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Abstract

Kernel Support Vector Machine delivers
state-of-the-art results in non-linear classi-
fication, but the need to maintain a large
number of support vectors poses a challenge
in large scale training and testing. In con-
trast, linear SVM is much more scalable even
on limited computing recourses (e.g. daily
life PCs), but the learned model cannot cap-
ture non-linear concepts. To scale up kernel
SVM on limited resources, we propose a low-
rank linearization approach that transforms
a non-linear SVM to a linear one via a novel,
approximate empirical kernel map comput-
ed from efficient low-rank approximation of
kernel matrices. We call it LLSVM (Low-
rank Linearized SVM). We theoretically s-
tudy the gap between the solutions of the op-
timal and approximate kernel map, which is
used in turn to provide important guidance
on the sampling based kernel approximation-
s. Our algorithm inherits high efficiency of
linear SVMs and rich repesentability of ker-
nel classifiers. Evaluation against large-scale
linear and kernel SVMs on several truly large
data sets shows that the proposed method
achieves a better tradeoff between scalability
and model representability.
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1 Introduction

Support Vector Machine (SVM) (Cortes and Vap-
nik, 1995) as the state-of-the-art classification algo-
rithm has been widely applied in various scientific do-
mains. The use of kernels allows the input samples
to be mapped to a Reproducing Kernel Hilbert S-
pace (RKHS), which is crucial to solving linearly non-
separable problems. While kernel SVMs deliver the
state-of-the-art results, the need to manipulate the k-
ernel matrix imposes significant computational bottle-
neck, making it difficult to scale up on large data.

Many methods have been proposed for scaling up k-
ernel SVM training: from the early work on solving
the problem exactly through decomposition methods
(Platt 1998; Chang et al., 2001), to the latter approx-
imation algorithms using core vector set (Tsang et al.,
2005) or incremental learning methods (Bordes et al.,
(2005)), to the more recent parallel computing tech-
niques (Graf et al., 2005; Zhu et al., 2009). Howev-
er, advances in kernel SVM training are still behind
the steady growth of volumes of practical data sets.
The latter leads to the curse of kernelization (Wang et
al., 2010), where the number of support vectors that
have to be explicitly maintained grows linearly with
the sample size on noisy data (Steinwart, 2003). This
induces huge memory cost and computational burden
on model training. For example, on an OCR task with
8 million training samples, training a kernel SVM on
512 processors via parallel computing technique (Zhu
et al., 2009) still takes 2 days’ running time to finish.
Moreover, the resulting model consists of hundreds of
thousands of support vectors which brings in addition-
al time and space burden in the prediction stage.

On the other hand, training linear SVMs on large da-
ta has regained tremendous attention recently. A key
property of linear SVM is that the model weight can be
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explicitly computed without having to maintain a large
number of support vectors. A series of linear SVM
solvers with both low memory and computational costs
has been developed, including the stochastic gradient
descent method (e.g. Zhang 2004, Shalev-Shwartz et
al., 2007), the cutting plane method (Joachims, 2006),
and the dual coordinate descent method (Hsieh et al.,
2008). The linear time complexity of these algorithms,
together with careful implementation and data man-
agement (Yu et al., 2011, Chang et al., 2011), allows
linear SVM training on millions of samples in a matter
of minutes on a regular PC.

Inspired by these successes, very recently, researchers
began to explore the possibility of applying linear SVM
solvers for efficient kernel SVM training. For example,
Chang et al., (2010) and Sonnenburg et al., (2010)
proposed to directly pre-compute the kernel mapping
for training examples and then apply a linear SVM
on them. While explicitly calculating the kernel map
brings the benefits of computational efficiency in linear
SVM, it only applies to certain types of kernels (e.g.
low-degree polynomial kernel, string kernel) in which
the dimensionality of the mapped feature space is low.
In case of the dimensionality being blown up (e.g. us-
ing high-degree polynomial kernel, or the input space
is already high-dimensional or dense), such methods
lose efficiency. Rahimi and Recht (2007) proposed a
novel way to approximate kernel map by using ran-
domized features; however their methods are designed
specifically for shift invariant kernels.

In this paper we pursue a general approach toward-
s linearizing kernel SVM for large scale problems.
This is achieved by efficient low-rank approximation
of the kernel matrix, where the low-rank factors can
be deemed as providing a novel, approximate empir-
ical kernel map that explicitly transforms the kernel
SVM into a linear space; the resultant linear SVM can
then be solved efficiently using state-of-the-art linear
solvers. This framework has several desirable proper-
ties. First, it can be applied to any (nonlinear) SVM
variations and any PSD kernel; second, both the di-
mension of the approximate kernel map and the num-
ber of “basis” in the decision function can be freely
controlled by the user, therefore guaranteeing efficien-
t training and testing; third, theoretical bounds can
established on the approximation, which in turn pro-
vides important guidance on sampling based low-rank
approximation; last and most important, our approach
inherits the rich repesentability of kernel SVM as well
as the high efficiency of linear SVM, and ideally can
be applied to arbitrarily large problems with limited
computing resources via advanced incremental learn-
ing techniques (Yu et al., 2010).

The proposed linearization framework opens the door
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of tackling large scale kernel SVM by exploiting both
theoretic and algorithmic advances in two rapidly de-
veloping areas: low-rank matrix decomposition and
linear SVM optimization. Our preliminary empirical
results have demonstrated that this is a promising di-
rection towards building efficient yet accurate nonlin-
ear SVM solvers on large amount of data.

The rest of this paper is organized as follows. Section 2
discusses how to transform a non-linear SVM into a
linear one via matrix decomposition. In Section 3, we
propose to apply Nystrom low-rank approximation for
efficient linearization of a non-linear SVM, and pro-
vide theoretical error analysis. In Section 4, we dis-
cuss related methods including Nystrom method (Sec-
tion 4.1), reduced SVM (Section 4.2), and dimension
reduction (Section 4.3). Section 5 reports evaluation
results. The last section concludes the paper.

2 Transforming Non-linear SVM into
Linear SVM

In this section, we show that a nonlinear SVM can be
cast exactly as a linear SVM via symmetric decompo-
sition of kernel matrices. Suppose we are given a set of
training pairs (x;,v;), where x; € R?!’s are concate-
nated as rows in the n x d training data matrix X, and
y; € £1’s are stored in the training label y, € R**1,
Similarly we have m testing samples in X, € R™*¢,
Assume we use a positive semi-definite (PSD) kernel
function k(x;,x;) = (¥ (), ¥(-)) : R{xR? — R, where
1(x;) is the associated mapping function that implic-
itly maps the data point from the input space to the
feature space. Define the kernel matrix on the train-
KTT KT‘E :|
KCT KEE ’
where K., € R™*"™ is the kernel matrix defined on X,.,
K.. € R™*™ ig defined on X., and K., € R™*" is
defined on X, and X,. Training a kernel SVM is to
find the classifier f(x) = sign(w ' (x) 4+ b) by solving
the optimization

ing and testing data in blocks as K = {

min
w,§,b

sliwl? + ¢3¢ (1)

yi(wp(x) +b) >1-¢&;,

where C' > 0 is the regularization parameter. In the
following we discuss how to transform the non-linear
(kernel) SVM (1) into a linear SVM via decomposition
of the PSD kernel matrix.

Proposition 1 Given training data X, and label y .,
and test data X.. A kernel SVM (1) trained on X,,
yr, and tested on X, is equivalent to a linear SVM
trained on F,., y, and tested on F., where

K=| 5 |(F0 ¥ @)
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is any decomposition of the psd kernel matriz K e-
valuated on (X,,X.), and the factor F, € R"*P and
F. € R"™*P can be deemed as “virtual samples” whose
dimensionality p is the rank of K.

Proof 1 The dual of the kernel SVM optimization (1)
can be written as

rrgn 10T Qra—>Y q (3)
st. 0<a; <C)> auy;i =0
Qrr =Ky © (yry,)),
where « is the Lagrangian multipliers and ©® is the

entry-wise product between matrices. The prediction
on the testing data can be written as

ye:Ker’(aG)yr)' (4)

— F"’
Let F = F,

Assume we train a linear SVM using F,. and y,, with
the primal form

, and F; be the ith column in FT.

min
W.Eib

sIwl?+C Y€, (5)
yi(WIF; +b) >1-¢

The dual can then be written as

Inain %a—rér'ra - Zz 72 (6)
st. 0<@; <C > oy =

Q'rr = (FTF:) @ (Y7Y7T)
Then the prediction on F. is
§e = FeTFT (@oyr) (7)

Comparing (3) and (6), we can see these two problems
are equivalent and lead to the identical optimal solution
a* =a* since F,F] =K, (2). Plugging the optimal
solutions into (4) and (7), and noting the fact F] F, =
K., (2), we can see that the prediction in (4) and (7)
are identical, i.e., Yo = y.. Namely, the kernel SVM
(1) and the linear SVM (5) are equivalent.

Proposition 1 shows that any kernel SVM can be cast
as an equivalent linear SVM by decomposition of the
kernel matrix K = FF' (2), where F serves as an
empirical kernel map or wvirtual samples. The positive
semi-definiteness of the kernel matrix guarantees that
decomposition (2) always exists. When only training
data is used, the decomposition

K, =F.Fl (8)

allows us to recover the Lagrangian multipliers in the
original nonlinear decision function (3). In the remain-
der of the paper, we will be mostly interested in this
case (8).
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Motivated by this observation, we consider learning
large scale kernel SVM in two stages: first, transform
it to a linear SVM using kernel eigenvalue decomposi-
tion; second, solve a linear SVM efficiently. Obviously,
the key to the success of such linearization is an effi-
cient decomposition of the PSD kernel matrix to ob-
tain the empirical kernel map F,. (8). How to efficient-
ly perform the decomposition and how it would affect
the quality of the resultant classifier are the questions
we will answer in the next section.

3 SVM Low-rank Linearization

The kernel matrix is the key building block of ker-
nel methods: its entries recover the inner product
of the samples in the kernel induced feature space.
This avoids explicit computation of the mapping 1 (x)
(which can be potentially infinite dimensional) but in-
stead one only needs to perform kernel evaluations in
the input space. Such “kernel trick” allows the mod-
el to capture highly non-linear classification concepts,
but at the cost of manipulating the n x n kernel ma-
trix. In comparison, linear SVM assumes a simple and
explicit mapping (i.e., ¥(x) = x) which renders great
potential computational efficiency.

Proposition 1 provides a new perspective on the kernel
map embodied through the empirical kernel matrix K.
It shows that any exact decomposition of the kernel
matrix can preserve the dot products among feature
induced kernel mapping ¢ (x;)’s via a new, empirical
kernel map F;’s, as

Kij = (v(xi),¥(x;)) = (Fi, F).
This is the key to transforming a non-linear SVM in-
to an explicit linear counterpart. It bridges the gap
between non-linear and linear SVMs and opens the
possibility of training large scale non-linear SVM by
advanced linear solvers.

The central question therefore is to find a suitable de-
composition (8). Given an n x n kernel matrix on the
training set, with the eigenvalue decomposition

K, = U,AUS (9)

where U, € R™ ™ contain orthogonal eigenvectors
such that U,TU,« =1I,xn, and A, is a diagonal matrix
whose diagonal entries are eigenvalues A, (i7) = \; in
an descending order. Then the empirical kernel map
on the training data (8) can be chosen as

F, = U, A2 (10)

Theoretically, the eigenvalue decomposition provides
the optimal rank-k approximation of the kernel matrix

n
min K, Rz = 3 2,
rank(K,,)=k i=k+1

(11)
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where I~(M is the rank-k approximated matrix. In oth-
er words, given a dimension, k, the feature map

FH = UF (AM)1/2 (12)

composed of top eigenvectors/values is the optimal s-
ince the inner products it recovers is the closest to
K., among all rank-k kernel maps, which equals sum
of squared minimum n—% eigenvalues as shown in (11).

However, exact computation of the top k eigenvectors
requires O(n%k) time and O(n?) space, which is not
suitable for large problems. So we seek an approx-
imate decomposition here. We are interested in the
Nytstrom method that has gained great popularity re-
cently in scaling up kernel based algorithms (Willams
and Seeger, 2001; Kumar et al., 2009). Given a set of
training samples X, and the kernel matrix K, the
Nystrom method chooses a subset of k samples Z and
provides a rank-k approximation of the kernel matrix
as

Krr = Krz Kz_lKT

z Tz

(13)

where K,, € R"** is the kernel matrix on X, and
X,, and K,, € R**F is the kernel matrix on Z.

Next we show how to approximate the optimal ker-
nel map (12) using the Nystrém low-rank approxima-
tion (13). Let the eigenvalue decomposition of K, be
U.A.U], then (13) can be written as

Rrr = ﬁrf‘:

F, = K, UA Y2 (14)
As can be seen, the rank-k approximation by the Nys-
trém method (13) provides a natural approximation
to the optimal kernel map F, (12). To see this, con-
sider the extreme case where the landmark set Z in
the Nystrom method is chosen as the whole data set:
then U, - U,, A, — A, K,, - K,, and as a result
we have, when |Z| — n

K,.U.A;'/? K, U.A; /2
U,A, U U A2

U, A2

Namely, 1~7‘7> — F,.

Extensive work has been devoted to bound Nytstrom’s
approximation error in the form of the Frobenius norm
(Drineas and Mahoney, 2005; Kumar et al., 2009)

gf = HK'r'r - Rr'r

15
F ) ( )
or the spectral norm (Cortes et al., 2010)

52 = HK’I‘T - Rrr
2

(16)
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Usually these bounds are expressed as the sum of two
terms: one is the rank-k approximation error via the
optimal rank-k approximation (i.e. standard eigenval-
ue decomposition), and the other is the slackness of the
approximation to the optimal rank-%k approximation.

Next we analyze how Nystrém low-rank approximation
affects quality of the resultant SVM classifier. More
specifically, we focus on the gap between the SVM
model weights computed via the optimal and the Nys-
trom based kernel maps.

Theorem 1 Let w and w’ be the solutions of the
problem (1) by wusing the optimal and approximate

rank-k empirical kernel maps, FY and FY in (12)
and (14), respectively. Then ||w — w'||? is bounded by

2023 [ke; n (Altr(A) + keatr(Agh))(eF +tr(A§k))1/4)]

where A € RFxk

entries A;; =

is a diagonal matriz with

1 1 3 1 —
maX(A“ + N,]\\; Aii)7 A =

diag(A1, ..., \n) and A= diag(A1, ..., \) are the ezac-
t and approximate (by Nystrom method) eigenvalues
(sorted in descending order) of the kernel matriz,

n 1/2
ef = ( > Af) + &, (17)

ikt 1
ea = Agt1 + &, (18)

and & and & are known error bounds ((15) and (16))
on the gap between the Nystrém low-rank approzima-
tion and the original kernel matriz; p is a kernel de-
pendent constant.

Proof is in appendix. Theorem 1 shows the gap be-
tween solutions of the approximate and optimal rank-%
kernel map is bounded by Nystrom low-rank approxi-
mation error. The better the low-rank approximation,
the better the potential classification performance.

We are therefore interested in an accurate low-rank
approximation. The performance of Nystrom method
depends crucially on the sampling scheme. There are
various choices: the column-norm sampling (Drineas
et al., 2005) requires O(n?) time and is expensive; the
ensemble Nystrém method (Kumar et al., 2010) is suit-
ed for parallel processing but not on limited resources;
random sampling is quite efficient but less accurate;
the k-means based sampling (Zhang et al., 2008) sig-
nificantly outperforms random sampling at the cost of
reasonable amount of additional computations. In our
experiments, we adopted a fast approximate k-means
sampling using only a few iterations (which does not
necessarily converge), which requires only linear time
and leads to desired classification accuracy.
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3.1 Algorithm and Implementation

After linearizing the kernel SVM, we apply the Selec-
tive Block Minimization framework (Chang and Ron,
2011) to handle the resultant linear SVM on large da-
ta sets that do not fit in main memory. The data is
chunked into non-overlapping subsets and sequentially
loaded in memory. For data in memory, the dual co-
ordinate descent algorithm (Hsieh et al., 2008) is used
to incrementally update the linear model and the dual
variables. After the sub-problem (loosely) converges,
a fixed portion p% of the less informative examples is
removed and the next subset will be loaded. This pro-
cedure repeats until the stoping criteria is met (e.g.
maximal passes of data). It has been shown that SBM
will converge to the globally optimal SVM solution.

We name our approach LLSVM (low-rank linearized
SVM) and summarize it in Algorithm 1. Our method
has a constant space and linear time complexity in
terms of the number of training examples. Testing is
also quite efficient (see Table 4 for details).

Algorithm 1 LLSVM Algorithm.
Training Stage
Input: training data X,, label y,, kernel &, regu-
larization parameter C, landmark set size k.
Output: model w € R¥*!, mapping M € RF**,
select k landmark points Z from X, ;
compute K, and eigendecomposition UZAZUZT;.
compute M = UzAz_l/z.
: compute K., train linear SVM on K,.,M by SBM.
Prediction Stage
Input: test data X., model w, mapping matrix M.
Output: predicted labels y,

=W o

1: compute K.,;
2: predict by y, = w' K., M.

4 Connections with Other Work

4.1 Nystrom Related Methods

The Nystrom method has been very popular in scal-
ing up kernel based algorithms. Examples include the
computation of large kernel matrix inverse (Williams
et al., 2004), the eigenvectors of dominant eigenvalues
(Fowlkes et al., 2005) and manifold learning (Kumar
et al., 2008; Zhang et al., 2010). Recently, Cortes et
al., (2010) study the impact of low-rank approximation
of kernel matrix on kernel based classifiers (kernel re-
gression, graph-based algorithms, and SVM), and also
in the specific context of Nystrom low-rank approx-
imation. Their theoretical analysis is based on the
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following empirical kernel map

k(x1, x)
2 =ty | O (19)
(. )
where K! denotes the pseudo-inverse. As can be

seen, this is equivalent to using (K)'/?K = K!/2
as virtual training samples in a linear SVM. Since
K'/2 = UAY2UT is an n x n matrix, this requires
n X n space and may not directly improve the com-
putational efficiency of SVM training. Similar prob-
lem appears when a low-rank approximated kernel
matrix is considered, i.e., the resultant virtual sam-
ples K1/2 = UAY2UT is still n x n matrix, where
U € R™** are the approximate eigenvectors and
A € RF** are approximate eigenvalues. In compar-
ison, the empirical kernel map we proposed (14) has
a much lower dimensionality n X k (k < n) and will
directly benefit SVM training computationally.

Early work (Fine et al., 2001) on SVM training has
studied using the low-rank approximation method (S-
mola and Schélkopf, 2000; Willams and Seeger, 2001)
to speed up the inverse of the kernel matrix for the
inner solver - the interior point method. Instead, our
approach applies the low-rank approximation to trans-
fer a non-linear SVM into a linear one that prevents
the expensive matrix manipulation at the first place.
Moreover, we study the impact of using such approxi-
mation on the quality of the resulting model.

4.2 Reduced SVM

Lee and Mangasarian (2000), Lin and Lin (2003) found
that non-linear SVMs can be (approximately) trans-
ferred to linear SVMs in the context of Reduced SVM,
where the goal is to reduce the number of support
vectors in the learned model. To achieve this, the de-
cision function is restricted to be spanned by only a
small subset of samples Z,

w = Z Yiaip(xX;). (20)

I€EZ

After adding a penalty term b? in the primal objective
the reduced SVM optimization problem is written as
min 5 (us Koops) + 30 + 0L, &6 (21)

s.t. K.y, +by.>e—¢

where u, =y. ® ., ¥y, and «, are the training labels
and Lagrangian multipliers corresponding to the sub-
set Z, K., is the kernel matrix evaluated on Z, and
K., is the kernel matrix between the training data X,
and the subset Z, and e is a vector of all 1’s.
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Due to the Hessian matrix K, it is not easy to solve
the QP (21) for large problems. Therefore, Lee and
Mangasarian (2000) proposed to remove K., from (21)
which reduces it to a linear SVM and can therefore
be solved efficiently. However, empirically, removing
K. . will lead to inferior performance than solving (21)
exactly. In the following, we show that an exact so-
lution can be obtained efficiently using our low-rank
linearization approach.

Proposition 2 Consider the reduced SVM (21). Per-
form eigenvalue decomposition K., = U,A,UT.
Then (21) can be solved exactly by a linear SVM using
KTZUZA;U2 as training samples. Testing on X, can
be performed by applying the learned linear model on
K..U.A;'2

Proof 2 Given the eigenvalue decomposition of K.,
define a linear transform

B. = Ai/QUjﬂz' (22)
Notice that A, is a diagonal matrixz whose diagonal
entries are the eigenvalues. If the eigenvalues are all
strictly positive, then A, is invertible. By noting that
UZUZT = UZTUZ = I, we can invert the above trans-
form as

p. = U, A;Y?3,. (23)

Plugging (22) and (23) into (21), we arrive at the fol-
lowing problem

min (24)

sllB:? + 50* + C 30, &
st (KU A28 + by, >e—¢

which is a linear SVM trained on KTZUZA;UQ.

Using (20) the prediction of RSVM (21) on testing set
will be K p,. Since p, = UZA;UQBZ (23), the pre-
diction will be equivalent to (KeZUZA;1/2),Bz. Name-
ly, it can be deemed as applying the learned model 3,
on “transformed” test samples KeZUZAz_l/Q.

If Z has no duplicate samples, the kernel matriz K,
will be positive definite for Gaussian kernel (Micchelli
1986). Namely eigenvalues in A, are strictly positive
and exact solution can be recovered. In case other k-
ernel function is adopted and zero eigenvalues might
appear, one can simply replace diminishing eigenval-
ues with a small constant when using (23).

Proposition 2 provides a new way for efficiently solving
RSVM by transforming it to an equivalent linear SVM.
In case the sub-kernel matrix K, is strictly positive
definite, the solution is exact, and does not lose any
information in comparison with those used by Lee and
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Table 1: The empirical kernel map used in different
methods (|Z] =k < n).

Method kernel map  dimension
(Cortes et al., 2010) K;/? nxn
RSVM K,. nxk
LLSVM (ours) KTZUZAZ_U2 nxk

Mangasarian (2000) and Lin and Lin (2003). Anoth-
er advantage is that our method applies to any SVM
formulation using PSD kernel, while the RSVM is de-
signed for a certain SVM variant.

As can be seen, the new way for solving the RSVM
(Proposition 2) has the same form as the low-rank lin-
earized SVM proposed in Section 3. The important
consequence of this connection is that the tremendous
work on landmark selection in the Nystrom method
(Williams and Seeger, 2001; Zhang and Kwok, 2008)
method can be borrowed directly for efficient RSVM
solutions. In comparison, the original RSVM simply
uses random sampling, or couples the subset selection
with sparse SVM training which can be quite expen-
sive on large data sets (Wu et al., 2006).

Another interesting observation about RSVM is that
after dropping the Hessian K, in (21), the resultant
problem is equivalent to a linear SVM trained on K.,
namely, each training sample is re-expressed by its sim-
ilarity with & landmark points in Z. In Table 1, we
list the empirical kernel maps (and their dimensions)
used in related methods (Cortes et al., 2010; Lee and
Mangasarian, 2000; Lin and Lin, 2003).

4.3 Non-linear Dimension Reduction

Our kernel map (11) can be deemed as approximately
projecting samples onto principal components as in K-
ernel PCA (Scholkopf et al., 1998). However, instead
of using KPCA for pre-processing, our contribution is
on rigorously studying the linearization of kernel SVM,
performing theoretical analysis and designing large s-
cale solvers, in which we believe as a new contribution
to bridge non-linear and linear SVMs via kernel eigen-
value decompositions.

5 Experiments

This section reports evaluations on the performance of
the proposed method and competing algorithms.

Competing algorithms:

e SBM: the state-of-art linear SVM solver when da-
ta cannot fit into memory (Chang and Ron, 2011);
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Table 2: Summary of the data sets used in our evaluations.

dataset training size testing size dimension number of classes file size
IJCNN 49,990 91,701 22 2 20.9M
webspam 280,000 70,000 254 2 327TM
covType 164,810 116,202 54 2 68.1M
Ncheckerboard 800,000 20,000 2 2 22.7TM
mnist8m-b 8,000,000 100,000 784 2 18G
Table 3: Training time (in seconds/hours) and test error rate of different algorithms (exclude I/O time; -’ marks
the algorithms cannot finish within 24h).
Datasets IJCNN webspam covtype Ncheckerboard mnist8m-b
Algorithms | time err(%) time err(%) time err(%) time err(%) time err(%)
Linear® 2s  7.87%+0.01 47s  6.96+£0.01 16s  23.75£0.00 9s  48.90£0.54 12h  24.18+0.39
Poly2¢ 11s 2.16 0.9h 1.56 1.4h 19.91 17s 44.02 - -
Libsvm* 27s 1.31 4.3h 0.80 15h 3.92 - - - -
CVM* 80s 1.20+0.00 | 4.7h  0.78+0.00 9h 2.50 - - - -
Lasvm® 24s  1.47+0.00 6.3h  0.75+0.00 - - - - - -
AMM? 2s 2.4+40.11 80s  4.50+0.24 84s  24.02+0.31 41s  35.98+4.09 | 5.7h  3.40+0.33
LLSVM* 49s 1.2440.01 0.8h  2.04+0.05 1.3h  14.954+0.13 | 429s 0.59+0.00 22h  2.59+0.01
#landmark (k = 3000) (k = 4000) (k = 4000) (k = 1000) (k = 3000)

“Results from (Chang et al., 2010); machine configuration: 2.5G Hz Xeon L5420 processor, 16G RAM.
Results from (Wang et al ., 2011); machine configuration: 3.0G Hz Intel Xeon processor, 16G RAM.
“Results obtained on an Intel(R) Q9400 PC with 2.66G Hz processor and 4G RAM.

e Libsvm: a popular kernel SVM solver by the de-
composition method (Chang and Lin, 2011);

e Poly2: a fast solver for polynomial degree 2 SVM
by Liblinear (Chang et al., 2010);

e CVM: A popular approximate solver for large-
scale kernel SVMs (Tsang et al., 2005) ;

e Lasvm: a large-scale approximate online SVM
solver (Bordes et al., 2005);

e AMM: a recent SVM-like algorithm which cap-
tures non-linear concepts through multiple linear
weights (Wang et al., 2011).

Datasets: we use 5 large benchmark data sets! which
is summarized in Table 2. We transfer the original
multi-class mnist8m into binary mnist8m-b by using
round digits (3, 6, 8, 9, 0) versus non-round digit-
s (1, 2, 4, 5, 7). NcheckerBoard is a noisy version of
Checkerboard (4 x4 XOR problem) with 20% randomly
swapped labels (but we still use the noisy-free Checker-
board as test data).

Setup: we use the RBF kernel for Libsvm, CVM,
Lasvm and our algorithm (Algorithm 1). In our algo-
rithm, we set p% = 75% and the size of subset equal to

lijenn, webspam,covtype and mnist8m are available at
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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20,000 for SBM for all the experiments. For efficiency,
we only run k-means clustering approximately using
the first 20,000 data points. Due to all the studied
datasets are large, we set our algorithm scan the data
in a single pass. Our algorithm is implemented in C.
Due to the huge computational cost, results on some
method/dataset were taken directly from some recent
publications.

For non-deterministic algorithms with variations in the
results, we repeat experiments five times and report
the mean and standard deviation of the error rate. For
our algorithm, instead of fixing a constant number of
landmark points & for all the data sets, we explore & in
the range [50,4000]. The training time and error rate
as a function of k is plotted in Figure 1 for all the data
sets, and the results with the best balance between
training time and accuracy are reported in Table 2.
We select the hyper-parameters for all the algorithms
through 10-cross-validation.

Results: the error rate and training time (excluding
I/O time) of all the algorithms are summarized in Ta-
ble 3. We use '’ to mark the results that cannot be
finished within 24 hours. In terms of accuracy, we can
see that our algorithm significantly outperforms lin-
ear SVM on all the data sets. Regarding the training
time, our method is slower than the linear SVM but
is still affordable considering our machine configura-
tion. Compared with the kernel SVM solvers (Lib-
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Table 4: prediction complexity on an instance

Method

LinearSVM RBFSVM  Poly2SVM

AMM  LLSVM (ours)

Complexity® O(c1d) O(c2|S))

O(c1d?)  O(cymd)  O(cik® + cok)

“d is the feature dimensionality; |S| is the number of support vectors; k is the number of landmark points in our
method where k < n with n being the training size; m is the number of linear weights in AMM,; ¢; is the time for a scalar

product; ¢z is the time for evaluating a RBF kernel function,

checkerboard covType

where ¢ < ca.
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-
5
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. i
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Figure 1: Error rate and training time as a function of k (the number of landmark points).

svin, CVM, Lasvm), our method delivers comparable
error rates to the optimum achievable on each data
set (expect covType) but consumes much less training
time. Considering that in covType task nearly half of
the training examples (around 230 thousands) become
support vectors for a non-linear SVM, our error rate
achieved by using only 4 thousands landmark points
(or basis) is quite acceptable. More importantly, nei-
ther the exact solver (Libsvm) nor the two popular ap-
proximate large-scale SVM solvers (CVM and Lasvm)
can finish the training on the largest data set mnist8m-
b or the noisiest data set NcheckBoard within 24 hours
due to the curse of kernelization; while our method can
easily scale up on such data (actually even on arbitrar-
ily large data sets) using a daily life PC. Comparing
with the most scalable non-linear algorithm AMM, our
method has significantly lower error rate and is only
several times slower. It is worth to note that our re-
sults are produced on a machine that is less powerful
than those used by Chang et al., (2010) for Libsvm,
Poly2 and by Wang et al., (2011) for AMM.

From Figure 1, we can observe that the error rate con-
verges as the number of landmark points k grows. For
some data sets, a few hundreds landmark points are
sufficient to achieve satisfactory accuracy; while on
some difficult tasks more landmark points are needed
for a good accuracy. As expected, the training time
grows quadratically as k increases.

In table 4 we list the prediction complexity of different
algorithms. The SVM using RBF kernel is the most
expensive, which involves extensive kernel evaluations
that in turn grows linearly with the number of support
vectors which can be quite large on noisy data. On the
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other hand, the linear models such as Linear, Poly2
and AMM have much lighter prediction burden which
only takes a number of scalar product operations. The
prediction complexity of our method is somewhere in
between and can be freely controlled by user-defined
parameter k. When k is small the kernel evaluation
dominates the cost; when k is large the transformation
(multiplication with the k x k mapping matrix M in
Algorithm 1) dominates.

6 Conclusion and Future Work

In this paper, we proposed a novel approach for lin-
earizing kernel SVM via symmetric kernel low-rank de-
composition for large scale learning problems. This
allows us to fully exploit algorithmic advances in the
rapidly developing areas of linear SVM optimization
and low-rank approximation, and to build highly effi-
cient solvers for large scale non-linear SVM on limit-
ed computing resources. Encouraging results are ob-
served on large scale benchmark data sets.

In the future, we will apply general non-linear dimen-
sion reduction schemes to linearize non-linear SVMs,
and extend the proposed idea to semi-supervised learn-
ing. Theoretically, we will resort to numerical pertur-
bation analysis to provide tighter bounds on the so-
lution of the QP problem with low-rank kernels. We
will also incorporate metric learning in the lineariza-
tion step for more robust nonlinear classification.

Parallelization. Though working on single PC now,
our approach is very parallelization friendly, since both
low-rank approximation and linear SVM can have par-
allel solutions. This brings interesting future topics.

time consumption (100 seconds)



Zhang, Lan, Zhuang, and Moerchen

Appendix

Proof 3 Define the difference matriz E*) = Kg’i) -
K, = Fﬁk)(F(k))—r — f‘ﬁk)(f‘ﬁk))—r, where KW s
the optimal rank-k reconstruction of K., using top
k eigenvectors and eigenvalues, and K, is the Nys-
trém rank-k approzimation. Let ey = |[EW||p, ey =
IE®]2.

Note that by definition and properties of matriz Frobe-
nius norm, HK&’? — K, ||% = tr((A?)>F), where A is
diagonal eigenvalue matriz of K,, and tr((A?)>*) =
Z;L:kﬂ /\12,. Also recall that in the Nystrom method
we have |K,p — Kpp|lp < Es.
gular inequality, we have (17). Similarly, HKS’? —
K, rll2 = Ak+1 by definition of the spectral norm, and
HKTT_KTT”Q < & from the Nystrém method, so using
triangular inequality we have (18).

By simple trian-

Next we use ex and ey to bound |w — w'||a. Note
that the approximate kernel map (14) can be written
as FM = UR (A2 yphere UK = K, U.AJ!
are Nystrém approximate eigenvectors, and A®) are
approximate eigenvalues. Then we have

IAlr = ||U(k)—ﬁ(k)HFS)\ltr(A)—kegtr(K(’t)l),

1A F (AN — (A2 < ef.

where A is as defdiagonal matriz with entries A;; =
: A-1 k X

max (g4, 2g), r(Rg)) = Ty /A The

first inequality is based on the equation (7) of (Zhang

2006); the second is based on the well known Hoffman-

Wielandt inequality as well as the lemma 1 in (Cortes
2010). With the above bounds, and note that

k
(U r =k, MO = S, AL = | fir(AZ),

we have
B — B (25)
— lu® (A®Y/2 — (GE_A V(ARY/2_A H
[U®A®)72 — (U0-a,) (AP 24|

<UD ANr + [Au (A2 7+ [ Ay A | e
I A A-1y(eT 2 \1/4
<kep + (Mitr(A) + kegtr(A(k))(ef + tr(Af)

Let exists p > 0 such that k(x,x) < p. Then it can be
shown that (Cortes et al., 2010)

20%p% Y [[@(x;) — @' (x,)]|
< 202 |[FF) —FW|p

[w—w'|* <
(26)
By plugging (25) in (26), we complete the proof.
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