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Abstract

We develop a high dimensional nonparamet-
ric classification method named sparse addi-
tive machine (SAM), which can be viewed
as a functional version of support vector ma-
chine (SVM) combined with sparse additive
modeling. the SAM is related to multiple
kernel learning (MKL), but is computation-
ally more efficient and amenable to theoret-
ical analysis. In terms of computation, we
develop an efficient accelerated proximal gra-
dient descent algorithm which is also scalable
to large datasets with a provable O(1/k2)
convergence rate, where k is the number of
iterations. In terms of theory, we provide the
oracle properties of the SAM under asymp-
totic frameworks. Empirical results on both
synthetic and real data are reported to back
up our theory.

1 Introduction

The support vector machine (SVM) has been a pop-
ular classifier due to its nice computational and theo-
retical properties. Due to its non-smooth hinge loss,
SVM possesses a robust performance (Vapnik, 1998),
and the kernel trick Wahba (1999) further extends the
linear SVM to more flexible nonparametric settings.
However in high dimensional settings where many vari-
ables are presented but only a few of them are use-
ful, the standard SVM suffers the curse of dimen-
sionality and may perform poorly in practice (Hastie
et al., 2009). Though many heuristic methods, such
as greedy selection or recursive feature elimination
(Kohavi and John, 1997; Guyon et al., 2002), have
been proposed, these methods are hard to be theoreti-
cally justified. Recent development on L1-SVM sheds
some light on this problem (Wang and Shen, 2007;
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Bradley and Mangasarian, 1998; Zhu et al., 2003).
Using the L1-regularization, the L1-SVM simultane-
ously performs variable selection and classification in
high dimensions. It has been reported that L1-SVM
outperforms SVM in prediction accuracy and provide
more interpretable models with fewer variables. One
drawback of L1-SVM is its linear parametric model
assumption, which is restrictive in applications.

In this paper, we propose a new sparse classifica-
tion method, named sparse additive machine (SAM)1,
which extends L1-SVM to its nonparametric counter-
part. By constraining the discriminant function to
take an additive form, the SAM simultaneously con-
ducts nonlinear classification and variable selection in
high dimensions. Similar to the sparse additive models
(SpAM) (Ravikumar et al., 2009; Liu et al., 2008), the
SAM estimator is formulated as a convex optimization
problem with a non-smooth objective function. The
main contribution of this paper is the development
of an efficient computational algorithm and an anal-
ysis of the rates of convergence in terms of the excess
risk (Boyd and Vandenberghe, 2009). The algorithm
is based on the recent idea of accelerated proximal
gradient descent Nesterov (2005) and has a provable
convergence rate of O(1/k2), where k is the number
of iterations. The statistical theory reveals the risk
consistency (or persistency) (Greenshtein and Ritov,
2004) of the SAM even when the data dimension d is
much larger than sample size n (e.g. d may increase
with n almost in an exponential rate) (van der Vaart
and Wellner, 2000).

There has been many related work in the literature,
including the multiple kernel learning (MKL) (Bach,
2008; Christmann and Hable, 2010; Koltchinskii and
Yuan, 2010; Meier et al., 2009; Lin and Zhang, 2006;
Zhang, 2006). However, these methods have two draw-
backs: (1) They all assume the additive function lies in
a reproducing kernel Hilbert space (RKHS) and it re-
sults in an optimization problem involving nd param-
eters, where n is sample size and d is the dimension.
This is a huge computational burden for large scale

1The Significance Analysis of Microarrays is also called
SAM, but it targets at a completely different problem
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problems. (2) Existing theoretical analysis for high
dimensional MKL require smooth loss function. On
the contrast, the SAM is computationally scalable by
reducing the number of parameters to approximately
O(n1/5d) and enjoys the theoretical guarantees on the
non-smooth hinge loss function.

In the next section we establish necessary notation and
assumptions. In Section 3 we formulate the SAM as an
optimization problem and derive a scalable algorithm
in Section 4. Some theoretical analysis is provided in
Section 5. Section 6 presents some numerical results
on both simulated and real data.

2 Notations and Assumptions

We consider a classification problem with an input
variable X = (X1, X2, ..., Xd)

T ∈ [0, 1]d and an out-
put variable (or class label) Y ∈ {+1,−1}. Let
f : [0, 1]d → {−1,+1} be the discriminant func-
tion and {(xi, yi)}ni=1 be the observed data points,
we want to find a function f that minimizes the risk:
Risk(f) ≡ E(L(Y, f(x)), where L is some convex loss
function.

For any integrable function fj : [0, 1] → R, we define
its L2-norm by

‖f‖2 =

√∫
f(x)2dx.

For j ∈ 1, ..., d, let Hj denote the Hilbert subspace
of L2. To make the later model identifiable, we also
constrain E (fj(Xj)) = 0. Let H = H1⊕H2⊕ ...⊕Hd
be the Hilbert space of functions of (x1, ..., xd) that

take an additive form: f(x) = b +
∑d
j=1 fj(xj), with

fj ∈ Hj , j = 1, ..., d. Let{ψjk : k = 1, 2, ...} denote a
uniformly bounded, orthonormal basis with respect to
Lebesgue measure on [0, 1]. Unless stated otherwise,
we assume that fj ∈ Tj where

Tj =
{
fj ∈ Hj : fj(xj) =

∞∑

k=0

βjkψ(xj),

∞∑

k=0

β2
jkk

vj ≤ C
}

for some 0 < C <∞.

where vj is the smoothness parameter. In the sequel,
we assume vj = 2 although the extension to general
settings is straightforward. It is possible to adapt to
vj although we do not pursue this direction. Since we

assume

∫
ψjkψjl = 0 for any k 6= l, we further have

‖fj‖2 =

√√√√
∫ ( ∞∑

k=1

βjkψjk(xj)

)2

dxj =

√√√√
∞∑

k=1

β2
jk.

For v = (v1, ..., vd)
T , we define

||v||2 =




k∑

j=1

v2
j




1
2

and ||v||1 =
k∑

j=1

|vj |.

3 Sparse Additive machine

Let L(y, f(x)) = (1−yf(x))+ ≡ max (1− yf(x), 0) be
the hinge loss function. Consider a linear discriminant
function f(x) = b+wTx, the L1-SVM takes the form

min
w,b

1

n

n∑

i=1

L(yi, b+ wTxi) + λ‖w‖1,

where λ > 0 as a regularization parameter.

For the sparse additive machine, we no longer con-
strain f(x) to be linear function of x. Instead, f(x) is

chosen as an additive forms: f(x) = b+
∑d
j=1 fj(xj).

The sparse additive machine can be formulated as

min
fj∈Tj ,1≤j≤d

1

n

n∑

i=1

L(yi, b+

d∑

j=1

fj(xij)) + λ

d∑

j=1

‖fj‖2.

To obtain smooth estimates, we use truncated ba-
sis estimates. Recall {ψjk : k = 1, 2, ...} be an
orthogonal basis for Tj and supx|ψjk(x)| ≤ κ for
some κ ≤ ∞. Then fj(xj) =

∑∞
k=1 βjkψjk(xj),

where βjk =

∫
fj(xj)ψjk(xj)dxj . We define f̃j(xj) =

∑p
k=1 βjkψjk(xj) to be a smoothed approximation and

‖f̃j‖2 =
√∑pn

k=1 β
2
jk with the truncation rate p = pn.

It is well known that for the second order Sobolev ball
Tj we have ‖fj−f̃j‖22 = O(1/p4). Let S = {j : fj 6= 0}.
Assuming the sparsity condition |S| = O(1), it follows

that ‖f − f̃‖22 = O(1/p4). where f̃ =
∑d
j=1 f̃j . The

usual choice is p � n1/5 yielding ‖f − f̃‖2 = O(n−4/5)

We define

Ψi = (ψ1(xi1), ..., ψpn(xi1), ..., ψ1(xid), ..., ψpn(xid))
T
,

where i = 1, ..., n and

β = (β11, ..., β1pn , ..., βd1, ..., βdpn)T

with βj = (βTj1, ..., β
T
jpn

)T , j = 1...d. Since the con-
stants 1/n in the loss term can be absorbed by the
regularization parameter λ, eventually we can rewrite
the equivalent form of the SAM as below

min
b,βj ,1≤j≤d

n∑

i=1

L
(
yi, b+ ΨT

i β
)

+ λ
d∑

j=1

||βj ||2. (1)

From a computational perspective, we formulate the
SAM as a unconstrained Lagrangian form (1). But it
is more convenient to use an alternative constrained
form (2) to analyze the theoretical properties. From
the duality theory, it is straightforward to see that
these two forms are one-to-one equivalent.

min
b,βj ,1≤j≤d

n∑

i=1

L
(
yi, b+ ΨT

i β
)

s.t.
d∑

j=1

‖βj‖2 ≤ s. (2)

For notational simplicity, in the rest of this paper
we absorb the constant term b into β by augmenting

1436



Tuo Zhao, Han Liu

Ψ̃i = (1,ΨT
i )T and β̃ = (b, βT )T . We define the objec-

tive function in (2) as F (β̃), Li(β̃) = L(yi, Ψ̃
T
i β̃) and

L∗(β̃) =
∑n
i=1 Li(β̃), Rj(βj) = ||βj ||2 and R∗(β̃) =∑d

j=1Rj(βj). R∗ is often referred to group regulariza-
tion. This convex optimization problem can be solved
by simple solvers using subgradients, which is usually
not efficient. We develop an efficient algorithm based
on Nesterov’s method Nesterov (2005) to handle the

non-smooth objective function F (β̃).

4 Computational Algorithm

The algorithm has two stages: smooth approximation
and gradient acceleration. In the first stage, some du-
ality arguments are carried on so that smooth differ-
entiable approximations for both L∗(β̃) and R∗(β̃) are
constructed with guaranteed precision. The approxi-
mations errors are uniformly bounded by some positive
smoothing parameters. In the second stage, an accel-
eration trick is applied so that the first-order method
can achieve the rate of second-order methods. The al-
gorithm is iterative and within each iteration the gra-
dient is constructed by a weighted average of current
gradient and historical gradients. Previous iterations
can help to adjust the descent and further achieve the
optimal rate of convergence O(1/k2) without tuning
the step size, where k is the number of iterations.

4.1 Smooth the Hinge Loss

The hinge loss function has the following equivalent
form. For any β̃,

L∗(β̃) =

n∑

i=1

Li(β̃) = max
u∈P

n∑

i=1

(
1− yiΨ̃T

i β̃
)
ui,

where P = {u : 0 ≤ ui ≤ 1, u ∈ Rn}. We consider the
following function

Lµ1
∗ (β̃) ≡

n∑

i=1

Lµ1

i (β̃) ≡ max
u∈P

n∑

i=1

(
1− yiΨ̃T

i β̃
)
ui − d1(u),

where d1(u) = µ1

2 ||u||22 is a prox-function. Since d(u)
is strongly convex, the maximizer u∗ is unique:

u∗i = median

(
0,

1− yiΨ̃T
i β̃

µ1
, 1

)
,∀i = 1..., n.

Lµ1∗ (β̃) is well defined, convex, continuously differen-
tiable and can be seen as a uniformly smooth approx-
imation of L∗(β̃) and obviously for any β̃, we have

Lµ1∗ (β̃) ≤ L∗(β̃) ≤ Lµ1∗ (β̃) + nµ1. Moreover, its gradi-
ent

∇Lµ1
∗ (β̃) = −

n∑

i=1

yiΨ̃iu
∗
i

is Lipschitz continuous with a Lipschitz constant
CLµ1∗ = n max

1≤i≤n
‖Ψ̃T

i ‖22/µ1. The smoothed hinge loss

Rµ1

i with different µ1’s are shown in Figure 1.

4.2 Smooth the Group Regularization

Similarly, the group regularization also have the fol-
lowing equivalent form for any β̃,

R∗(β̃) =

d∑

j=1

Rj(βj) = max
vj∈P

d∑

j=1

vTj βj ,

where P = {vj : ||vj || ≤ 1, vj ∈ Rpn , j = 1, ..., d}. We
consider the following function

Rµ2
∗ (β̃) ≡

d∑

j=1

Rµ2

j (βj) ≡ max
vj∈P

d∑

j=1

(
vTj βj − d2(vj)

)
,

where d2(vj) = µ2

2 ||vj ||22 is also a prox-function.
Therefore the maximizers v∗1 , . . . , v

∗
d are unique:

v∗j =
βj

µ2 max(||ṽj ||2, 1)
,∀j = 1, ..., d.

Similarly Rµ2∗ (β̃) is also well defined, convex, contin-
uously differentiable and can be seen as a uniform
smooth approximation of R∗(β̃) and obviously for any

β̃, we have Rµ2∗ (β̃) ≤ R∗(β̃) ≤ Rµ2∗ (β̃) + dµ2. More-
over, its gradient

∇Rµ2
∗ (β̃) =

(
0, v∗T1 , ..., v∗Td

)T

is Lipschitz continuous with a Lipschitz constant
CRµ2∗ = d/µ2. Figure 2 plots the group regularization
and the smoothed approximation with different µ2’s.

4.3 Accelerated Gradient

In the second stage, we focus on minimizing Fµ(β̃) ≡
Lµ∗ (β̃)+λRµ∗ (β̃), which is the smooth approximation of

the original objective function. The gradient of Fµ(β̃)
and corresponding Lipschitz constant are computed as

∇Fµ = ∇Lµ∗ + λ∇Rµ∗ and Cµ = CLµ∗ + λCRµ∗ .

The Nesterov’s method enjoys two attractive features:
1. it can achieve a convergence rate similar to 2nd or-
der methods such as Newton, but based only on the
gradient (1st order). 2. The step size can be auto-
matically chosen by two auxiliary optimization prob-
lems without line search. In the k-th iteration of the
Nesterov’s method, we consider the following two op-
timization problems,

min
α∈Rd·pn+1

(α− β̃(k))T∇Fµ
(
β̃(k)

)
+
Cµ
2
||α− β̃(k)||22,

min
γ∈Rd·pn+1

Cµ
2
||γ − β̃(0)||22 +

(k)∑

t=1

(t+ 1)

2

(
Fµ
(
β̃(t)

)

+
(
γ − β̃(t)

)T
∇Fµ

(
β̃(k)

))
. (3)
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Figure 1: Smoothed hinge loss using different µ2’s

(a) R2 norm (b) µ2 = 0.5

(c) µ2 = 1 (d) µ2 = 2

Figure 2: Smoothed Group Regularizer

With the Lipschitz constant working as a regulariza-
tion parameter to avoid a radical step size, the algo-
rithm attempts to maximize the descent. By directly
setting the gradients of the two objective functions
equal to zero in the auxiliary optimization problems,
we can obtain α(k), γ(k) and β̃(k+1) respectively,

α(k) = β̃(k) −
∇Fµ

(
β̃(k)

)

Cµ
, (4)

γ(k) = β̃(0) −
k∑

t=1

t+ 1

2Cµ
∇Fµ

(
β̃(t)

)
, (5)

β̃(k+1) =
2γ(k) + (k + 1)α(k)

k + 3
. (6)

Here α(k) is the standard gradient descent solution
with step size 1/Cµ at the k-th iteration. γ(k) is a
solution to a gradient decent step that starts from the
initial value and proceed along a direction determined
by the weighted sum of negative gradients in all pre-
vious iteration. The weights of the later gradients are
larger than earlier ones. Therefore, β̃(k+1) encodes
both current gradient (α(k)) and historical gradients
(γ(k)) . The optimal convergence rate can be derived
based on Theorem 2 in Nesterov (2005).

4.4 Convergence Analysis

Lemma 4.1 Let φ(k) be the optimal object value of the
optimization (3), for any k and the corresponding α(k),
γ(k) and β(k) defined in (4), (5) and (6), respectively,
we have

(k + 1)(k + 2)

4
∇Fµ

(
α(k)

)
≤ φ(k). (7)

Lemma 4.1 is a direct result of Lemma 2 in Nesterov
(2005) and can be applied to analyze the convergence
rate of our APG algorithm.

Theorem 4.2 The convergence rate of the APG al-
gorithm is O(1/k2). It requires O(1/

√
ε) iterations to

achieve an ε accurate solution.

Proof Let the optimal solution be β∗. Since Fµ(β) is
a convex function, we have

Fµ (β∗) ≥ Fµ
(
β(t)

)
+
(
β∗ − β(t)

)T
∇Fµ

(
β(t)

)
.

Thus,

φ(k) ≤ Cµ‖β∗ − β(0)‖22 +

(k)∑

t=1

(t+ 1)

2

(
Fµ
(
β(t)

)

+
(
β∗ − β(t)

)T
∇Fµ

(
β(k)

) )

≤ Cµ‖β∗ − β(0)‖22 +

(k)∑

t=1

(t+ 1)

2
Fµ (β∗)

= Cµ‖β∗ − β(0)‖22 +
(k + 1)(k + 2)

4
∇Fµ(β∗).

According to Lemma 4.1, we have

(k + 1)(k + 2)

4
∇Fµ(α(k))

≤ φ(k) ≤ Cµ‖β∗ − β(0)‖22 +
(k + 1)(k + 2)

4
∇Fµ(β∗).

Hence the accuracy at the k-th iteration is

∇Fµ(α(k))−∇Fµ(β∗) ≤ 4Cµ‖β∗ − β(0)‖22
(k + 1)(k + 2)

.

Therefore, APG converges at rate O(1/k2), and the
minimum iteration number to reach an ε accurate so-
lution is O(1/

√
ε).

5 Theoretical Properties

We analyze the asymptotic properties of the SAM in
high-dimensions, where d is allowed to grow with n at
a speed no faster than exp(n/p). For simplicity, we
assume Xj ∈ [0, 1] for 1 ≤ j ≤ d. We define
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F(d, p, s) ≡
{
f : [0, 1]d → R; where f(x) =

d∑

j=1

fj(xj),

fj(xj) =
∞∑

k=0

βjkψ(xj),
d∑

j=1

√√√√p

p∑

k=1

β2
jk ≤ s

}
.

We denote F(d, p) = ∪0≤s<∞F(d, p, s) to be the full
d-dimensional model.

Let f (d,p) = arginff∈F(d,p) EL(Y, f), where f (d,p) may
not belong to F(d, p). For any f ∈ F(d, p), we define
the excess hinge risk to be

Risk
(
f, f (d,p)

)
≡ EL(Y, f(X))− EL(Y, f (d,p)).

The following theorem yields a rate of Risk
(
f̂ , f (d,p)

)
,

when d = dn, s = sn and p = pn grow with n, as
n→∞.

Theorem 5.1 Assume that pn log d = o(n). Let

f̂ = b̂+
d∑

j=1

p∑

k=1

β̂jkψ(xj),

where b̂ and β̂jk are solutions to Eq. (2). We have the
following oracle inequality.

Risk
(
f̂ , f (d,p)

)
= OP

(
η + s

√
p log d

n

)
, (8)

where η = inff∈F(d,p,s) Risk
(
f, f (d,p)

)
.

If f (d,p) ∈ F(d, p, s) and p � n1/5, we have

Risk
(
f̂ , f (d,p)

)
= OP

(
s

√
log d

n4/5

)
.

This rate is optimal up to a logarithmic term.

Proof We only provide a proof sketch due to the space
limit. Recall we have supx|ψjk| ≤ κ, similar to the
normalization condition in Lasso and group Lasso Liu
and Zhang (2009), we require κ ≤ 1√

p . We first show

that the estimated b̂ is a bounded quantity. To see
this, since b̂ and β̂ minimizes (1), we have maxi(1 −
yi(̂b+ ΨT

i β̂)) ≥ 0 leading to

|̂b| ≤ ‖β̂‖1√
p

+ 1 ≤
d∑

j=1

‖β̂j‖2 + 1 ≤ s+ 1.

Thus f̂ ∈ Fb(d, p, s) ≡ F(d, p, s) ∩ {f : |b| ≤ s+ 1}.
For simplicity, we use the notation Z = (X,Y ) and
zi = (xi, yi). Let P denote the distribution Z and
f0 = argminF(d,p,s) E(L(Y, f(X))),

πf (z) =
1

4s+ 2
(L(y, f(x))− L(y, f0(x))) .

Define Π =
{
πf : f ∈ Fb(d, p, s)

}
, then

sup
f∈Fb(d,p,s)

|f | ≤ (2s+ 1) and sup
π∈Π
|π| ≤ 1.

We consider an indexed empirical processes as Pnπ −
Pπ. For any π ∈ π, Pπ = Eπ(Z), and Pnπ =
n−1

∑n
i=1 π(Zi) with Zi’s i.i.d from P . We have

P
(

Risk
(
f̂ , f (d,p)

)
> (4s+ 2)4M

)

≤ P
(

1

4s+ 2
Risk

(
f̂ , f (d,p)

)
> 4M

)

≤ P
(

sup
π∈Π
|Pnπ − Pπ| > 4M

)

≤
(

2− 1

8nM2

)
P

(
sup
π∈Π

∣∣∣∣∣
n∑

i=1

σiπ(Zi)

∣∣∣∣∣ > M

)
(9)

where σi’s are i.i.d rademacher variables, independent
of Zi’s with P (σi = 1) = P (σi = −1) = 1

2 . (9) can
be proved by the redemacher symmetrization Bartlett
and Mendelson (2002). By conditioning on Zi’s, we
can further bound the tail probability by standard
chaining trick van der Vaart and Wellner (2000). The
chaining trick involves calculating the covering entropy
of Π under a L2(Pn) norm in lemma 5.2. This explains
why we get a term p log d in the numerator of the rate.

Lemma 5.2 For any ε > 0, the ε-covering entropy
over a function class Π is defined as

N (ε,Π, L2(Pn)) ≤ 2p

ε2
log(e+ 2e(dp+ 1)

ε2

p
).

Proof Consider G = {L(y, f(x)) : f ∈ Fb(d, p, s)}
and obviously the covering entropy of Π should be up-
per bounded by that of G. To construct a ε-net on
G, we first examine the relation ship between G and
Fb(d, p, s). Since the hinge loss function is Lipschitz
continuous with the Lipschitz constant 1, for any  L
and  L′ ∈ G, we have

‖L− L′‖2P ≤ ‖f − f ′‖2P ,
where f and f ′ ∈ Fb(d, p, s). Given a group of basis
functions defined as

D =
{
ξjk+, ξjk−, b+, b−, j = 1, ..., d, k = 1, ..., p

}
,

where ξjk+ =
√
p(2s+ 1)ψjk, ξjk− = −√p(2s+ 1)ψjk,

b+ =
√
p(2s+ 1)b and b− = −√p(2s+ 1)b.

For two function sets F̃ and M̃ spanned by D,

F̃ =

{
f̃ : f̃ =

d∑

j=1

p∑

k=1

(λjk+ξjk+ + λjk−ξjk−)

+λ0+b+ + λ0−b−, λjk+, λjk− ≥ 0,

d∑

j=1

√√√√
p∑

k=1

(
λ2
jk+ + λ2

jk−

)
+ λ0+ + λ0− ≤

1√
p

}
,
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and

M̃ =

{
f̃ : f̃ =

d∑

j=1

p∑

k=1

(λjk+ξjk+ + λjk−ξjk−)

+λ0+b+ + λ0−b−, λjk+, λjk− ≥ 0,

d∑

j=1

p∑

k=1

(λjk+ + λjk−) + λ0+ + λ0− ≤ 1

}
,

we can see Fb(d, p, s) ⊂ F̃ ⊂ M̃. By Lemma 2.6.11 in
van der Vaart and Wellner (2000) and transitivity, we
have

N
(√
p(4s+ 2)ε,Fb(d, p, s), L2(P )

)

≤ N (
√
p(4s+ 2)ε,M̃, L2(P ))

≤ 2p

ε2
log

(
e+ e2(dp+ 1)

ε2

p

)

≤ 2p

ε2
log
(
e+ e2(d+ 1)ε2

)
.

Therefore a (4s+2)ε-net over M̃ induces a (4s+2)ε-net
in G, which completes the proof.

6 Experimental Results

In this section, we report empirical results on both sim-
ulated and real datasets. All the tuning parameters are
selected over a grid according to their generalization
performance on held-out datasets.

Simulation: We first examine the empirical perfor-
mance of the SAM in terms of its generalization ac-
curacy and model selection using simulated data sets.
We compare the SAM using B-Spline basis against L1-
SVM, the COSSO-SVM using Gaussian kernels and
SVM using Gaussian kernels. The generalization error
is estimated by Monte Carlo integration using 100,000
test samples from the same distribution as the training
samples. We use the following procedure to generate
100 samples:

1. Let Xj = (Wj +U)/2, j = 1, ..., d, where W1, ...,Wd

and U are i.i.d. from Uniform(0, 1). Therefore the
correlation between Xj and Xk is 0.5 for j 6= k.

2. We choose two additive function as discriminant
functions

f(x) = sin(2π(x1 − 0.2))− 20(x2 − 0.5)3,

f(x) = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.08.

We assign the label using the discriminant function
Y = sign(f(X)) and randomly flip the label with prob-
ability 0.1 (Bayes error = 0.1). Figure 3 shows the
training data and discriminant functions using the two
informative dimensions. We run simulation example
100 times and report the mean and standard errors of

the misclassification rates. The performance compari-
son of the SAM against SVM and L1-SVM is provided
in Table 1.

It can be seen that the SAM and the COSSO have al-
most the same performance in terms of prediction and
variable selection. They both outperform L1-SVM and
SVM under all different settings. As the number of re-
dundant variables increases, the performances of the
SAM, the COSSO, and L1-SVM are shown to be sta-
ble, where as SVM deteriorates faster. This is because
the SAM is able to remove the redundant features,
which in contrast to SVM involving all the variables.
This result is consistent with the statistical learning
theory. We can also see the limitation of L1-SVM
from the experimental results. Figure 4 and Figure
5 illustrate typical examples of different models using
two informative variables when d = 100. L1-SVM can
only separate data using linear discriminant functions,
while the SAM can fit a more flexible discriminant
function to better fit the data. Especially when the
decision boundary is highly non-linear such as in the
second simulation example, L1-SVM performs much
worse than the SAM and even fails to outperform SVM
when d > n. The SAM shares the advantage of both
sparsity and non-linearity and delivers better perfor-
mance in more complex classification problems.

Real Examples: We compare the SAM against the
COSSO, L1-SVM and SVM using three real datasets:
(a) the Sonar MR data; (b) the SAM data; and (c) and
the Golub data. The Sonar data has has 208 (111:97)
samples with 60 variables. We randomly select 140
(75:65) of samples for training and use the remaining
68 (36:32) samples for testing. The Spam dataset has
4601 (1813:2788) samples with 57 variables. We ran-
domly select 300 (150:150) of samples for training and
use the remaining 4301 (1663:2638) samples for test-
ing. The original Golub data has 72 (47:25) samples
with 7129 variables. As in Dudoit et al. (2002), we
preprocessed the Golub data in the following steps:
1) truncation: any expression level was truncated be-
low at 1 and above at 16,000; 2) filtering: any gene
was excluded if its max/min ≤ 5 and max − min ≤
500, where max and min were the maximum and min-
imum expression levels of the gene across all samples.
Finally, as preliminary gene screening, we selected the
top 2000 genes with the largest sample variances across
samples. We randomly select 55 (35:20) of samples for
training and use the remaining 17 (12:5) samples for
testing. Tuning parameters are chosen by 5-fold cross
validation on training sets. We do this randomization
30 times and average the testing errors for each model.

As suggested in Table 2, under high-dimensional set-
ting such as the Golub dataset, the SAM still maintain
a good performance, and the COSSO failed to obtain
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(a) f(x) = sin(2π(x1−0.2))−20(x2−0.5)3 (b) f(x) = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.08

Figure 3: The training data with labels +1 are represented in ◦, while the training data with labels −1 are
represented in �. The black curves represent the decision boundaries

(a) SAM (b) L1-SVM (c) Std SVM

Figure 4: A typical classification result for f(x) = sin(2π(x1 − 0.2)) − 20(x2 − 0.5)3 when d = 100: blue dots
represent the data labeled “+1”, red dots represent the data labeled “-1” and black dots represents overlap.

(a) the SAM (b) L1-SVM (c) Std SVM

Figure 5: A typical classification results for f(x) = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.08 when d = 100: blue dots
represent the data classified as “+1”, red dots represent the data classified as “-1” and black dots represents
overlap.

the results (will be explained later) while the stan-
dard SVM completely fails due to a large amount of
noise variables. Under low-dimensional setting such as
Spam data set, we can see the SAM still outperforms
the L1-SVM and the standard SVM. Although the L1-
SVM tends to yield a sparser solution than the SAM,
the better prediction power of the SAM suggest that
the L1-SVM may lose some important variables due to

the restriction linear discriminant function. The stan-
dard SVM beats the SAM, the COSSO and L1-SVM
on Sonar MR data. One possible explanation is that
the sparsity assumption may not hold for this data set.
But the SAM still works better than the L1-SVM on
Sonar MR data.

Timing Comparison: We also conduct the timing
comparison between the SAM and the COSSO. As
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Table 1: Comparison of average testing errors over 100 replications
Models d 25 50 100 200 400 800

True discriminant function f(x) = sin(2π(x1 − 0.2)) − 20(x2 − 0.5)3

SAM
Test Error 0.181(0.022) 0.193(0.027) 0.198(0.016) 0.208(0.019) 0.214(0.018) 0.218(0.021)

# of variables 8.2(2.42) 11.7(3.02) 14.1(4.11) 16.9(5.79) 16.2(5.10) 17.3(7.49)

COSSO
Test Error 0.180(0.029) 0.197(0.031) 0.202(0.017) 0.205(0.018) 0.216(0.022) 0.217(0.020)

# of variables 9.9(2.88) 14.4(3.65) 15.7(4.27) 17.2(6.11) 17.8(5.51) 18.1(6.51)

L1-SVM
Test Error 0.304(0.029) 0.313(0.034) 0.301(0.022) 0.306(0.213) 0.324(0.039) 0.323(0.051)

# of variables 7.75(4.25) 8.25(4.33) 11.2(5.04) 10.5(4.05) 11.7(4.43) 11.8(4.99)

Std SVM
Test Error 0.283(0.013) 0.329(0.018) 0.356(0.024) 0.376(0.013) 0.401(0.018) 0.425(0.025)

# of variables 25.0(0.00) 50.0(0.00) 100(0.00) 200(0.00) 400(0.00) 400(0.00)

True discriminant function f(x) = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.08

SAM
Test Error 0.180(0.034) 0.201(0.031) 0.207(0.035) 0.214(0.034) 0.232(0.044) 0.233(0.035)

# of variables 7.1(2.22) 10.1(4.13) 13.4(4.66) 13.3(4.88) 13.3(4.75) 13.8(5.57)

COSSO
Test Error 0.176(0.026) 0.199(0.023) 0.209(0.029) 0.217(0.034) 0.233(0.048) 0.231(0.040)

# of variables 8.3(2.15) 12.1(3.99) 15.4(5.06) 17.4(6.02) 16.1(5.82) 16.7(6.05)

L1-SVM
Test Error 0.423(0.006) 0.427(0.017) 0.421(0.007) 0.424(0.021) 0.431(0.025) 0.422(0.031)

# of variables 2.95(1.73) 2.94(2.07) 3.35(2.03) 4.81(3.86) 5.63(4.69) 6.12(4.55)

Std SVM
Test Error 0.302(0.013) 0.331(0.022) 0.337(0.011) 0.350(0.14) 0.358(0.14) 0.361(0.021)

# of variables 25.0(0.00) 50.0(0.00) 100(0.00) 200(0.00) 400(0.00) 400(0.00)

Table 2: Comparison of 5-fold double cross validation errors
Data Sonar MR Spam Golub

Models Test Error # of variables Test Error # of variables Test Error # of variables
the SAM 0.191(0.051) 48.4(6.54) 0.905(0.008) 34.3(5.78) 0.018(0.029) 40.1(7.25)

the COSSO 0.189(0.055) 55.4(7.73) 0.922(0.010) 36.3(6.11) N.A. N.A.
L1-SVM 0.266(0.044) 24.1(14.5) 0.132(0.018) 38.2(6.30) 0.053(0.047) 35.2(4.33)
Std SVM 0.135(0.031) 60.0(0.00) 0.155(0.024) 57.0(0.00) 0.294(0.000) 2000(0.00)

Table 3: Timing comparison
Data Sonar MR Spam Golub

Models Timing # of parameters Timing # of parameters Timing # of parameters
SAM 55.10(7.21) 181 72.44(9.77) 172 1415(66.4) 6001

COSSO 2180(141) 8401 5412(181) 17101 N.A. 110001

there is no package available for the COSSO, we also
apply the accelerated proximal gradient descent algo-
rithm to the COSSO. All codes use the same setting:
double precision with a convergence threshold 1e-3.
We choose the difference of empirical means between
two classes as the bandwidth parameter in Gaussian
kernel for the COSSO and p = n1/5 for the SAM. The
range of regularization parameters is chosen so that
each method produced approximately the same num-
ber of non-zero estimates.

The timing results can be seen in Table 3 showing
that the SAM outperforms the COSSO in timing for
all 3 datasets. Since we adopt the truncation rate as
pn = O(n1/5), it allows pn to increase very slowly
as the sample size increases. On the contrast, the
COSSO requires nd parameters (linearly increasing in
n), which cannot scale up to larger problems, espe-
cially when n is relatively large. Therefore it is not
surprising to see the SAM is much more scalable than
the COSSO in practice. In our experiments, the spam
data set has the largest training sample size among all
three datasets, 300 yielding p ≈ 3 and 172 parameters

in total, but the COSSO requires almost 100 times
more parameters than the SAM. For the Golub data
set, the minimization problem of the COSSO involving
110001 parameters (including the intercept), which is
about 16 times larger than that of the SAM. Eventu-
ally. the timing of the COSSO exceeds our time limit
18000 seconds (5 hours) and fails to get the results.

7 Conclusions

This article proposes the sparse additive machine that
simultaneously perform nonparametric variable selec-
tion and classification. In particular, the method, to-
gether with the computational algorithms, provides
another recipe for high dimensional, small sample size
and complex data analysis, that can be difficult for
conventional methods. The proposed method has been
shown to perform well as long as p does not grow too
fast and the discriminant function has a sparse repre-
sentation. In many problems, our method significantly
outperforms standard SVM and L1-SVM and is much
more scalable than the COSSO.
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