization constants. The con-
straint penalty Γ acts like a (data-dependent) prior
term over the weight vector ~w.

The key idea to make the optimization problem
tractable is to introduce auxiliary vectors ~vj ∈ Rd
to replace φj(y(xj ; ~w)) in Γ, and enforce φj(y(xj ; ~w))
and ~vj to be close to each other. Focusing on the
term Γ(φn+1(y(xn+1; ~w)), . . . , φn+m(y(xn+m; ~w))) in
Eq (6), we can replace it with the expression:

µ

2

n+m∑

j=n+1

‖φj(y(xj ; ~w))−~vj‖2+Γ(~vn+1, . . . , ~vn+m). (7)

This idea is related to the use of quadratic penalty
function for turning a constrained minimization prob-
lem into an unconstrained minimization problem
[15]. The parameter µ controls the tradeoff be-
tween minimizing Γ and making sure that ~vj and
φj(y(xj ; ~w)) are close. As µ tends to infinity, ~vj
will get closer and closer to φj(y(xj ; ~w)), so that
Γ(~vn+1, . . . , ~vn+m) will also get closer and closer to
Γ(φn+1(y(xn+1; ~w)), . . . , φn+m(y(xn+m; ~w))) (by our
Lipschitz continous assumption). This idea is also sim-
ilar to the use of auxiliary distribution q in [1], but in
our case quadratic distance is employed in place of
KL-divergence.

The next step involves upper-bounding the quadratic
term. Let us first consider the following upper bound,
derived using similar techniques employed in previous
works on large-margin structured prediction [4, 19]:

µ

2
‖φj(y(xj ; ~w))− ~vj‖2

= ~w·Φ(xj , y(xj ; ~w))+
µ

2
‖φj(y(xj ; ~w))−~vj‖2

− ~w·Φ(xj , y(xj ; ~w))

≤ max
ŷ∈Y

[~w·Φ(xj , ŷ)+
µ

2
‖φj(ŷ)−~vj‖2]− ~w·Φ(xj , y(xj ;~w))

=
µ

2
‖~vj‖2+max

ŷ∈Y
[~w·Φ(xj , ŷ)−µ~vj ·φj(ŷ) +

µ

2
‖φj(ŷ)‖2]

−max
ŷ∈Y

~w·Φ(xj , ŷ) (8)

This bound is the difference of two convex functions
(maximum over a set of linear functions in ~w and ~vj),
and can be minimized using difference of convex (DC)
programming methods [8, 20].

However, as we are going to use the Convex-Concave
Procedure (CCCP) [20] to solve the DC programs be-
low, this particular bound in Eq (8) suffers from a
serious drawback. In the upper bounding step of the
CCCP algorithm we replace the concave term with
the linearization ~w · Φ(xj , y

∗), where y∗ = y(xj ; ~w
(t))

is the prediction from the current solution ~w(t). As
y∗ is estimated using our current solution ~w(t) with-
out any information from the constraints, the CCCP
algorithm tends to get trapped in local minima that
are close to the initial solution.

Consider instead the following bound that has stronger
symmetry in its convex and concave part:

max
ŷ∈Y

[~w·Φ(xj , ŷ)+
µ

4
‖φj(ŷ)− ~vj‖2]

−max
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
4
‖φj(ŷ)− ~vj‖2]. (9)

It is fairly straightforward to show that the expression
is an upper bound on the quadratic distance, in the
following lemma:
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Lemma 1.

µ

4
‖φj(y(xj ; ~w))−~vj‖2≤max

ŷ∈Y
[~w·Φ(xj , ŷ)+

µ

4
‖φj(ŷ)−~vj‖2]

−max
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
4
‖φj(ŷ)−~vj‖2].

Proof. Notice by definition of max,

~w·Φ(xj , y(xj ; ~w)) +
µ

4
‖φj(y(xj ; ~w)‖2

≤max
ŷ∈Y

[~w·Φ(xj , ŷ)+
µ

4
‖φj(ŷ)−~vj‖2] (10)

Also, as µ is positive and the quadratic distance is
non-negative,

~w·Φ(xj , y(xj ; ~w)) = max
ŷ∈Y

~w·Φ(xj , ŷ)

≥max
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
4
‖φj(ŷ)−~vj‖2] (11)

Subtracting inequality (11) from inequality (10) gives
the result.

Another way to motivate the bound in Eq (9) is to con-
sider its upper-bounding step in CCCP, which involves
the following inference problem:

ȳ(xj ; ~w,~vj)=argmax
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
4
‖~vj−φj(ŷ)‖2]. (12)

The output ȳ(xj ; ~w,~vj) tries to score high with ~w,
while maintaining a small quadratic distance to our
current ~vj . As ~vj is optimized to minimize the con-
straint violation penalty Γ, a small quadratic distance
to ~vj implies a small constraint violation penalty. Thus
ȳ(xj ; ~w,~vj) balances between achieving a high output
score and maintaining the constraints, with tradeoff
tuned by µ. We call this constraint-guided inference.
This ensures that information from the constraints is
used in the upper-bounding step of the CCCP algo-
rithm to avoid bad local minima.

Following exactly the same steps as in Eq (8), we can
also show that

µ

2
‖φj(ȳ(xj ;~w,~vj))−~vj‖2≤max

ŷ∈Y
[~w·Φ(xj , ŷ)+

µ

4
‖φj(ŷ)−~vj‖2]

−max
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
4
‖φj(ŷ)−~vj‖2].

Compared to Lemma 1, the upper bound on the out-
put of constraint-guided inference ȳ(xj ;~w,~vj) is tighter
than that on the prediction y(xj ; ~w), by a factor of 2.

Finally, plugging the bound in Eq (9) back into Eq
(6), we can solve the following optimization problem

for transduction:

min
~w,~vn+1,...,~vn+m

1

2
‖~w‖2+

C1

n

n∑

i=1

max
ŷ∈Y

[∆(yi, ŷ)+ ~w·δΦi(ŷ)]

+ C2Γ(~vn+1, . . . , ~vn+m) +
C2µ

2m

n+m∑

j=n+1

‖~vj‖2

+
C2

m

n+m∑

j=n+1

{
max
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
2
~vj ·φj(ŷ)+

µ

4
‖φj(ŷ)‖2]

− max
ŷ∈Y

[~w·Φ(xj , ŷ)+
µ

2
~vj ·φj(ŷ)− µ

4
‖φj(ŷ)‖2]

}
. (13)

We have now obtained a computationally tractable
formulation of transductive structural SVM with side
constraints.

3.3 Comparison with Related Methods

Previous work on transductive structural SVMs [21]
assumes the correct outputs can be separated from
the incorrect outputs with large margin specified by
the loss ∆, generalizing the large-margin assumption
in binary classification. In our transductive structural
SVM formulation in Eq (13) above, we assume instead
prior knowledge constraints are satisfied by the unla-
beled data, so that good model parameters ~w should
have low constraint violation penalty value Γ. The un-
derlying transduction principles are quite different for
these two different approaches.

Our problem formulation, and the optimization pro-
cedure using CCCP below, are also closely related to
latent structural SVM [19]. Latent structural SVM
could be applied to enforce some of the constraints in
the experiments in Section 5. For example, in the cita-
tions segmentation task, there are constraints stating
that the first word in each citation belongs to the field
title, and the word ‘proceedings’ belongs to the field
journal. We can regard these constraints as observed
information y for an unlabeled example, and treat the
rest of the sequence as latent variable h. This allows us
to use the latent structural SVM algorithm for learn-
ing, by iteratively imputing the latent variables h and
re-optimizing the weight vector. However, this essen-
tially treats all the prior knowledge as hard constraints,
and could be problematic when the constraints can
be violated or when multiple constraints conflict with
each other. For example, the constraint stating that
segment boundary has to occur at punctuation marks
is violated quite often for the citations data, and accu-
racy will degrade if we enforce it as a hard constraint.
Our proposed transductive structural SVM is instead
based on soft constraints and allows the constraints to
be violated in the imputation (constraint-guided infer-
ence Eq (12)), with the auxiliary variables ~vj control-
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ling the costs of violation. This gives a more robust
approach of applying prior knowledge constraints.

3.4 Solving the Optimization Problem

As in the training of structural SVMs , we can solve
Eq (13) with the cutting plane algorithm [11] in con-
junction with CCCP. Since the overall algorithm is
very similar to previous approaches in [19], the details
are relegated to the Appendix. Here we just want to
briefly mention the inferences required for computing
the cutting planes for the terms in Eq (13). First we
need the usual loss-augmented inference for the loss
over labeled data:

ŷi = argmaxŷ∈Y [~w · Φ(xi, ŷ) + ∆(yi, ŷ)].

Second we need to compute cutting planes over the
constraint penalty Γ for each ~vj ,

∂

∂~vj
Γ(~vn+1,. . . ,~vn+m).

The difficulty of this computation depends on the
structure of Γ, but is usually quite simple for linear
equality or inequality constraints (Eqs (4) and (5)).
Finally, we need to compute cutting planes for the con-
vex and concave part of Eq (9):

ŷj=argmax
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
2
~vj ·φj(ŷ)+

µ

4
‖φj(ŷ)‖2] (14)

ȳj=argmax
ȳ∈Y

[~w·Φ(xj , ȳ)+
µ

2
~vj ·φj(ȳ)−µ

4
‖φj(ȳ)‖2]. (15)

The computation of these cuts for the quadratic dis-
tance term requires a more detailed discussion, which
we defer to Section 3.5.

To conclude this section, we can prove a lemma de-
scribing the quality of the solution returned by the
cutting plane algorithm:

Lemma 2. Suppose at the termination of the cutting
plane algorithm the solution ~w∗, ~v∗n+1, . . . , ~v

∗
n+m is re-

turned. Let

A =
1

m

n+m∑

j=n+1

{
max
ŷ∈Y

[~w∗ ·Φ(xj , ŷ) +
µ

4
‖φj(ŷ)− ~v∗j ‖2]

−max
ŷ∈Y

[~w∗ ·Φ(xj , ŷ)− µ

4
‖φj(ŷ)− ~v∗j ‖2]

}

B = Γ(~v∗n+1, . . . , ~v
∗
n+m).

Then the constraint violation penalty Γ on the unla-
beled data is bounded by:

Γ(yn+1, . . . , yn+m)≤2L

√
mA

µ
+B,

where yj = y(xj ; ~w
∗) are the argmax predictions.

Proof. Notice by Lemma 1, A is an upper bound of

1

m

n+m∑

j=n+1

µ

4
‖φ(y(xj ; ~w

∗))− ~v∗j ‖2.

Hence the squared 2-norm difference between all ~v∗j
and φ(y(xj ; ~w

∗)) (when they are stacked as a single
vector) is bounded by 4mA/µ. For a convex function
f with Lipschitz constant L, we have f(x) ≤ f(y) +
L‖y−x‖2. The result follows from this inequality and
our assumption that Γ is convex and L-Lipschitz.

The above lemma gives a bound on the quality of so-
lution (based on constraint violation Γ) on the unla-
beled data using the quantities A and B. The quan-
tities A and B are directly minimized by our algo-
rithm. In general when µ increases, the quadratic
distance between ~vj and φj(y(xj ; ~w)) (represented by
A) decreases. But at the same time the loss Γ over
~vn+1, . . . , ~vn+m (represented by B) would usually in-
crease. Thus to obtain a good bound we need to obtain
a careful trade-off between these two terms through
the choice of µ.

3.5 Inference for the Quadratic Penalty Term

Consider Eq (14), where we need to compute

ŷ=argmaxŷ∈Y [~w ·Φ(xj , ŷ)− µ
2
~vj ·φj(ŷ) +

µ

4
‖φj(ŷ)‖2].

Assuming φj(ŷ) decomposes into the same clique po-
tentials as Φ(xj , ŷ), the major remaining difficulty in
the above computation comes from the quadratic term
µ/4‖φj(ŷ)‖2. For some problems ‖φj(ŷ)‖2 is constant
for all output labels ŷ ∈ Y, so that this quadratic
term can be ignored. For example, this is true for the
class-balance constraints in the training of transduc-
tive SVM [10], and also true for the alternative formu-
lation of structural SVM for sequence/graph labeling
in Section 4. Another important case where inference
is simple is when the entries of φj(ŷ) are binary-valued
(0 or 1), e.g., the entries indicate whether the output ŷ
violates particular constraints or not. Denote the kth
dimension of φj(ŷ) as (φj(ŷ))k, we have

‖φj(ŷ)‖2 =
d∑

k=1

(φj(ŷ))2
k =

d∑

k=1

(φj(ŷ))k = ~1 · φj(ŷ).

Thus the squared norm ‖φj(ŷ)‖2 is effectively linear
under the binary-value assumption. These two spe-
cial cases already cover a lot of interesting applications
where prior knowledge constraints need to be incorpo-
rated. For the computation of the linear upper bound
for the concave term in Eq (15), the same technique
applies by symmetry.
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For other problems we can make use of double dynamic
programming to compute the argmax exactly, similar
to the computation of feature covariance in entropy
regularization [9]. Other possibilities include lineariz-
ing the quadratic term or performing local search to
find an approximate solution. However we will not
pursue these options in the current paper.

4 Alternative Formulation of
Structural SVM for Labeling

Our new method for incorporating soft constraints
on the outputs provides an interesting alternative for
training structural SVMs with labeled data. Consider
the problem of graph labeling with the loss function
∆ being the Hamming loss. Let x be an input graph,
xi be the ith node in x, and l(x) be the size of the
graph. Let y be its corresponding labeling, and yi the
label at the ith node. Let c be the size of the output
state space for each node. We can define the constraint
function φ : X × Y → Rl(x)×c as follows:

φ(x, y)k =

{
1 if k = ic+ j, yi = j
0 if k = ic+ j, yi 6= j

,

with 0 ≤ i < l(x), 0 ≤ j < c. Note that for this partic-
ular φ the output dimension is dependent on the size
of the input graph l(x), and can be different for differ-
ent examples. In the case of sequence labeling we can
think of φ(x, y) as indicator function over the trellis
graph. Define the constraint function Γ as follows:

Γ(~v1, . . . , ~vn) =
1

2

n∑

i=1

‖~vi − φ(xi, yi)‖1.

Note that this definition of Γ coincides with the Ham-
ming loss when ~vi is a valid output encoding of some
ŷ, i.e., ~vi = φ(xi, ŷ).

With the definition of φ and Γ as above, we can adopt
Eq (13) but drop the standard loss term for labeled
data completely to obtain the following:

min
~w,~v1,...,~vn

1

2
‖~w‖2 +

C2µ

2n

n∑

i=1

‖~vi‖2 + C2Γ(~v1, . . . , ~vn)

+
C2

n

n∑

i=1

{
max
ŷ∈Y

[~w·Φ(xi, ŷ)− µ

2
~vi ·φi(ŷ) +

µ

4
‖φi(ŷ)‖2]

− max
ŷ∈Y

[~w·Φ(xi, ŷ)+
µ

2
~vi ·φi(ŷ)−µ

4
‖φi(ŷ)‖2]

}
. (16)

The information from labels yi is now completely in-
corporated via Γ. This corresponds to an extreme case
where the side constraints are so strong that they com-
pletely determine the labels over the unlabeled data.

One particular consequence of the definition of φ(x, y)
is that given a fixed input x, the squared norm

‖φ(x, ŷ)‖2 is constant for all ŷ ∈ Y. Therefore the
inference for the quadratic penalty term in Eq (14)
can be computed exactly. Indeed the inference for this
particular definition of φ is almost the same as the
loss-augmented inference in the training of standard
structural SVM, with ∆(yi, ŷ) replaced by ~vi · φi(ŷ).

5 Experiments

In the following we evaluate our new transductive
structural SVM algorithm on two different tasks. In
the first evaluation we apply the algorithm to the prob-
lem of citation and advertisement segmentation to see
whether it can learn effectively from prior knowledge
constraints, and also compare its performance against
other state-of-art algorithms. In the second evalua-
tion we consider the task of handwriting recognition to
compare the performance of standard structural SVM
against our version outlined in Section 4.

5.1 Citation and Advertisement
Segmentation

We obtain the citations and Craigslist aparments ad-
vertisement datasets from the authors of [3] and fol-
lowed their tokenization procedure. The citations
dataset consists of 500 labeled references of com-
puter science research papers, and we split them into
300/100/100 for training/development/test sets as in
[3]. The task is to segment the references into fields
such as author, editor, title, and journal. The ad-
vertisement dataset consists of 300 manually labeled
Craigslist apartment listings, and we split them into
100/100/100 for training/development/testing. The
task is to segment the advertisement into fields such
as rent, size, restrictions, and features. In addition to
the labeled data, each of these two datasets are sup-
plemented by 1000 unlabeled examples collected in [6].

The prior knowledge constraints for these two datasets
are taken from Table 1 of [3] (the table is not repro-
duced here due to space limitation). There are three
main types of constraints. The first type is transi-
tion constraints, which restricts segment boundaries
to occur only at punctuation marks or newline. The
second type is word constraints, which states that cer-
tain words can only belong to certain fields. For exam-
ple, the words ‘kitchen’ and ‘parking’ have to belong
to the field features in the advertisement dataset. The
third type is non-local constraint which requires beam
search for inference. For example, in the citations data
each field is required to be a consecutive list of words,
and cannot occur more than once in a citation.

For an input sequence of length L, we can encode
these constraints into a vector φ(x, ŷ) of dimension 2L.
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There are L− 1 dimensions for L− 1 transitions, and
we set the ith dimension to 1 (and 0 otherwise) if there
is no transition of state or the ith token is a punctu-
ation. Similarly we have L dimensions for the word
rules, and we set the ith dimension to 1 if the ith label
belongs to the set of allowable labels of the ith word,
or the ith word is not a restricted word. Finally we
have one extra binary feature for the global constraint.
In this encoding φ(x, ŷ) is binary and inference for the
quadratic penalty term can be performed efficiently.
Here we pick the constrained penalty Γ to be:

Γ(~vn+1, . . . , ~vn+m) =
n+m∑

j=n+1

‖~vj −~1‖1.

We use the vector ~1 as the regression target as the
vector of all ‘1’s means all constraints are satisfied.

In the experiments below we report per-token accu-
racy of our transductive structural SVM (which we
denote as Γ-SSVM) with different labeled training set
sizes. We report the average accuracy over 5 bootstrap
samples of labeled data, using the same subsets as in
[3]. We aggregate the test set, development set, and
the 1000 unlabeled examples as our unlabeled data
{xn+1, . . . , xn+m} in our transductive structural SVM
formulation. The parameters C1, C2, µ are picked with
the developement set. In the transductive experiments
the weight vector ~w is initialized with the supervised
solution on the labeled data, while the auxiliary vec-
tors ~vj are initialized at ~1 (the regression target).

Table 1 shows the results for our transductive struc-
tural SVM against constraint-driven learning (CODL)
[3] and alternating projection (AP) [1] on labeled set
sizes of 5, 20 and 300. Our basic feature map Φ(x, y)
consists of a first-order token based HMM with emis-
sion and transition features. In Chang et al. [3] the
authors distinguished between two cases for CODL,
depending on whether the constraints are used in pre-
diction (I) or not (no I). In our transductive structural
SVM we also distinguish between two cases: when only
the basic HMM features are used in Φ(x, y) (no I), and
when extra features from the constraint feature map
φ(x, y) are added to Φ(x, y) (I). These extra features
include special transition features that recognize punc-
tuations, and a feature to score whether the global
constraint is satisfied.

From Table 1, we can first see that incorporating con-
straints over unlabeled data using Γ-SSVM improves
test set accuracy over the supervised baseline of stan-
dard structural SVM (sup), except for the full training
set. This is true for the basic feature map Φ(x, y) (no
I) and also true when extra features are added (I).
Not surprisingly using extra features has better ac-
curacies than just using basic features, but it is also

Table 1: Results (per-token accuracy) on the Citations
dataset for different labeled set size N . Bold denotes
the best performance in each category.

method \ N 5 20 300
CODL (I) 77.8 86.1 93.5
AP 75.6 85.4 94.8
Γ-SSVM (I) 76.8 86.0 95.1
sup (I) 72.6 82.3 95.1

CODL (no I) 71.0 79.4 88.2
Γ-SSVM (no I) 72.8 81.4 92.8
sup (no I) 69.4 79.3 92.7

interesting to note that the benefits from applying con-
straints over unlabeled data is also larger with extra
features (from 2-3% for no I to about 4% for I). With
300 labeled examples enforcing constraints over the
unlabeled data does not improve accuracies, as most
of the constraints are already satisfied.

Compared with the other methods, Γ-SSVM performs
uniformly better than CODL when only basic features
(no I) are used. When extra constraint features are
employed Γ-SSVM performs on par or better than
CODL except for sample size 5. Γ-SSVM also has
(slightly) better accuracies on all three labeled set sizes
than AP when extra features are used.

We next consider the advertisement segmentation
task. Here we consider labeled data sizes of 10, 25,
and 100 to match those used in previous published
works. In addition to CODL we compare against con-
ditional random fields with generalized expectation
(CRF+GE) [13] and the Bayesian measurement frame-
work (BM) [12]. Direct comparisons on this dataset is
more difficult as these works all used slightly different
tokenization and feature sets. For exmaple, CRF+GE
used ‘prototype’ features based on SVD [7] while BM
employed word clusterings features [2]. To make the
results more comparable we added the set of 33 extra
labeled features (word rules) in Table 1 of [13] (used
by both CRF+GE and BM).

Table 2 shows the per-token accuracy of different algo-
rithms on this task. Again we can see marked improve-
ment of Γ-SSVM from the supervised baseline except
the full labeled data set size (100). The improvement
is particularly large for the small sample size of 10.
When only basic features are used (no I), Γ-SSVM has
very similar accuracy when compared to CODL.

When extra features are used (I), the probabilistic ap-
proaches (CRF+GE and BM) seem to be performing
slightly better than Γ-SSVM. This could be due to the
SVD or word clustering features used by these mod-
els, or to the better ability to maintain uncertainty
over violated constraints through conditional distribu-

1373



Transductive Structural SVMs with Prior Knowledge

Table 2: Results (per-token accuracy) on the Adver-
tisement dataset for different labeled set size N . Bold
denotes the best performance in each category.

method \ N 10 25 100
CODL (I) 74.7 78.5 81.7
CRF + GE 72.6 76.7 80.1
BM 71.4 76.5 82.5
Γ-SSVM 72.0 75.9 80.5
sup (I) 65.2 74.1 80.6

CODL (no I) 70.9 74.8 78.6
Γ-SSVM (no I) 71.2 75.3 78.6
sup (no I) 63.1 72.3 78.1

tions. Indeed compared with the citations dataset,
the constraints used in the advertisement data are
more frequently violated by the true labels. Never-
theless, our Γ-SSVM can still learn from constraints
over unlabeled data and achieve comparable accura-
cies. On the other hand, CODL with constraints out-
performs all the other models on small sample sizes.
This could be due to the application of CODL’s ‘soft’
constraints, which considers the minimum number of
swapping moves (hamming distance) required to sat-
isfy a constraint.

As a summary, Γ-SSVM is an effective method for
transductive learning with unlabeled data, and it
achieves prediction accuracies on par with other state-
of-art algorithms on these two segmentation tasks. As
with other large-margin learning methods, one ma-
jor strength of Γ-SSVM is that during learning only
point estimate inference is required (loss-augmented,
constraint-guided, etc). This avoids the use of n-best
list approximation or MCMC required for the proba-
bilistic models (e.g. Gibbs sampling in [1] for non-local
constraints), and is especially valuable when the cor-
responding inference over constraints is difficult.

5.2 Handwriting Recognition

We also perform experiments on the alternative formu-
lation of structural SVM for sequence labeling outlined
in Section 4. We use the OCR data from [17] and use a
first-order token-based HMM as features. From Table
3 we can see that Γ-SSVM has almost identical per-
formance when compared against standard structural
SVM (∆-SSVM) over 10-fold cross validation. This is
despite the fact we initialize the weights with ~w(0) = ~0
and the auxiliary vectors ~vj = φj(y(xj ; ~w

(0))). This
is interesting because there are parameters C2 and µ
(C2 = 6260 and µ = 1 in our case) that can get close
to the supervised solution, even when the transduc-
tive training objective is non-convex. Our transduc-
tive structural SVM algorithm is capable of learning
a model comparable to a supervised model when the

Table 3: Results on OCR dataset. Γ-SSVM has similar
accuracy compared to standard structural SVM (∆-
SSVM). The number in bracket is the standard error
of 10CV.

Per-token Accuracy
∆-SSVM 86.2 (0.8)
Γ-SSVM 85.5 (0.6)

constraints are ‘very strong’ (completely define the la-
bels in this case).

6 Conclusions and Future Work

As future directions we are interested in further in-
vestigating the different types of DC bounds over the
quadratic distance. The tightness of these bounds have
a direct impact on how well we are able to minimize the
constraint violation penalty Γ. We are also interested
in investigating the use of annealing for the parameter
µ, to see if we could obtain local minima with better
solution objectives with such a strategy. On the other
hand, our experiments on the OCR task suggests the
roles of the supervised loss ∆ on labeled data and the
constraint penalty Γ are interchangeable, and there are
potential new ways to integrate their roles in learning.

In conclusion, we have proposed a new formulation
of transductive structural SVM that learns by enforc-
ing prior knowledge constraints over unlabeled data.
We decomposed the constraint violation penalty into
the sum of a quadratic distance term and a simpli-
fied penalty term involving auxiliary variables, and de-
scribed an efficient algorithm for solving the associated
optimization problem. It achieves similar prediction
accuracies on two segmentation tasks when compared
against other state-of-art semi-supervised algorithms
that utilizes constraints.
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APPENDIX - SUPPLEMENTARY
MATERIALS

Cutting Plane Algorithm for Solving Eq (13)

By introducing one slack variable for each loss term,
we can rewrite Eq (13) as:

min
~w,~vn+1,...,~vn+m

1

2
‖~w‖2+C2µ

2m

n+m∑

j=n+1

‖~vj‖2+C1ξ1+C2ξ2+C2ξ3

−C2

m

n+m∑

j=n+1

max
ŷ∈Y

[~w·Φ(xj , ŷ)+
µ

2
~vj ·φj(ŷ)−µ

4
‖φj(ŷ)‖2]

(17)

ξ1 ≥
1

n

n∑

i=1

max
ŷ∈Y

[∆(yi, ŷ) + ~w · δΦi(ŷ)] (18)

ξ2≥
1

m

n+m∑

j=n+1

max
ŷ∈Y

[~w·Φ(xj , ŷ)−µ
2
~vj ·φj(ŷ)+

µ

4
‖φj(ŷ)‖2]

(19)

ξ3 ≥ Γ(~vn+1, . . . , ~vn+m) (20)

Here we can apply the CCCP algorithm [20] to tackle
the concave term, by constructing a linear upper
bound for it. Let ~w be the current solution (a fixed
weight vector). Define

~q=
1

m

n+m∑

j=n+1

Φ(xj , ȳj)), ~pj = φj(ȳj), (21)

with ȳj=argmax
ŷ∈Y

[~w·Φ(xj , ŷ)+ µ
2~vj ·φj(ŷ)− µ

4‖φj(ŷ)‖2].

The upper bounds ~q, ~pj are obtained through
constraint-guided inference. Replacing the concave
term with these linear subgradients, the program:

min
~w,~vn+1,...,~vn+m

1

2
‖~w‖2+

C2µ

2m

n+m∑

j=n+1

‖~vj‖2+C1ξ1+C2ξ2

+ C2ξ3 − C2 ~w·~q−
C2µ

2m

n+m∑

j=n+1

~vi ·~pj+
C2µ

4m

n+m∑

j=n+1

‖~pj‖2

(22)

with the same linear constraints over ξ1, ξ2, ξ3 as in Eq
(17) is a global convex upper bound of Eq (17). Solving
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this convex program for a new ~w′ (and corresponding
~v′j) give a lower objective than the current solution
~w in Eq (17). Alternating between upper bound con-
struction with ~q, ~pj and solving for ~w with this CCCP
algorithm will lead to convergence to a local minima
or saddle point [20].

We are going to solve the convex program of Eq (22)
in the dual. The dual of Eq (22) can be written as:

max
~α≥0,~β≥0,~γ≥0

T∑

t=1

αtc
(t)+

T∑

t=1

βtd
(t)+

T∑

t=1

γte
(t)

− 1

2
‖~w(~α, ~β)‖2 − C2µ

2m
‖~vj(~β,~γ)‖2

s.t.

T∑

t=1

αt = C1,

T∑

t=1

βt = C2,

T∑

t=1

γt = C2,

(23)

where

~w(~α, ~β) =
T∑

t=1

αt~g
(t) +

T∑

t=1

βt~h
(t) + C2~q (24)

~vj(~β,~γ) =
m

C2µ

(
1

m

T∑

t=1

βt~h
(t)
j +

T∑

t=1

γt ~f
(t)
j +

C2µ

2m
~pj

)
.

(25)

Here we use t to index the cuts added during iteration t
of the cutting plane algorithm, up to the T th iteration.

To complete the description of the algorithm, the cut-
ting planes can be computed as follows. For ξ1 we
have

c(t) =
1

n

n∑

i=1

∆(yi, ŷi), ~g(t) =− 1

n

n∑

i=1

δΦi(ŷi), (26)

where ŷi = argmaxŷ∈Y [~w(t) · Φ(xi, ŷ) + ∆(yi, ŷ)].

For ξ2 we have

d(t)=
µ

4

n+m∑

j=n+1

‖φj(ŷj)‖2,

~h(t)=
−1

m

n+m∑

j=n+1

Φ(xj , ŷj), ~h
(t)
j =

µ

2
φj(ŷj),

(27)

where ŷj=argmax
ŷ∈Y

[~w(t)·Φ(xj , ŷ)−µ2~v
(t)
j ·φj(ŷ)+µ

4‖φj(ŷ)‖2].

For ξ3 we have

~f
(t)
j ∈

∂

∂~vj
Γ(~v

(t)
n+1,. . . ,~v

(t)
n+m),

e(t) =Γ(~v
(t)
n+1,. . . ,~v

(t)
n+m)−

n+m∑

j=n+1

~v
(t)
i · ~f

(t)
j .

(28)

Algorithm 1 Cutting Plane Procedure for Transduc-
tive Structural SVM with Constraints
1: Input: labeled data {(x1, y1), . . . , (xn, yn)}, unla-

beled data {xn+1, . . . , xn+m}, C1, C2, µ, ε1, ε2, ε3
2: Initialize ~w(0), ~v

(0)
j . Set t← 0, D ←∞

3: repeat
4: Dlast ← D
5: Compute ~q, ~pj using Eq (21)
6: while ξ1−ε1 ≥ RHS(18) or ξ2−ε2 ≥ RHS(19)

or ξ3 − ε3 ≥ RHS(20) do
7: Compute cutting plane information c(t), d(t),

e(t), ~g(t), ~h(t), ~h
(t)
j , ~f

(t)
j using Eqs (26) to (28).

8: Solve QP in Eq (23). Set D to dual objective.
9: t← t+ 1

10: Update ~w(t), ~v
(t)
j by Eqs (24) and (25)

11: end while
12: until Dlast −D < ε
13: Return ~w(t), ~v

(t)
n+1, . . . , ~v

(t)
n+m

The whole algorithm is summarized in Algorithm 1.
The terms RHS(18), RHS(19), RHS(20) in the guard
of the inner while loop refer to the right hand sides of
Eqs (18) to (20). The outer loop stops when the de-
crease in objective between successive iteration is lower
than some threshold ε. Here we set ε to be a function
of the other parameters, with ε = C1ε1 +C2µε2 +C2ε3.
The weight vector ~w and auxiliary vectors ~vj can be
initialized in an application dependent manner.

One final comment with the above algorithm is on the
storage requirement for the auxiliary vectors ~vj , espe-
cially when φ is high-dimensional (e.g., prior knowl-
edge constraints over a n-gram frequencies). We do
not need to store all ~vj explicitly as we are solving the
program in the dual. The ~vj ’s can be computed on the
fly whenever we need to generate a new cutting plane.
From Eq (25) we can see ~vj is a linear combination of
~h

(t)
j , ~f

(t)
j and ~pj . While ~h

(t)
j = µ/2φj(ŷ) and ~pj =

φj(ȳj) are sparse (proportion to length/size of xj),
~f

(t)
j could be dense, especially for constraints involv-

ing sample averages (e.g., Eq (5)). However, for con-
straints involving sample averages like 1/m

∑n+m
j=n+1 ~vj ,

the subgradients ~f
(t)
j computed in Eq (28) is actually

the same for all examples xj due to symmetry. Hence
the cutting plane generated can be shared for all ex-
amples xj for this type of sample-based constraints.
With the cleaning up of inactive cuts, the additional
storage requirement is modest when compared to the
cutting plane algorithm for standard structural SVMs.
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