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Abstract
Mixture models are a fundamental tool in applied statistics and machine learning for treating data
taken from multiple subpopulations. The current practice for estimating the parameters of such
models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and ex-
isting consistent methods are unfavorable due to their high computational and sample complexity
which typically scale exponentially with the number of mixture components. This work develops an
efficient method of moments approach to parameter estimation for a broad class of high-dimensional
mixture models with many components, including multi-view mixtures of Gaussians (such as mix-
tures of axis-aligned Gaussians) and hidden Markov models. The new method leads to rigorous
unsupervised learning results for mixture models that were not achieved by previous works; and,
because of its simplicity, it offers a viable alternative to EM for practical deployment.

1. Introduction

Mixture models are a fundamental tool in applied statistics and machine learning for treating data
taken from multiple subpopulations (Titterington et al., 1985). In a mixture model, the data are
generated from a number of possible sources, and it is of interest to identify the nature of the indi-
vidual sources. As such, estimating the unknown parameters of the mixture model from sampled
data—especially the parameters of the underlying constituent distributions—is an important statis-
tical task. For most mixture models, including the widely used mixtures of Gaussians and hidden
Markov models (HMMs), the current practice relies on the Expectation-Maximization (EM) algo-
rithm, a local search heuristic for maximum likelihood estimation. However, EM has a number
of well-documented drawbacks regularly faced by practitioners, including slow convergence and
suboptimal local optima (Redner and Walker, 1984).

An alternative to maximum likelihood and EM, especially in the context of mixture models,
is the method of moments approach. The method of moments dates back to the origins of mix-
ture models with Pearson’s solution for identifying the parameters of a mixture of two univariate
Gaussians (Pearson, 1894). In this approach, model parameters are chosen to specify a distribu-
tion whose p-th order moments, for several values of p, are equal to the corresponding empirical
moments observed in the data. Since Pearson’s work, the method of moments has been studied
and adapted for a variety of problems; their intuitive appeal is also complemented with a guarantee
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of statistical consistency under mild conditions. Unfortunately, the method often runs into trouble
with large mixtures of high-dimensional distributions. This is because the equations determining
the parameters are typically based on moments of order equal to the number of model parameters,
and high-order moments are exceedingly difficult to estimate accurately due to their large variance.

This work develops a computationally efficient method of moments based on only low-order
moments that can be used to estimate the parameters of a broad class of high-dimensional mixture
models with many components. The resulting estimators can be implemented with standard numer-
ical linear algebra routines (singular value and eigenvalue decompositions), and the estimates have
low variance because they only involve low-order moments. The class of models covered by the
method includes certain multivariate Gaussian mixture models and HMMs, as well as mixture mod-
els with no explicit likelihood equations. The method exploits the availability of multiple indirect
“views” of a model’s underlying latent variable that determines the source distribution, although
the notion of a “view” is rather general. For instance, in an HMM, the past, present, and future
observations can be thought of as different noisy views of the present hidden state; in a mixture
of product distributions (such as axis-aligned Gaussians), the coordinates in the output space can
be partitioned (say, randomly) into multiple non-redundant “views”. The new method of moments
leads to unsupervised learning guarantees for mixture models under mild rank conditions that were
not achieved by previous works; in particular, the sample complexity of accurate parameter estima-
tion is shown to be polynomial in the number of mixture components and other relevant quantities.
Finally, due to its simplicity, the new method (or variants thereof) also offers a viable alternative to
EM and maximum likelihood for practical deployment.

1.1. Related work

Gaussian mixture models. The statistical literature on mixture models is vast (a more thorough
treatment can be found in the texts of Titterington et al. (1985) and Lindsay (1995)), and many
advances have been made in computer science and machine learning over the past decade or so, in
part due to their importance in modern applications. The use of mixture models for clustering data
comprises a large part of this work, beginning with the work of Dasgupta (1999) on learning mix-
tures of k well-separated d-dimensional Gaussians. This and subsequent work (Arora and Kannan,
2001; Dasgupta and Schulman, 2007; Vempala and Wang, 2002; Kannan et al., 2005; Achlioptas
and McSherry, 2005; Chaudhuri and Rao, 2008; Brubaker and Vempala, 2008; Chaudhuri et al.,
2009) have focused on efficient algorithms that provably recover the parameters of the constituent
Gaussians from data generated by such a mixture distribution, provided that the distance between
each pair of means is sufficiently large (roughly either dc or kc times the standard deviation of the
Gaussians, for some c > 0). Such separation conditions are natural to expect in many clustering
applications, and a number of spectral projection techniques have been shown to enhance the sep-
aration (Vempala and Wang, 2002; Kannan et al., 2005; Brubaker and Vempala, 2008; Chaudhuri
et al., 2009). More recently, techniques have been developed for learning mixtures of Gaussians
without any separation condition (Kalai et al., 2010; Belkin and Sinha, 2010; Moitra and Valiant,
2010), although the computational and sample complexities of these methods grow exponentially
with the number of mixture components k. This dependence has also been shown to be inevitable
without further assumptions (Moitra and Valiant, 2010).

Method of moments. The latter works of Belkin and Sinha (2010), Kalai et al. (2010), and Moitra
and Valiant (2010) (as well as the algorithms of Feldman et al. (2005, 2006) for a related but differ-
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ent learning objective) can be thought of as modern implementations of the method of moments, and
their exponential dependence on k is not surprising given the literature on other moment methods
for mixture models. In particular, a number of moment methods for both discrete and continuous
mixture models have been developed using techniques such as the Vandermonde decompositions
of Hankel matrices (Lindsay, 1989; Lindsay and Basak, 1993; Boley et al., 1997; Gravin et al.,
2012). In these methods, following the spirit of Pearson’s original solution, the model parame-
ters are derived from the roots of polynomials whose coefficients are based on moments up to the
Ω(k)-th order. The accurate estimation of such moments generally has computational and sample
complexity exponential in k.

Spectral approach to parameter estimation with low-order moments. The present work is based
on a notable exception to the above situation, namely Chang’s spectral decomposition technique for
discrete Markov models of evolution (Chang, 1996) (see also Mossel and Roch (2006) and Hsu
et al. (2009) for adaptations to other discrete mixture models such as discrete HMMs). This spectral
technique depends only on moments up to the third-order; consequently, the resulting algorithms
have computational and sample complexity that scales only polynomially in the number of mixture
components k. The success of the technique depends on a certain rank condition of the transition
matrices; but this condition is much milder than separation conditions of clustering works, and
it remains sufficient even when the dimension of the observation space is very large (Hsu et al.,
2009). In this work, we extend Chang’s spectral technique to develop a general method of moments
approach to parameter estimation, which is applicable to a large class of mixture models and HMMs
with both discrete and continuous component distributions in high-dimensional spaces. Like the
moment methods of Moitra and Valiant (2010) and Belkin and Sinha (2010), our algorithm does not
require a separation condition; but unlike those previous methods, the algorithm has computational
and sample complexity polynomial in k.

Some previous spectral approaches for related learning problems only use second-order mo-
ments, but these approaches can only estimate a subspace containing the parameter vectors and
not the parameters themselves (McSherry, 2001). Indeed, it is known that the parameters of even
very simple discrete mixture models are not generally identifiable from only second-order mo-
ments (Chang, 1996)1. We note that moments beyond the second-order (specifically, fourth-order
moments) have been exploited in the methods of Frieze et al. (1996) and Nguyen and Regev (2009)
for the problem of learning a parallelepiped from random samples, and that these methods are very
related to techniques used for independent component analysis (Hyvärinen and Oja, 2000). Adapt-
ing these techniques for other parameter estimation problems is an enticing possibility.

Multi-view learning. The spectral technique we employ depends on the availability of multiple
views, and such a multi-view assumption has been exploited in previous works on learning mixtures
of well-separated distributions (Chaudhuri and Rao, 2008; Chaudhuri et al., 2009). In these previous
works, a projection based on a canonical correlation analysis (Hotelling, 1935) between two views
is used to reinforce the separation between the mixture components, and to cancel out noise orthogo-
nal to the separation directions. The present work, which uses similar correlation-based projections,
shows that the availability of a third view of the data can remove the separation condition entirely.
The multi-view assumption substantially generalizes the case where the component distributions
are product distributions (such as axis-aligned Gaussians), which has been previously studied in the

1. See Appendix G for an example of Chang (1996) demonstrating the non-identifiability of parameters from only
second-order moments in a simple class of Markov models.
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literature (Dasgupta, 1999; Vempala and Wang, 2002; Chaudhuri and Rao, 2008; Feldman et al.,
2005, 2006); the combination of this and a non-degeneracy assumption is what allows us to avoid
the sample complexity lower bound of Moitra and Valiant (2010) for Gaussian mixture models. The
multi-view assumption also naturally arises in many applications, such as in multimedia data with
(say) text, audio, and video components (Blaschko and Lampert, 2008; Chaudhuri et al., 2009); as
well as in linguistic data, where the different words in a sentence or paragraph are considered noisy
predictors of the underlying semantics (Gale et al., 1992). In the vein of this latter example, we
consider estimation in a simple bag-of-words document topic model as a warm-up to our general
method; even this simpler model illustrates the power of pair-wise and triple-wise (i.e., bigram and
trigram) statistics that were not exploited by previous works on multi-view learning.

1.2. Outline

Section 2 first develops the method of moments in the context of a simple discrete mixture model
motivated by document topic modeling; an explicit algorithm and convergence analysis are also
provided. The general setting is considered in Section 3, where the main algorithm and its accom-
panying correctness and efficiency guarantee are presented. Applications to learning multi-view
mixtures of Gaussians and HMMs are discussed in Section 4. Proofs and additional discussion are
provided in the appendices.

1.3. Notations

The standard inner product between vectors ~u and ~v is denoted by 〈~u,~v〉 = ~u>~v. We denote the
p-norm of a vector ~v by ‖~v‖p. For a matrix A ∈ Rm×n, we let ‖A‖2 denote its spectral norm
‖A‖2 := sup~v 6=~0 ‖A~v‖2/‖~v‖2, ‖A‖F denote its Frobenius norm, σi(A) denote the i-th largest
singular value, and κ(A) := σ1(A)/σmin(m,n)(A) denote its condition number. Let ∆n−1 :=
{(p1, p2, . . . , pn) ∈ Rn : pi ≥ 0 ∀i,

∑n
i=1 pi = 1} denote the probability simplex in Rn, and

let Sn−1 := {~u ∈ Rn : ‖~u‖2 = 1} denote the unit sphere in Rn. Let ~ei ∈ Rd denote the i-th
coordinate vector whose i-th entry is 1 and the rest are zero. Finally, for a positive integer n, let
[n] := {1, 2, . . . , n}.

2. Warm-up: bag-of-words document topic modeling

We first describe our method of moments in the simpler context of bag-of-words models for docu-
ments. Proofs of lemmas and theorems in this section are given in Appendix A.

2.1. Setting

Suppose a document corpus can be partitioned by topic, with each document being assigned a single
topic. Further, suppose the words in a document are drawn independently from a multinomial
distribution corresponding to the document’s topic. Let k be the number of distinct topics in the
corpus, d be the number of distinct words in the vocabulary, and ` ≥ 3 be the number of words in
each document (so the documents may be quite short).

The generative process for a document is given as follows:

1. The document’s topic is drawn according to the multinomial distribution specified by the
probability vector ~w = (w1, w2, . . . , wk) ∈ ∆k−1. This is modeled as a discrete random
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variable h such that
Pr[h = j] = wj , j ∈ [k].

2. Given the topic h, the document’s ` words are drawn independently according to the multi-
nomial distribution specified by the probability vector ~µh ∈ ∆d−1. The random vectors
~x1, ~x2, . . . , ~x` ∈ Rd represent the ` words by setting

~xv = ~ei ⇔ the v-th word in the document is i, i ∈ [d]

(the reason for this encoding of words will become clear in the next section). Therefore, for
each word v ∈ [`] in the document,

Pr[~xv = ~ei|h = j] = 〈~ei, ~µj〉 = Mi,j , i ∈ [d], j ∈ [k],

where M ∈ Rd×k is the matrix of conditional probabilities M := [~µ1|~µ2| · · · |~µk].

This probabilistic model has the conditional independence structure depicted in Figure 3(a) as a
directed graphical model.

We assume the following condition on ~w and M .

Condition 1 (Non-degeneracy: document topic model) wj>0 for all j∈ [k], and M has rank k.

This condition requires that each topic has non-zero probability, and also prevents any topic’s word
distribution from being a mixture of the other topics’ word distributions.

2.2. Pair-wise and triple-wise probabilities

Define Pairs ∈ Rd×d to be the matrix of pair-wise probabilities whose (i, j)-th entry is

Pairsi,j := Pr[~x1 = ~ei, ~x2 = ~ej ], i, j ∈ [d].

Also define Triples ∈ Rd×d×d to be the third-order tensor of triple-wise probabilities whose
(i, j, κ)-th entry is

Triplesi,j,κ := Pr[~x1 = ~ei, ~x2 = ~ej , ~x3 = ~eκ], i, j, κ ∈ [d].

The identification of words with coordinate vectors allows Pairs and Triples to be viewed as ex-
pectations of tensor products of the random vectors ~x1, ~x2, and ~x3:

Pairs = E[~x1 ⊗ ~x2] and Triples = E[~x1 ⊗ ~x2 ⊗ ~x3]. (1)

We may also view Triples as a linear operator Triples : Rd → Rd×d given by

Triples(~η) := E[(~x1 ⊗ ~x2)〈~η, ~x3〉].

In other words, the (i, j)-th entry of Triples(~η) for ~η = (η1, η2, . . . , ηd) is

Triples(~η)i,j =
d∑

x=1

ηxTriplesi,j,x =
d∑

x=1

ηxTriples(~ex)i,j .

The following lemma shows that Pairs and Triples(~η) can be viewed as certain matrix products
involving the model parameters M and ~w.

Lemma 1 Pairs=M diag(~w)M> and Triples(~η)=M diag(M>~η) diag(~w)M> for all ~η ∈ Rd.
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2.3. Observable operators and their spectral properties

The pair-wise and triple-wise probabilities can be related in a way that essentially reveals the con-
ditional probability matrix M . This is achieved through a matrix called an “observable operator”.
Similar observable operators were previously used to characterize multiplicity automata (Schützenberger,
1961; Jaeger, 2000) and, more recently, for learning discrete HMMs (via an operator parameteriza-
tion) (Hsu et al., 2009).

Lemma 2 Assume Condition 1. Let U ∈ Rd×k and V ∈ Rd×k be matrices such that both U>M
and V >M are invertible. Then U>PairsV is invertible, and for all ~η ∈ Rd, the “observable
operator” B(~η) ∈ Rk×k, given by

B(~η) := (U>Triples(~η)V )(U>PairsV )−1,

satisfies
B(~η) = (U>M) diag(M>~η)(U>M)−1.

The matrixB(~η) is called “observable” because it is only a function of the observable variables’
joint probabilities (e.g., Pr[~x1 = ~ei, ~x2 = ~ej ]). In the case ~η = ~ex for some x ∈ [d], the matrix
B(~ex) is similar (in the linear algebraic sense) to the diagonal matrix diag(M>~ex); the collection
of matrices {diag(M>~ex) : x ∈ [d]} (together with ~w) can be used to compute joint probabilities
under the model (see, e.g., Hsu et al. (2009)). Note that the columns of U>M are eigenvectors of
B(~ex), with the j-th column having an associated eigenvalue equal to Pr[~xv = x|h = j]. If the
word x has distinct probabilities under every topic, then B(~ex) has exactly k distinct eigenvalues,
each having geometric multiplicity one and corresponding to a column of U>M .

2.4. Topic-word distribution estimator and convergence guarantee

The spectral properties of the observable operatorsB(~η) implied by Lemma 2 suggest the estimation
procedure (Algorithm A) in Figure 1. The procedure is essentially a plug-in approach based on the
equations relating the various moments in Lemma 2. We focus on estimatingM ; the mixing weights
~w can be handled as a secondary step (see Appendix B.5).

On the choice of ~η. As discussed in the previous section, a suitable choice for ~η can be based
on prior knowledge about the topic-word distributions, such as ~η = ~ex for some x ∈ [d] that has
different conditional probabilities under each topic. In the absence of such information, one may
select ~η randomly from the subspace range(Û). Specifically, take ~η := Û~θ where ~θ ∈ Rk is a
random unit vector distributed uniformly over Sk−1.

The following theorem establishes the convergence rate of Algorithm A.

Theorem 3 There exists a constant C > 0 such that the following holds. Pick any δ ∈ (0, 1).
Assume the document topic model from Section 2.1 satisfies Condition 1. Further, assume that in
Algorithm A, P̂airs and T̂riples are, respectively, the empirical averages of N independent copies
of ~x1⊗ ~x2 and ~x1⊗ ~x2⊗ ~x3; and that ~η = Û~θ where ~θ ∈ Rk is an independent random unit vector
distributed uniformly over Sk−1. If

N ≥ C · k7 · ln(1/δ)

σk(M)6 · σk(Pairs)4 · δ2
,
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Algorithm A

1. Obtain empirical frequencies of word pairs and triples from a given sample of documents, and
form the tables P̂airs ∈ Rd×d and T̂riples ∈ Rd×d×d corresponding to the population quantities
Pairs and Triples.

2. Let Û ∈ Rd×k and V̂ ∈ Rd×k be, respectively, matrices of orthonormal left and right singular
vectors of P̂airs corresponding to its top k singular values.

3. Pick ~η ∈ Rd (see remark in the main text), and compute the right eigenvectors ξ̂1, ξ̂2, . . . , ξ̂k (of
unit Euclidean norm) of

B̂(~η) := (Û>T̂riples(~η)V̂ )(Û>P̂airsV̂ )−1.

(Fail if not possible.)

4. Let µ̂j := Û ξ̂j/〈~1, Û ξ̂j〉 for all j ∈ [k].

5. Return M̂ := [µ̂1|µ̂2| · · · |µ̂k].

Figure 1: Topic-word distribution estimator (Algorithm A).

then with probability at least 1 − δ, the parameters returned by Algorithm A have the following
guarantee: there exists a permutation τ on [k] and scalars c1, c2, . . . , ck ∈ R such that, for each
j ∈ [k],

‖cjµ̂j − ~µτ(j)‖2 ≤ C · ‖~µτ(j)‖2 ·
k5

σk(M)4 · σk(Pairs)2 · δ
·
√

ln(1/δ)

N
.

Some illustrative empirical results using Algorithm A are presented in Appendix A.5. A few
remarks about the theorem are in order.

On boosting the confidence. Although the convergence depends polynomially on 1/δ, where δ is
the failure probability, it is possible to boost the confidence by repeating Step 3 of Algorithm A with
different random ~η until the eigenvalues of B̂(~η) are sufficiently separated (as judged by confidence
intervals).

On the scaling factors cj . With a larger sample complexity that depends on d, an error bound can
be established for ‖µ̂j − ~µτ(j)‖1 directly (without the unknown scaling factors cj), but we do not
pursue this as the cj are removed in Algorithm B anyway.

3. A method of moments for multi-view mixture models

We now consider a much broader class of mixture models and present a general method of moments
in this context. Proofs of lemmas and theorems in this section are given in Appendix B.

3.1. General setting

Consider the following multi-view mixture model; k denotes the number of mixture components,
and ` denotes the number of views. We assume ` ≥ 3 throughout. Let ~w = (w1, w2, . . . , wk) ∈
∆k−1 be a vector of mixing weights, and let h be a (hidden) discrete random variable with Pr[h =
j] = wj for all j ∈ [k]. Let ~x1, ~x2, . . . , ~x` ∈ Rd be ` random vectors that are conditionally
independent given h; the directed graphical model is depicted in Figure 3(a).
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Define the conditional mean vectors as

~µv,j := E[~xv|h = j], v ∈ [`], j ∈ [k],

and let Mv ∈ Rd×k be the matrix whose j-th column is ~µv,j . Note that we do not specify anything
else about the (conditional) distribution of ~xv—it may be continuous, discrete, or even a hybrid
depending on h.

We assume the following conditions on ~w and the Mv.

Condition 2 (Non-degeneracy: general setting) wj > 0 for all j ∈ [k], and Mv has rank k for
all v ∈ [`].

We remark that it is easy to generalize to the case where views have different dimensionality (e.g.,
~xv ∈ Rdv for possibly different dimensions dv). For notational simplicity, we stick to the same
dimension for each view. Moreover, Condition 2 can be relaxed in some cases; we discuss one such
case in Section 4.1 in the context of Gaussian mixture models.

Because the conditional distribution of ~xv is not specified beyond its conditional means, it is
not possible to develop a maximum likelihood approach to parameter estimation. Instead, as in the
document topic model, we develop a method of moments based on solving polynomial equations
arising from eigenvalue problems.

3.2. Observable moments and operators

We focus on the moments concerning {~x1, ~x2, ~x3}, but the same properties hold for other triples of
the random vectors {~xa, ~xb, ~xc} ⊆ {~xv : v ∈ [`]} as well.

As in (1), we define the matrix P1,2 ∈ Rd×d of second-order moments, and the tensor P1,2,3 ∈
Rd×d×d of third-order moments, by

P1,2 := E[~x1 ⊗ ~x2] and P1,2,3 := E[~x1 ⊗ ~x2 ⊗ ~x3].

Again, P1,2,3 is regarded as the linear operator P1,2,3 : ~η 7→ E[(~x1 ⊗ ~x2)〈~η, ~x3〉].
Lemma 4 and Lemma 5 are straightforward generalizations of Lemma 1 and Lemma 2.

Lemma 4 P1,2=M1 diag(~w)M>
2 and P1,2,3(~η)=M1 diag(M>

3 ~η) diag(~w)M>
2 for all ~η ∈ Rd.

Lemma 5 Assume Condition 2. For v ∈ {1, 2, 3}, let Uv ∈ Rd×k be a matrix such that U>v Mv is
invertible. Then U>1 P1,2U2 is invertible, and for all ~η ∈ Rd, the “observable operator” B1,2,3(~η) ∈
Rk×k, given by B1,2,3(~η) := (U>1 P1,2,3(~η)U2)(U

>
1 P1,2U2)

−1, satisfies

B1,2,3(~η) = (U>1 M1) diag(M>
3 ~η)(U>1 M1)

−1.

In particular, the k roots of the polynomial λ 7→ det(B1,2,3(~η)− λI) are {〈~η, ~µ3,j〉 : j ∈ [k]}.

Recall that Algorithm A relates the eigenvectors of B(~η) to the matrix of conditional means M .
The eigenvectors are only defined up to a scaling of each vector, so without prior knowledge of the
correct scaling, they are not sufficient to recover the parameters M . Nevertheless, the eigenvalues
also carry information about the parameters, as shown in Lemma 5, and it is possible to reconstruct
the parameters from different the observation operators applied to different vectors ~η. This idea is
captured in the following lemma.
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Lemma 6 Consider the setting and definitions from Lemma 5. Let Θ ∈ Rk×k be an invertible
matrix, and let ~θ>i ∈ Rk be its i-th row. Moreover, for all i ∈ [k], let λi,1, λi,2, . . . , λi,k denote the
k eigenvalues of B1,2,3(U3

~θi) in the order specified by the matrix of right eigenvectors U>1 M1. Let
L ∈ Rk×k be the matrix whose (i, j)-th entry is λi,j . Then

ΘU>3 M3 = L.

Observe that the unknown parameters M3 are expressed as the solution to a linear system in
the above equation, where the elements of the right-hand side L are the roots of k-th degree poly-
nomials derived from the second- and third-order observable moments (namely, the characteristic
polynomials of the B1,2,3(U3

~θi), ∀i ∈ [k]). This template is also found in other moment methods
based on decompositions of a Hankel matrix. A crucial distinction, however, is that the k-th degree
polynomials in Lemma 6 only involve low-order moments, whereas standard methods may involve
up to Ω(k)-th order moments which are difficult to estimate (Lindsay, 1989; Lindsay and Basak,
1993; Gravin et al., 2012).

3.3. Main result: general estimation procedure and sample complexity bound

The lemmas in the previous section suggest the estimation procedure (Algorithm B) presented in
Figure 2.

Algorithm B

1. Compute empirical averages from N independent copies of ~x1 ⊗ ~x2 to form P̂1,2 ∈ Rd×d.
Similarly do the same for ~x1 ⊗ ~x3 to form P̂1,3 ∈ Rk×k, and for ~x1 ⊗ ~x2 ⊗ ~x3 to form P̂1,2,3 ∈
Rd×d×d.

2. Let Û1 ∈ Rd×k and Û2 ∈ Rd×k be, respectively, matrices of orthonormal left and right singular
vectors of P̂1,2 corresponding to its top k singular values. Let Û3 ∈ Rd×k be the matrix of
orthonormal right singular vectors of P̂1,3 corresponding to its top k singular values.

3. Pick an invertible matrix Θ ∈ Rk×k, with its i-th row denoted as ~θ>
i ∈ Rk. In the absence of any

prior information about M3, a suitable choice for Θ is a random rotation matrix.
Form the matrix B̂1,2,3(Û3

~θ1) := (Û>
1 P̂1,2,3(Û3

~θ1)Û2)(Û>
1 P̂1,2Û2)−1.

Compute R̂1 ∈ Rk×k (with unit Euclidean norm columns) that diagonalizes B̂1,2,3(Û3
~θ1), i.e.,

R̂−1
1 B̂1,2,3(Û3

~θ1)R̂1 = diag(λ̂1,1, λ̂1,2, . . . , λ̂1,k). (Fail if not possible.)

4. For each i ∈ {2, . . . , k}, obtain the diagonal entries λ̂i,1, λ̂i,2, . . . , λ̂i,k of R̂−1
1 B̂1,2,3(Û3

~θi)R̂1,
and form the matrix L̂ ∈ Rk×k whose (i, j)-th entry is λ̂i,j .

5. Return M̂3 := Û3Θ−1L̂.

Figure 2: General method of moments estimator (Algorithm B).

As stated, the Algorithm B yields an estimator for M3, but the method can easily be applied to
estimate Mv for all other views v. One caveat is that the estimators may not yield the same ordering
of the columns, due to the unspecified order of the eigenvectors obtained in the third step of the
method, and therefore some care is needed to obtain a consistent ordering. We outline one solution
in Appendix B.4.

The sample complexity of Algorithm B depends on the specific concentration properties of
~x1, ~x2, ~x3. We abstract away this dependence in the following condition.
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Condition 3 There exist positive scalars N0, C1,2, C1,3, C1,2,3, and a function f(N, δ) (decreasing
in N and δ) such that for any N ≥ N0 and δ ∈ (0, 1),

1. Pr
[
‖P̂a,b − Pa,b‖2 ≤ Ca,b · f(N, δ)

]
≥ 1− δ for {a, b} ∈ {{1, 2}, {1, 3}},

2. ∀~v ∈ Rd, Pr
[
‖P̂1,2,3(~v)− P1,2,3(~v)‖2 ≤ C1,2,3 · ‖~v‖2 · f(N, δ)

]
≥ 1− δ.

Moreover (for technical convenience), P̂1,3 is independent of P̂1,2,3 (which may be achieved, say, by
splitting a sample of size 2N ).

For the discrete models such as the document topic model of Section 2.1 and discrete HMMs (Mos-
sel and Roch, 2006; Hsu et al., 2009), Condition 3 holds with N0 = C1,2 = C1,3 = C1,2,3 = 1,
and f(N, δ) = (1 +

√
ln(1/δ))/

√
N . Using standard techniques (e.g., Chaudhuri et al. (2009);

Vershynin (2012)), the condition can also be shown to hold for mixtures of various continuous
distributions such as multivariate Gaussians.

Now we are ready to present the main theorem of this section.

Theorem 7 There exists a constant C > 0 such that the following holds. Assume the three-view
mixture model satisfies Condition 2 and Condition 3. Pick any ε ∈ (0, 1) and δ ∈ (0, δ0). Further,
assume Θ ∈ Rk×k is an independent random rotation matrix distributed uniformly over the Stiefel
manifold {Q ∈ Rk×k : Q>Q = I}. If the number of samples N satisfies N ≥ N0 and

f(N, δ/k) ≤ C ·
mini6=j ‖M3(~ei − ~ej)‖2 · σk(P1,2)

C1,2,3 · k5 · κ(M1)4
· δ

ln(k/δ)
· ε,

f(N, δ) ≤ C ·min

{
mini6=j ‖M3(~ei − ~ej)‖2 · σk(P1,2)

2

C1,2 · ‖P1,2,3‖2 · k5 · κ(M1)4
· δ

ln(k/δ)
,
σk(P1,3)

C1,3

}
· ε

where ‖P1,2,3‖2 := max~v 6=~0 ‖P1,2,3(~v)‖2, then with probability at least 1−5δ, Algorithm B returns

M̂3 = [µ̂3,1|µ̂3,2| · · · |µ̂3,k] with the following guarantee: there exists a permutation τ on [k] such
that for each j ∈ [k],

‖µ̂3,j − ~µ3,τ(j)‖2 ≤ max
j′∈[k]

‖~µ3,j′‖2 · ε.

4. Applications

In addition to the document clustering model from Section 2, a number of natural latent variable
models fit into this multi-view framework. We describe two such cases in this section: Gaussian
mixture models and HMMs, both of which have been (at least partially) studied in the literature. In
both cases, the estimation technique of Algorithm B leads to new learnability results that were not
achieved by previous works.

4.1. Multi-view and axis-aligned Gaussian mixture models

The standard Gaussian mixture model is parameterized by a mixing weight wj , mean vector ~µj ∈
RD, and covariance matrix Σj ∈ RD×D for each mixture component j ∈ [k]. The hidden dis-
crete random variable h selects a component j with probability Pr[h = j] = wj ; the conditional
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distribution of the observed random vector ~x given h is a multivariate Gaussian with mean ~µh and
covariance Σh.

The multi-view assumption for Gaussian mixture models asserts that for each component j, the
covariance Σj has a block diagonal structure Σj = blkdiag(Σ1,j , Σ2,j , . . . , Σ`,j) (a special case
is an axis-aligned Gaussian). The various blocks correspond to the ` different views of the data
~x1, ~x2, . . . , ~x` ∈ Rd (for d = D/`), which are conditionally independent given h. The mean vector
for each component j is similarly partitioned into the views as ~µj = (~µ1,j , ~µ2,j , . . . , ~µ`,j). In the
case of an axis-aligned Gaussian, each covariance matrix Σj is diagonal, and therefore the original
coordinates [D] can be partitioned into ` = O(D/k) views (each of dimension d = Ω(k)) in any
way (say, randomly).2

Condition 2 requires that the conditional mean matrix Mv = [~µv,1|~µv,2| · · · |~µv,k] for each view
v have full column rank (see Appendix D.2 for a possible relaxation). This is similar to the non-
degeneracy and spreading conditions used in previous studies of multi-view clustering (Chaudhuri
and Rao, 2008; Chaudhuri et al., 2009). In these previous works, the multi-view and non-degeneracy
assumptions are shown to reduce the minimum separation required for various efficient algorithms
to learn the model parameters. In comparison, Algorithm B does not require a minimum separation
condition at all.

Condition 3 can be established for this class of mixture models (in fact, even when the com-
ponent distributions are simply subgaussian; see Appendix D.3 for details). Therefore, Algorithm
B can be used to recover the means of each component distribution (and the covariances can be
recovered as well; see Appendix D.4).

4.2. Hidden Markov models

A hidden Markov model is a latent variable model in which a hidden state sequence h1, h2, . . . , h`
forms a Markov chain h1 → h2 → · · · → h` over k possible states [k]; and given the state ht
at time t ∈ [k], the observation ~xt at time t (a random vector taking values in Rd) is condition-
ally independent of all other observations and states. The directed graphical model is depicted in
Figure 3(b).

The vector ~π ∈ ∆k−1 is the initial state distribution: Pr[h1 = i] = πi for all i ∈ [k]. For
simplicity, we only consider time-homogeneous HMMs, although it is possible to generalize to
the time-varying setting. The matrix T ∈ Rk×k is a stochastic matrix describing the hidden state
Markov chain: Pr[ht+1 = i|ht = j] = Ti,j for all i, j ∈ [k], t ∈ [` − 1]. Finally, the columns of
the matrix O = [~o1|~o2| · · · |~ok] ∈ Rd×k are the conditional means of the observation ~xt at time t
given the corresponding hidden state ht: E[~xt|ht = i] = O~ei = ~oi for all i ∈ [k], t ∈ [`]. Note that
both discrete and continuous observations are readily handled in this framework. For instance, the
conditional distribution of ~xt given ht = i (for i ∈ [k]) could be a high-dimensional multivariate
Gaussian with mean ~oi ∈ Rd. Such models were not handled by previous methods (Mossel and
Roch, 2006; Hsu et al., 2009).

The restriction of the HMM to three time steps, say t ∈ {1, 2, 3}, is an instance of the three-view
mixture model.

Proposition 8 If the hidden variable h (from the three-view mixture model of Section 3.1) is iden-
tified with the second hidden state h2, then {~x1, ~x2, ~x3} are conditionally independent given h,

2. For product distributions (e.g., axis-aligned Gaussians) satisfying a certain incoherence condition, Condition 2 can
be established using a random partitioning of the coordinates; see Appendix D.1 for details.
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and the parameters of the resulting three-view mixture model on (h, ~x1, ~x2, ~x3) are ~w := T~π,
M1 := O diag(~π)T> diag(T~π)−1, M2 := O, and M3 := OT .

From Proposition 8, it is easy to verify that B3,1,2(~η) = (U>3 OT ) diag(O>~η)(U>3 OT )−1. There-
fore, after recovering the observation conditional mean matrix O using Algorithm B, the Markov
chain transition matrix can be recovered using the matrix of right eigenvectors R of B3,1,2(~η) and
the equation (U>3 O)−1R = T (up to scaling of the columns).
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Appendix A. Proofs and details from Section 2

In this section, we provide omitted proofs and discussion from Section 2 (deferring most pertur-
bation arguments to Appendix C), and also present some illustrative empirical results on text data
using a modified version of Algorithm A.

A.1. Proof of Lemma 1

Since ~x1, ~x2, and ~x3 are conditionally independent given h,

Pairsi,j = Pr[~x1 = ~ei, ~x2 = ~ej ] =

k∑
t=1

Pr[~x1 = ~ei, ~x2 = ~ej |h = t] · Pr[h = t]

=

k∑
t=1

Pr[~x1 = ~ei|h = t] · Pr[~x2 = ~ej |h = t] · Pr[h = t] =

k∑
t=1

Mi,t ·Mj,t · wt
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so Pairs = M diag(~w)M>. Moreover, writing ~η = (η1, η2, . . . , ηd),

Triples(~η)i,j =
d∑

x=1

ηx Pr[~x1 = ~ei, ~x2 = ~ej , ~x3 = ~ex]

=

d∑
x=1

k∑
t=1

ηx ·Mi,t ·Mj,t ·Mx,t · wt =

k∑
t=1

Mi,t ·Mj,t · wt · (M>~η)t

so Triples(~η) = M diag(M>~η) diag(~w)M>.

A.2. Proof of Lemma 2

Since diag(~w) � 0 by Condition 1 and U>PairsV = (U>M) diag(~w)M>V by Lemma 1, it
follows that U>PairsV is invertible by the assumptions on U and V . Moreover, also by Lemma 1,

B(~η) = (U>Triples(~η)V ) (U>PairsV )−1

= (U>M diag(M>~η) diag(~w)M>V ) (U>PairsV )−1

= (U>M) diag(M>~η)(U>M)−1 (U>M diag(~w)M>V ) (U>PairsV )−1

= (U>M) diag(M>~η)(U>M)−1.

A.3. Accuracy of moment estimates

Lemma 9 Fix δ ∈ (0, 1). Let P̂airs be the empirical average of N independent copies of ~x1 ⊗ ~x2,
and let T̂riples be the empirical average of N independent copies of (~x1 ⊗ ~x2)〈~η, ~x3〉. Then

1. Pr

[
‖P̂airs− Pairs‖F ≤

1 +
√

ln(1/δ)√
N

]
≥ 1− δ, and

2. Pr

[
∀~η ∈ Rd, ‖T̂riples(~η)− Triples(~η)‖F ≤

‖~η‖2(1 +
√

ln(1/δ))√
N

]
≥ 1− δ.

Proof The first claim follows from applying Lemma 24 to the vectorizations of P̂airs and Pairs
(whereupon the Frobenius norm is the Euclidean norm of the vectorized matrices). For the second
claim, we also apply Lemma 24 to T̂riples and Triples in the same way to obtain, with probability
at least 1− δ,

d∑
i=1

d∑
j=1

d∑
x=1

(T̂riplesi,j,x − Triplesi,j,x)2 ≤
(1 +

√
ln(1/δ))2

N
.
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Now condition on this event. For any ~η = (η1, η2, . . . , ηd) ∈ Rd,

‖T̂riples(~η)− Triples(~η)‖2F =
d∑
i=1

d∑
j=1

∣∣∣∣∣
d∑

x=1

ηx(T̂riplesi,j,x − Triplesi,j,x)

∣∣∣∣∣
2

≤
d∑
i=1

d∑
j=1

‖~η‖22
d∑

x=1

(T̂riplesi,j,x − Triplesi,j,x)2

≤
‖~η‖22(1 +

√
ln(1/δ))2

N

where the first inequality follows by Cauchy-Schwarz.

A.4. Proof of Theorem 3

Let E1 be the event in which

‖P̂airs− Pairs‖2 ≤
1 +

√
ln(1/δ)√
N

(2)

and

‖T̂riples(~v)− Triples(~v)‖2 ≤
‖v‖2(1 +

√
ln(1/δ))√

N
(3)

for all ~v ∈ Rd. By Lemma 9, a union bound, and the fact that ‖A‖2 ≤ ‖A‖F, we have Pr[E1] ≥
1− 2δ. Now condition on E1, and let E2 be the event in which

γ := min
i6=j
|〈Û~θ,M(~ei − ~ej)〉| = min

i6=j
|〈~θ, Û>M(~ei − ~ej)〉| >

√
2σk(Û

>M) · δ√
ek
(
k
2

) . (4)

By Lemma 15 and the fact ‖Û>M(~ei − ~ej)‖2 ≥
√

2σk(Û
>M), we have Pr[E2|E1] ≥ 1 − δ, and

thus Pr[E1 ∩E2] ≥ (1− 2δ)(1− δ) ≥ 1− 3δ. So henceforth condition on this joint event E1 ∩E2.

Let ε0 := ‖P̂airs−Pairs‖2
σk(Pairs)

, ε1 := ε0
1−ε0 , and ε2 := ε0

(1−ε21)·(1−ε0−ε21)
. The conditions on N and

the bound in (2) implies that ε0 < 1
1+
√
2
≤ 1

2 , so Lemma 10 implies that σk(Û>M) ≥
√

1− ε21 ·
σk(M), κ(Û>M) ≤ ‖M‖2√

1−ε21·σk(M)
, and that Û>PairsV̂ is invertible. By Lemma 2,

B̃(~η) := (Û>Triples(~η)V̂ )(Û>PairsV̂ )−1 = (Û>M) diag(M>~η)(Û>M)−1.

Thus, Lemma 11 implies

‖B̂(~η)− B̃(~η)‖2 ≤
‖T̂riples(~η)− Triples(~η)‖2

(1− ε0) · σk(Pairs)
+

ε2
σk(Pairs)

. (5)

Let R := Û>M diag(‖Û>M~e1‖2, ‖Û>M~e2‖2, . . . , ‖Û>M~ek‖2)−1 and ε3 := ‖B̂(~η)−B̃(~η)‖2·κ(R)
γ .

Note that R has unit norm columns, and that R−1B̃(~η)R = diag(M>~η). By Lemma 14 and the
fact ‖M‖2 ≤

√
k‖M‖1 =

√
k,

‖R−1‖2 ≤ κ(Û>M) ≤ ‖M‖2√
1− ε21 · σk(M)

≤
√
k√

1− ε21 · σk(M)
(6)
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and
κ(R) ≤ κ(Û>M)2 ≤ k

(1− ε21) · σk(M)2
. (7)

The conditions on N and the bounds in (2), (3), (4), (5), and (7) imply that ε3 < 1
2 . By Lemma 12,

there exists a permutation τ on [k] such that, for all j ∈ [k],

‖sj ξ̂j − Û>~µτ(j)/c′j‖2 = ‖sj ξ̂j −R~eτ(j)‖2 ≤ 4k · ‖R−1‖2 · ε3 (8)

where sj := sign(〈ξ̂j , Û>~µτ(j)〉) and c′j := ‖Û>~µτ(j)‖2 ≤ ‖~µτ(j)‖2 (the eigenvectors ξ̂j are unique
up to sign sj because each eigenvalue has geometric multiplicity 1). Since ~µτ(j) ∈ range(U),
Lemma 10 and the bounds in (8) and (6) imply

‖sjÛ ξ̂j − ~µτ(j)/c′j‖2 ≤
√
‖sj ξ̂j − Û>~µτ(j)/c′j‖22 + ‖~µτ(j)/c′j‖22 · ε21

≤ ‖sj ξ̂j − Û>~µτ(j)/c′j‖2 + ‖~µτ(j)/c′j‖2 · ε1
≤ 4k · ‖R−1‖2 · ε3 + ε1

≤ 4k ·
√
k√

1− ε21 · σk(M)
· ε3 + ε1.

Therefore, for cj := sjc
′
j〈~1, Û ξ̂j〉, we have

‖cjµ̂j − ~µτ(j)‖2 = ‖c′jsjÛ ξ̂j − ~µτ(j)‖2 ≤ ‖~µτ(j)‖2 ·
(

4k ·
√
k√

1− ε21 · σk(M)
· ε3 + ε1

)
.

Making all of the substitutions into the above bound gives

‖cjµ̂j − ~µτ(j)‖2
‖~µτ(j)‖2

≤ 4k1.5√
1− ε21 · σk(M)

· k

(1− ε21) · σk(M)2
·

√
ek ·

(
k
2

)√
2(1− ε21) · σk(M) · δ

·
(
‖T̂riples(~η)− Triples(~η)‖2

(1− ε0) · σk(Pairs)
+

‖P̂airs− Pairs‖2
(1− ε21) · (1− ε0 − ε21) · σk(Pairs)2

)
+
‖P̂airs− Pairs‖2

(1− ε0) · σk(Pairs)

≤ C · k5

σk(M)4 · σk(Pairs)2 · δ
·
√

ln(1/δ)

N
.

A.5. Some illustrative empirical results

As a demonstration of feasibility, we applied a modified version of Algorithm A to a subset of arti-
cles from the “20 Newsgroups” dataset, specifically those in comp.graphics, rec.sport.baseball,
sci.crypt, and soc.religion.christian, where ~x1, ~x2, ~x3 represent three words from
the beginning (first third), middle (middle third), and end (last third) of an article. We used k = 25
(although results were similar for k ∈ {10, 15, 20, 25, 30}) and d = 5441 (after removing a standard
set of 524 stop-words and applying Porter stemming). Instead of using a single ~η and extracting all
eigenvectors of B̂(~η), we extracted a single eigenvector ~ξx from B̂(~ex) for several words x ∈ [d]
(these x’s were chosen using an automatic heuristic based on their statistical leverage scores in
P̂airs). Below, for each such (B̂(~ex), ~ξx), we report the top 15 words y ordered by ~e>y Û ~ξx value.
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B̂(~eformat) B̂(~egod) B̂(~ekey) B̂(~epolygon) B̂(~eteam) B̂(~etoday)

source god key polygon win game
find write bit time game tiger
post jesus chip save run bit

image christian system refer team run
feal christ encrypt book year pitch

intersect people car source don day
email time repository man watch team

rpi apr ve routine good true
time sin public netcom score lot

problem bible escrow gif yankees book
file day secure record pitch lost

program church make subscribe start colorado
gif person clipper change bit fan
bit book write algorithm time apr

jpeg life nsa scott wonder watch

The first and fourth topics appear to be about computer graphics (comp.graphics), the fifth and
sixth about baseball (rec.sports.baseball), the third about encryption (sci.crypt), and
the second about Christianity (soc.religion.christian).

We also remark that Algorithm A can be implemented so that it makes just two passes over the
training data, and that simple hashing or random projection tricks can reduce the memory require-
ment to O(k2 + kd) (i.e., P̂airs and T̂riples never need to be explicitly formed).

Appendix B. Proofs and details from Section 3

In this section, we provide omitted proofs and discussion from Section 3.

B.1. Proof of Lemma 4

By conditional independence,

P1,2 = E[E[~x1 ⊗ ~x2|h]] = E[E[~x1|h]⊗ E[~x2|h]]

= E[(M1~eh)⊗ (M2~eh)] = M1

( k∑
t=1

wt~et ⊗ ~et
)
M>

2 = M1 diag(~w)M>
2 .

Similarly,

P1,2,3(~η) = E[E[(~x1 ⊗ ~x2)〈~η, ~x3〉|h]] = E[E[~x1|h]⊗ E[~x2|h]〈~η,E[~x3|h]〉]

= E[(M1~eh)⊗ (M2~eh)〈~η,M3~eh〉] = M1

( k∑
t=1

wt~eh ⊗ ~eh〈~η,M3~eh〉
)
M>

2

= M1 diag(M>
3 ~η) diag(~w)M>

2 .

33.18



A METHOD OF MOMENTS FOR MIXTURE MODELS AND HMMS

B.2. Proof of Lemma 5

We have U>1 P1,2U2 = (U>1 M1) diag(~w)(M>
2 U2) by Lemma 4, which is invertible by the assump-

tions on Uv and Condition 2. Moreover, also by Lemma 4,

B1,2,3(~η) = (U>1 P1,2,3(~η)U2) (U>1 P1,2U2)
−1

= (U>1 M1 diag(M>
3 ~η) diag(~w)M>

2 U2) (U>1 P1,2U2)
−1

= (U>1 M1) diag(M>
3 ~η)(U>1 M1)

−1 (U>1 M1 diag(~w)M>
2 U2) (U>1 P1,2U2)

−1

= (U>1 M1) diag(M>
3 ~η)(U>1 M1)

−1 (U>1 P1,2U2) (U>1 P1,2U2)
−1

= (U>1 M1) diag(M>
3 ~η)(U>1 M1)

−1.

B.3. Proof of Lemma 6

By Lemma 5,

(U>1 M1)
−1B1,2,3(U3

~θi)(U
>
1 M1) = diag(M>

3 U3
~θi)

= diag(〈~θi, U>3 M3~e1〉, 〈~θi, U>3 M3~e2〉, . . . 〈~θi, U>3 M3~ek〉)
= diag(λi,1, λi,2, . . . , λi,k)

for all i ∈ [k], and therefore

L =


〈~θ1, U>3 M3~e1〉 〈~θ1, U>3 M3~e2〉 · · · 〈~θ1, U>3 M3~ek〉
〈~θ2, U>3 M3~e1〉 〈~θ2, U>3 M3~e2〉 · · · 〈~θ2, U>3 M3~e3〉

...
...

. . .
...

〈~θk, U>3 M3~e1〉 〈~θk, U>3 M3~e2〉 · · · 〈~θk, U>3 M3~ek〉

 = ΘU>3 M3.

B.4. Ordering issues

Although Algorithm B only explicitly yields estimates for M3, it can easily be applied to estimate
Mv for all other views v. The main caveat is that the estimators may not yield the same ordering
of the columns, due to the unspecified order of the eigenvectors obtained in the third step of the
method, and therefore some care is needed to obtain a consistent ordering. However, this ordering
issue can be handled by exploiting consistency across the multiple views.

The first step is to perform the estimation of M3 using Algorithm B as is. Then, to estimate M2,
one may re-use the eigenvectors in R̂1 to diagonalize B̂1,3,2(~η), as B1,2,3(~η) and B1,3,2(~η) share the
same eigenvectors. The same goes for estimating Mv for other all other views v except v = 1.

It remains to provide a way to estimate M1. Observe that M2 can be estimated in at least two
ways: via the operators B̂1,3,2(~η), or via the operators B̂3,1,2(~η). This is because the eigenvalues
of B3,1,2(~η) and B1,3,2(~η) are the identical. Because the eigenvalues are also sufficiently separated
from each other, the eigenvectors R̂3 of B̂3,1,2(~η) can be put in the same order as the eigenvectors
R̂1 of B̂1,3,2 by (approximately) matching up their respective corresponding eigenvalues. Finally,
the appropriately re-ordered eigenvectors R̂3 can then be used to diagonalize B̂3,2,1(~η) to estimate
M1.
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B.5. Estimating the mixing weights

Given the estimate of M̂3, one can obtain an estimate of ~w using

ŵ := M̂ †3 Ê[~x3]

where A† denotes the Moore-Penrose pseudoinverse of A (though other generalized inverses may
work as well), and Ê[~x3] is the empirical average of ~x3. This estimator is based on the following
observation:

E[~x3] = E[E[~x3|h]] = M3E[~eh] = M3 ~w

and therefore
M †3E[~x3] = M †3M3 ~w = ~w

since M3 has full column rank.

B.6. Proof of Theorem 7

The proof is similar to that of Theorem 3, so we just describe the essential differences. As before,
most perturbation arguments are deferred to Appendix C.

First, let E1 be the event in which

‖P̂1,2 − P1,2‖2 ≤ C1,2 · f(N, δ),

‖P̂1,3 − P1,3‖2 ≤ C1,3 · f(N, δ)

and
‖P̂1,2,3(Û3

~θi)− P1,2,3(Û3
~θi)‖2 ≤ C1,2,3 · f(N, δ/k)

for all i ∈ [k]. Therefore by Condition 3 and a union bound, we have Pr[E1] ≥ 1− 3δ. Second, let
E2 be the event in which

γ := min
i∈[k]

min
j 6=j′
|〈~θi, Û>3 M3(~ej − ~ej′)〉| >

minj 6=j′ ‖Û>3 M3(~ej − ~ej′)‖2 · δ√
ek
(
k
2

)
k

and

λmax := max
i,j∈[k]

|〈~θi, Û>3 M3~ej〉| ≤
maxj∈[k] ‖M3~ej‖2√

k

(
1 +

√
2 ln(k2/δ)

)
.

Since each ~θi is distributed uniformly over Sk−1, it follows from Lemma 15 and a union bound that
Pr[E2|E1] ≥ 1− 2δ. Therefore Pr[E1 ∩ E2] ≥ (1− 3δ)(1− 2δ) ≥ 1− 5δ.

Let U3 ∈ Rd×k be the matrix of top k orthonormal left singular vectors of M3. By Lemma 10
and the conditions on N , we have σk(Û>3 U3) ≥ 1/2, and therefore

γ ≥
mini6=i′ ‖M3(~ei − ~ei′)‖2 · δ

2
√
ek
(
k
2

)
k

and
λmax

γ
≤
√
ek3(1 +

√
2 ln(k2/δ))

δ
· κ′(M3)

where

κ′(M3) :=
maxi∈[m] ‖M3~ei‖2

mini6=i′ ‖M3(~ei − ~ei′)‖2
.
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Let ~ηi := Û3
~θi for i ∈ [k]. By Lemma 10, Û>1 P1,2Û2 is invertible, so we may define B̃1,2,3(~ηi) :=

(Û>1 P1,2,3(~ηi)Û2)(Û
>
1 P1,2Û2)

−1. By Lemma 5,

B̃1,2,3(~ηi) = (Û>1 M1) diag(M>
3 ~ηi)(Û

>
1 M1)

−1.

Also define R := Û>1 M1 diag(‖Û>1 M1~e1‖2, ‖Û>1 M1~e2‖2, . . . , ‖Û>1 M1~ek‖2)−1. Using most of the
same arguments in the proof of Theorem 3, we have

‖R−1‖2 ≤ 2κ(M1), (9)

κ(R) ≤ 4κ(M1)
2, (10)

‖B̂1,2,3(~ηi)− B̃1,2,3(~ηi)‖2 ≤
2‖P̂1,2,3(~ηi)− P1,2,3(~ηi)‖2

σk(P1,2)
+

2‖P1,2,3‖2 · ‖P̂1,2 − P1,2‖2
σk(P1,2)2

.

By Lemma 12, the operator B̂1,2,3(~η1) has k distinct eigenvalues, and hence its matrix of right
eigenvectors R̂1 is unique up to column scaling and ordering. This in turn implies that R̂−11 is unique
up to row scaling and ordering. Therefore, for each i ∈ [k], the λ̂i,j = ~e>j R̂

−1
1 B̂1,2,3(~ηi)R̂1~ej for

j ∈ [k] are uniquely defined up to ordering. Moreover, by Lemma 13 and the above bounds on
‖B̂1,2,3(~ηi)− B̃1,2,3(~ηi)‖2 and γ, there exists a permutation τ on [k] such that, for all i, j ∈ [k],

|λ̂i,j − λi,τ(j)| ≤
(

3κ(R) + 16k1.5 · κ(R) · ‖R−1‖22 · λmax/γ
)
· ‖B̂1,2,3(~ηi)− B̃1,2,3(~ηi)‖2

≤
(

12κ(M1)
2 + 256k1.5 · κ(M1)

4 · λmax/γ
)
· ‖B̂1,2,3(~ηi)− B̃1,2,3(~ηi)‖2 (11)

where the second inequality uses (9) and (10). Let ν̂j := (λ̂1,j , λ̂2,j , . . . , λ̂k,j) ∈ Rk and ~νj :=

(λ1,j , λ2,j , . . . , λk,j) ∈ Rk. Observe that ~νj = ΘÛ>3 M3~ej = ΘÛ>3 ~µ3,j by Lemma 6. By the
orthogonality of Θ, the fact ‖~v‖2 ≤

√
k‖~v‖∞ for ~v ∈ Rk, and (11)

‖Θ−1ν̂j − Û>3 ~µ3,τ(j)‖2 = ‖Θ−1(ν̂j − ~ντ(j))‖2
= ‖ν̂j − ~ντ(j)‖2
≤
√
k · ‖ν̂j − ~ντ(j)‖∞

=
√
k ·max

i
|λ̂i,j − λi,τ(j)|

≤
(

12
√
k · κ(M1)

2 + 256k2 · κ(M1)
4 · λmax/γ

)
· ‖B̂1,2,3(~ηi)− B̃1,2,3(~ηi)‖2.

Finally, by Lemma 10 (as applied to P̂1,3 and P1,3),

‖µ̂3,j − ~µ3,τ(j)‖2 ≤ ‖Θ−1ν̂j − Û>3 ~µ3,τ(j)‖2 + 2‖~µ3,τ(j)‖2 ·
‖P̂1,3 − P1,3‖2
σk(P1,3)

.

Making all of the substitutions into the above bound gives

‖µ̂3,j − ~µ3,τ(j)‖2 ≤
C

6
· k5 · κ(M1)

4 · κ′(M3) ·
ln(k/δ)

δ
·
(
C1,2,3 · f(N, δ/k)

σk(P1,2)

+
‖P1,2,3‖2 · C1,2 · f(N/δ)

σk(P1,2)2

)
+
C

6
· ‖~µ3,τ(j)‖2 ·

C1,3 · f(N, δ)

σk(P1,3)

≤ 1

2

(
max
j′∈[k]

‖~µ3,j′‖2 + ‖~µ3,τ(j)‖2
)
· ε

≤ max
j′∈[k]

‖~µ3,j′‖2 · ε.
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Appendix C. Perturbation analysis for observable operators

The following lemma establishes the accuracy of approximating the fundamental subspaces (i.e.,
the row and column spaces) of a matrix X by computing the singular value decomposition of a
perturbation X̂ of X .

Lemma 10 Let X ∈ Rm×n be a matrix of rank k. Let U ∈ Rm×k and V ∈ Rn×k be matrices
with orthonormal columns such that range(U) and range(V ) are spanned by, respectively, the left
and right singular vectors of X corresponding to its k largest singular values. Similarly define
Û ∈ Rm×k and V̂ ∈ Rn×k relative to a matrix X̂ ∈ Rm×n. Define εX := ‖X̂ −X‖2, ε0 := εX

σk(X) ,

and ε1 := ε0
1−ε0 . Assume ε0 < 1

2 . Then

1. ε1 < 1;

2. σk(X̂) = σk(Û
>X̂V̂ ) ≥ (1− ε0) · σk(X) > 0;

3. σk(Û>U) ≥
√

1− ε21;

4. σk(V̂ >V ) ≥
√

1− ε21;

5. σk(Û>XV̂ ) ≥ (1− ε21) · σk(X);

6. for any α̂ ∈ Rk and ~v ∈ range(U), ‖Û α̂− ~v‖22 ≤ ‖α̂− Û>~v‖22 + ‖~v‖22 · ε21.

Proof The first claim follows from the assumption on ε0. The second claim follows from the
assumptions and Weyl’s theorem (Lemma 20). Let the columns of Û⊥ ∈ Rm×(m−k) be an or-
thonormal basis for the orthogonal complement of range(Û), so that ‖Û>⊥U‖2 ≤ εX/σk(X̂) ≤ ε1
by Wedin’s theorem (Lemma 21). The third claim then follows because ‖Û>U‖22 = 1−‖Û>⊥U‖22 ≥
1 − ε21. The fourth claim is analogous to the third claim, and the fifth claim follows from the
third and fourth. The sixth claim follows writing ~v = U~α for some ~α ∈ Rk, and using the de-
composition ‖Û α̂ − ~v‖22 = ‖Û α̂ − Û Û>~v‖22 + ‖Û⊥Û>⊥~v‖22 = ‖α̂ − Û>~v‖22 + ‖Û>⊥(U~α)‖22 ≤
‖α̂ − Û>~v‖22 + ‖Û>⊥U‖22‖~α‖22 ≤ ‖α̂ − Û>~v‖22 + ‖~α‖22 · ε21 = ‖α̂ − Û>U~α‖22 + ‖~v‖22 · ε21 where
the last inequality follows from the argument for the third claim, and the last equality uses the or-
thonormality of the columns of U .

The next lemma bounds the error of the observation operator in terms of the errors in estimating
the second-order and third-order moments.

Lemma 11 Consider the setting and definitions from Lemma 10, and let Y ∈ Rm×n and Ŷ ∈
Rm×n be given. Define ε2 := ε0

(1−ε21)·(1−ε0−ε21)
and εY := ‖Ŷ − Y ‖2. Assume ε0 < 1

1+
√
2
. Then

1. Û>X̂V̂ and Û>XV̂ are both invertible, and ‖(Û>X̂V̂ )−1 − (Û>XV̂ )−1‖2 ≤ ε2
σk(X) ;

2. ‖(Û>Ŷ V̂ )(Û>X̂V̂ )−1 − (Û>Y V̂ )(Û>XV̂ )−1‖2 ≤ εY
(1−ε0)·σk(X) + ‖Y ‖2·ε2

σk(X) .
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Proof Let Ŝ := Û>X̂V̂ and S̃ := Û>XV̂ . By Lemma 10, Û>X̂V̂ is invertible, σk(S̃) ≥
σk(Û

>U) · σk(X) · σk(V̂ >V ) ≥ (1 − ε21) · σk(X) (so S̃ is also invertible), and ‖Ŝ − S̃‖2 ≤
ε0 · σk(X) ≤ ε0

1−ε21
· σk(S̃). The assumption on ε0 implies ε0

1−ε21
< 1; therefore the Lemma 23

implies ‖Ŝ−1 − S̃−1‖2 ≤ ‖Ŝ−S̃‖2/σk(S̃)
1−‖Ŝ−S̃‖2/σk(S̃)

· 1
σk(S̃)

≤ ε2
σk(X) , which proves the first claim. For the

second claim, observe that

‖(Û>Ŷ V̂ )(Û>X̂V̂ )−1 − (Û>Y V̂ )(Û>XV̂ )−1‖2
≤ ‖(Û>Ŷ V̂ )(Û>X̂V̂ )−1 − (Û>Y V̂ )(Û>X̂V̂ )−1‖2

+ ‖(Û>Y V̂ )(Û>X̂V̂ )−1 − (Û>Y V̂ )(Û>XV̂ )−1‖2
≤ ‖Û>Ŷ V̂ − Û>Y V̂ ‖2 · ‖(Û>X̂V̂ )−1‖2 + ‖Û>Y V̂ ‖2 · ‖(Û>X̂V̂ )−1 − (Û>XV̂ )−1‖2

≤ εY
(1− ε0) · σk(X)

+
‖Y ‖2 · ε2
σk(X)

where the first inequality follows from the triangle inequality, the second follows from the sub-
multiplicative property of the spectral norm, and the last follows from Lemma 10 and the first
claim.

The following lemma establishes standard eigenvalue and eigenvector perturbation bounds.

Lemma 12 LetA ∈ Rk×k be a diagonalizable matrix with k distinct real eigenvalues λ1, λ2, . . . , λk ∈
R corresponding to the (right) eigenvectors ~ξ1, ~ξ2, . . . , ~ξk ∈ Rk all normalized to have ‖~ξi‖2 = 1.
Let R ∈ Rk×k be the matrix whose i-th column is ~ξi. Let Â ∈ Rk×k be a matrix. Define
εA := ‖Â − A‖2, γA := mini6=j |λi − λj |, and ε3 := κ(R)·εA

γA
. Assume ε3 < 1

2 . Then there
exists a permutation τ on [k] such that the following holds:

1. Â has k distinct real eigenvalues λ̂1, λ̂2, . . . , λ̂k ∈ R, and |λ̂τ(i)−λi| ≤ ε3 ·γA for all i ∈ [k];

2. Â has corresponding (right) eigenvectors ξ̂1, ξ̂2, . . . , ξ̂k ∈ Rk, normalized to have ‖ξ̂i‖2 = 1,
which satisfy ‖ξ̂τ(i) − ~ξi‖2 ≤ 4(k − 1) · ‖R−1‖2 · ε3 for all i ∈ [k];

3. the matrix R̂ ∈ Rk×k whose i-th column is ξ̂τ(i) satisfies ‖R̂−R‖2 ≤ ‖R̂−R‖F ≤ 4k1/2(k−
1) · ‖R−1‖2 · ε3.

Proof The Bauer-Fike theorem (Lemma 22) implies that for every eigenvalue λ̂i of Â, there exists
an eigenvalue λj ofA such that |λ̂i−λj | ≤ ‖R−1(Â−A)R‖2 ≤ ε3 ·γA. Therefore, the assumption
on ε3 implies that there exists a permutation τ such that |λ̂τ(i) − λi| ≤ ε3 · γA < γA

2 . In particular,∣∣∣[λi − γA
2
, λi +

γA
2

]
∩ {λ̂1, λ̂2, . . . , λ̂k}

∣∣∣ = 1, ∀i ∈ [k]. (12)

Since Â is real, all non-real eigenvalues of Â must come in conjugate pairs; so the existence of a
non-real eigenvalue of Â would contradict (12). This proves the first claim.

For the second claim, assume for notational simplicity that the permutation τ is the identity
permutation. Let R̂ ∈ Rk×k be the matrix whose i-th column is ξ̂i. Define ~ζ>i ∈ Rk to be the
i-th row of R−1 (i.e., the i-th left eigenvector of A), and similarly define ζ̂>i ∈ Rk to be the i-th
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row of R̂−1. Fix a particular i ∈ [k]. Since {~ξ1, ~ξ2, . . . , ~ξk} forms a basis for Rk, we can write
ξ̂i =

∑k
j=1 ci,j

~ξj for some coefficients ci,1, ci,2, . . . , ci,k ∈ R. We may assume ci,i ≥ 0 (or else we

replace ξ̂i with −ξ̂i). The fact that ‖ξ̂i‖2 = ‖~ξj‖2 = 1 for all j ∈ [k] and the triangle inequality
imply 1 = ‖ξ̂i‖2 ≤ ci,i‖~ξi‖2 +

∑
j 6=i |ci,j |‖~ξj‖2 = ci,i +

∑
j 6=i |ci,j |, and therefore

‖ξ̂i − ~ξi‖2 ≤ |1− ci,i|‖~ξi‖2 +
∑
j 6=i
|ci,j‖~ξj‖2 ≤ 2

∑
j 6=i
|ci,j |

again by the triangle inequality. Therefore, it suffices to show |ci,j | ≤ 2‖R−1‖2 · ε3 for j 6= i to
prove the second claim.

Observe that Aξ̂i = A(
∑k

i′=1 ci,i′
~ξi′) =

∑k
i′=1 ci,i′λi′

~ξi′ , and therefore

k∑
i′=1

ci,i′λi′~ξi′ + (Â−A)ξ̂i = Âξ̂i = λ̂iξ̂i = λi

k∑
i′=1

ci,i′~ξi′ + (λ̂i − λi)ξ̂i.

Multiplying through the above equation by ~ζ>j , and using the fact that ~ζ>j ~ξi′ = 1{j = i′} gives

ci,jλj + ~ζ>i (Â−A)ξ̂i = λici,j + (λ̂i − λi)~ζ>j ξ̂i.

The above equation rearranges to (λj − λi)ci,j = (λ̂i − λi)~ζ>j ξ̂i + ~ζ>j (A− Â)ξ̂i and therefore

|ci,j | ≤
‖~ζj‖2 · (|λ̂i − λi|+ ‖(Â−A)ξ̂i‖2)

|λj − λi|
≤ ‖R

−1‖2 · (|λ̂i − λi|+ ‖Â−A‖2)
|λj − λi|

by the Cauchy-Schwarz and triangle inequalities and the sub-multiplicative property of the spectral
norm. The bound |ci,j | ≤ 2‖R−1‖2 · ε3 then follows from the first claim.

The third claim follows from standard comparisons of matrix norms.

The next lemma gives perturbation bounds for estimating the eigenvalues of simultaneously
diagonalizable matrices A1, A2, . . . , Ak. The eigenvectors R̂ are taken from a perturbation of the
first matrixA1, and are then subsequently used to approximately diagonalize the perturbations of the
remaining matrices A2, . . . , Ak. In practice, one may use Jacobi-like procedures to approximately
solve the joint eigenvalue problem.

Lemma 13 Let A1, A2, . . . , Ak ∈ Rk×k be diagonalizable matrices that are diagonalized by the
same matrix invertible R ∈ Rk×k with unit length columns ‖R~ej‖2 = 1, such that each Ai has k
distinct real eigenvalues:

R−1AiR = diag(λi,1, λi,2, . . . , λi,k).

Let Â1, Â2, . . . , Âk ∈ Rk×k be given. Define εA := maxi ‖Âi −Ai‖2, γA := mini minj 6=j′ |λi,j −
λi,j′ |, λmax := maxi,j |λi,j |, ε3 := κ(R)·εA

γA
, and ε4 := 4k1.5 · ‖R−1‖22 · ε3. Assume ε3 < 1

2 and
ε4 < 1. Then there exists a permutation τ on [k] such that the following holds.

1. The matrix Â1 has k distinct real eigenvalues λ̂1,1, λ̂1,2, . . . , λ̂1,k ∈ R, and |λ̂1,j − λ1,τ(j)| ≤
ε3 · γA for all j ∈ [k].
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2. There exists a matrix R̂ ∈ Rk×k whose j-th column is a right eigenvector corresponding to
λ̂1,j , scaled so ‖R̂~ej‖2 = 1 for all j ∈ [k], such that ‖R̂ − Rτ‖2 ≤ ε4

‖R−1‖2 , where Rτ is the
matrix obtained by permuting the columns of R with τ .

3. The matrix R̂ is invertible and its inverse satisfies ‖R̂−1 −R−1τ ‖2 ≤ ‖R−1‖2 · ε4
1−ε4 ;

4. For all i ∈ {2, 3, . . . , k} and all j ∈ [k], the (j, j)-th element of R̂−1ÂiR̂, denoted by
λ̂i,j := ~e>j R̂

−1ÂiR̂~ej , satisfies

|λ̂i,j − λi,τ(j)| ≤
(

1 +
ε4

1− ε4

)
·
(

1 +
ε4√

k · κ(R)

)
· ε3 · γA

+ κ(R) ·
(

1

1− ε4
+

1√
k · κ(R)

+
1√
k
· ε4

1− ε4

)
· ε4 · λmax.

If ε4 ≤ 1
2 , then |λ̂i,j − λi,τ(j)| ≤ 3ε3 · γA + 4κ(R) · ε4 · λmax.

Proof The first and second claims follow from applying Lemma 12 to A1 and Â1. The third claim
follows from applying Lemma 23 to R̂ and Rτ . To prove the last claim, first define ~ζ>j ∈ Rk (ζ̂>j ) to
be the j-th row ofR−1τ (R̂−1), and ~ξj ∈ Rk (ξ̂j) to be the j-th column ofRτ (R̂), so ~ζ>j Ai~ξj = λi,τ(j)

and ζ̂>j Âiξ̂j = ~e>j R̂
−1ÂiR̂~ej = λ̂i,j . By the triangle and Cauchy-Schwarz inequalities and the sub-

multiplicative property of the spectral norm,

|λ̂i,j − λi,τ(j)|

= |ζ̂>j Âiξ̂j − ~ζ>j Ai~ξj |

= |~ζ>j (Âi −Ai)~ξj + ~ζ>j (Âi −Ai)(ξ̂j − ~ξj) + (ζ̂j − ~ζj)>(Âi −Ai)~ξj
+ (ζ̂j − ~ζj)>(Âi −Ai)(ξ̂j − ~ξj) + (ζ̂j − ~ζj)>Ai~ξj + ~ζ>j Ai(ξ̂j − ~ξj) + (ζ̂j − ~ζj)>Ai(ξ̂j − ~ξj)|

≤ |~ζ>j (Âi −Ai)~ξj |+ |~ζ>j (Âi −Ai)(ξ̂j − ~ξj)|+ |(ζ̂j − ~ζj)>(Âi −Ai)~ξj |

+ |(ζ̂j − ~ζj)>(Âi −Ai)(ξ̂j − ~ξj)|+ |(ζ̂j − ~ζj)>Ai~ξj |+ |~ζ>j Ai(ξ̂j − ~ξj)|+ |(ζ̂j − ~ζj)>Ai(ξ̂j − ~ξj)|

≤ ‖~ζj‖2 · ‖Âi −Ai‖2 · ‖~ξj‖2 + ‖~ζj‖2 · ‖Âi −Ai‖2 · ‖ξ̂j − ~ξj‖2 + ‖ζ̂j − ~ζj‖2 · ‖Âi −Ai‖2‖~ξj‖2
+ ‖ζ̂j − ~ζj‖2 · ‖Âi −Ai‖2 · ‖ξ̂j − ~ξj‖2
+ ‖ζ̂j − ~ζj‖2 · ‖λi,τ(j)~ξj‖2 + ‖λi,τ(j)~ζj‖2 · ‖ξ̂j − ~ξj‖2 + ‖ζ̂j − ~ζj‖2 · ‖Ai‖2 · ‖ξ̂j − ~ξj‖2.

(13)

Observe that ‖~ζj‖2 ≤ ‖R−1‖2, ‖~ξj‖2 ≤ ‖R‖2, ‖ζ̂j − ~ζj‖2 ≤ ‖R̂−1 − R−1τ ‖2 ≤ ‖R−1‖2 · ε4
1−ε4 ,

‖ξ̂j−~ξj‖2 ≤ 4k·‖R−1‖2 ·ε3 (by Lemma 12), and ‖Ai‖2 ≤ ‖R‖2 ·(maxj |λi,j |)·‖R−1‖2. Therefore,
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continuing from (13), |λ̂i,j − λi,τ(j)| is bounded as

|λ̂i,j − λi,τ(j)| ≤ ‖R−1‖2 · ‖R‖2 · εA + ‖R−1‖2 · εA · 4k · ‖R−1‖2 · ε3 + ‖R−1‖2 ·
ε4

1− ε4
· εA · ‖R‖2

+ ‖R−1‖2 ·
ε4

1− ε4
· εA · 4k · ‖R−1‖2 · ε3

+ λmax · ‖R−1‖2 ·
ε4

1− ε4
· ‖R‖2 + λmax · ‖R−1‖2 · 4k · ‖R−1‖2 · ε3

+ ‖R−1‖2 ·
ε4

1− ε4
· ‖R‖2 · λmax · ‖R−1‖2 · 4k · ‖R−1‖2 · ε3

= ε3 · γA +
ε4√

k · κ(R)
· ε3 · γA +

ε4
1− ε4

· ε3 · γA

+
ε4√

k · κ(R)
· ε4

1− ε4
· ε3 · γA

+ κ(R) · 1

1− ε4
· ε4 · λmax +

1√
k
· ε4 · λmax +

κ(R)√
k
· ε4

1− ε4
· ε4 · λmax.

Rearranging gives the claimed inequality.

Lemma 14 Let V ∈ Rk×k be an invertible matrix, and let R ∈ Rk×k be the matrix whose j-th
column is V ~ej/‖V ~ej‖2. Then ‖R‖2 ≤ κ(V ), ‖R−1‖2 ≤ κ(V ), and κ(R) ≤ κ(V )2.

Proof We have R = V diag(‖V ~e1‖2, ‖V ~e2‖2, . . . , ‖V ~ek‖2)−1, so by the sub-multiplicative prop-
erty of the spectral norm, ‖R‖2 ≤ ‖V ‖2/minj ‖V ~ej‖2 ≤ ‖V ‖2/σk(V ) = κ(V ). Similarly,
‖R−1‖2 ≤ ‖V −1‖2 ·maxj ‖V ~ej‖2 ≤ ‖V −1‖2 · ‖V ‖2 = κ(V ).

The next lemma shows that randomly projecting a collection of vectors to R does not collapse
any two too close together, nor does it send any of them too far away from zero.

Lemma 15 Fix any δ ∈ (0, 1) and matrix A ∈ Rm×n (with m ≤ n). Let ~θ ∈ Rm be a random
vector distributed uniformly over Sm−1.

1. Pr

[
min
i6=j
|〈~θ,A(~ei − ~ej)〉| >

mini6=j ‖A(~ei − ~ej)‖2 · δ√
em
(
n
2

) ]
≥ 1− δ.

2. Pr

[
∀i ∈ [m], |〈~θ,A~ei〉| ≤

‖A~ei‖2√
m

(
1 +

√
2 ln(m/δ)

)]
≥ 1− δ.

Proof For the first claim, let δ0 := δ/
(
n
2

)
. By Lemma 25, for any fixed pair {i, j} ⊆ [n] and

β := δ0/
√
e,

Pr

[
|〈~θ,A(~ei − ~ej)〉| ≤ ‖A(~ei − ~ej)‖2 ·

1√
m
· δ0√

e

]
≤ exp

(
1

2
(1− (δ20/e) + ln(δ20/e))

)
≤ δ0.

Therefore the first claim follows by a union bound over all
(
n
2

)
pairs {i, j}.
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For the second claim, apply Lemma 25 with β := 1 + t and t :=
√

2 ln(m/δ) to obtain

Pr

[
|〈~θ,A~ei〉| ≥

‖A~ei‖2√
m
· (1 + t)

]
≤ exp

(
1

2

(
1− (1 + t)2 + 2 ln(1 + t)

))
≤ exp

(
1

2

(
1− (1 + t)2 + 2t

))
= e−t

2/2 = δ/m.

Therefore the second claim follows by taking a union bound over all i ∈ [m].

Appendix D. Proofs and details from Section 4

In this section, we provide omitted proofs and details from Section 4.

D.1. Learning mixtures of product distributions

In this section, we show how to use Algorithm B with mixtures of product distributions in Rn that
satisfy an incoherence condition on the means ~µ1, ~µ2, . . . , ~µk ∈ Rn of k component distributions.
Note that product distributions are just a special case of the more general class of multi-view distri-
butions, which are directly handled by Algorithm B.

The basic idea is to randomly partition the coordinates into ` ≥ 3 “views”, each of roughly the
same dimension. Under the assumption that the component distributions are product distributions,
the multi-view assumption is satisfied. What remains to be checked is that the non-degeneracy
condition (Condition 2) is satisfied. Theorem 16 (below) shows that it suffices that the original
matrix of component means have rank k and satisfy the following incoherence condition.

Condition 4 (Incoherence condition) Let δ ∈ (0, 1), ` ∈ [n], and M = [~µ1|~µ2| · · · |~µk] ∈ Rn×k
be given; let M = USV > be the thin singular value decomposition of M , where U ∈ Rn×k is a
matrix of orthonormal columns, S = diag(σ1(M), σ2(M), . . . , σk(M)) ∈ Rk×k, and V ∈ Rk×k
is orthogonal; and let

cM := max
j∈[n]

{
n

k
· ‖U>~ej‖22

}
.

The following inequality holds:

cM ≤
9

32
· bn/`c
k · ln `·k

δ

.

Note that cM is always in the interval [1, n/k]; it is smallest when the left singular vectors in U have
±1/
√
n entries (as in a Hadamard basis), and largest when the singular vectors are the coordinate

axes. Roughly speaking, the incoherence condition requires that the non-degeneracy of a matrix
M be witnessed by many vertical blocks of M . When the condition is satisfied, then with high
probability, a random partitioning of the coordinates into ` groups induces a block partitioning of
M into ` matrices M1,M2, . . . ,M` (with roughly equal number of rows) such that the k-th largest
singular value of Mv is not much smaller than that of M (for each v ∈ [`]).

Chaudhuri and Rao (2008) show that under a similar condition (which they call a spreading con-
dition), a random partitioning of the coordinates into two “views” preserves the separation between
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the means of k component distributions. They then follow this preprocessing with a projection
based on the correlations across the two views (similar to CCA). However, their overall algorithm
requires a minimum separation condition on the means of the component distributions. In contrast,
Algorithm B does not require a minimum separation condition at all in this setting.

Theorem 16 Assume Condition 4 holds. With probability at least 1−δ, a uniformly chosen random
partitioning of [n] into ` disjoint sets [n] = I1 ∪ I2 ∪ · · · ∪ I`, each of size at least

|Iv| ≥
⌈

32

9
· cM · k · ln

` · k
δ

⌉
,

has the following property: for each v ∈ [`], the matrix Mv ∈ R|Iv |×k formed by selecting the rows
of M indexed by Iv and scaling by

√
n/|Iv|, satisfies

σk(Mv) ≥ σk(M)/2.

Proof Follows from Lemma 17 (below) together with a union bound.

Lemma 17 Assume Condition 4 holds. Consider a random subset {J1, J2, . . . , Jd} ⊆ [n] of size d
chosen uniformly at random without replacement, and let M̃ be the random d× k matrix given by

M̃ :=

√
n

d
·


~e>J1M

~e>J2M
...

~e>JdM

 .
If

d ≥ 32

9
· cM · k · ln

k

δ
,

then
Pr
[
σk(M̃) ≥ σk(M)/2

]
≥ 1− δ.

Proof Let {I1, I2, . . . , Id} ⊆ [n] be a random subset of size d chosen uniformly at random with
replacement, and let M̂ be the random d× k matrix given by

M̂ :=

√
n

d
·


~e>I1M

~e>I2M
...

~e>IdM

 .
By Proposition 18, for any τ > 0,

Pr[σk(M̃) < τ ] ≤ Pr[σk(M̂) < τ ].

Therefore, henceforth, we just work with M̂ (i.e., sampling with replacement).
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Note that

σk(M̂) =

√
λmin(M̂>M̂).

For each j ∈ [d], let Xj := n · (U>~eIj )⊗ (U>~eIj ), so

M̂>M̂ =
n

d

d∑
j=1

(M>~eIj )⊗ (M>~eIj ) = V S

(
1

d

d∑
j=1

Xj

)
SV >

and

λmin(M̂>M̂) ≥ λmin(S)2 · λmin

(
1

d

d∑
j=1

Xj

)
= σk(M)2 · λmin

(
1

d

d∑
j=1

Xj

)
.

Observe that

E[Xj ] =

n∑
i=1

Pr[Ij = i] · n · (U>~ei)⊗ (U>~ei) = I

and that
λmax(Xj) ≤ n ·max

i∈[n]
{‖U>~ei‖22} = cM · k, almost surely.

By Lemma 26 (a Chernoff bound on extremal eigenvalues of random symmetric matrices),

Pr

[
λmin

(
1

d

d∑
j=1

Xj

)
≤ 1

4

]
≤ k · e−d(3/4)2/(2cMk) ≤ δ.

The claim follows.

Proposition 18 (Reduction to sampling with replacement) Consider any m × n matrix A. For
any t ∈ [m], let Ãt be a random t × n submatrix of A formed by choosing a random subset of t
rows of A uniformly at random without replacement; and let Ât be a random t× n submatrix of A
formed by choosing a random subset of t rows of A uniformly at random with replacement. Fix any
t ∈ [m] and τ > 0. Then

Pr[σn(Ãt) < τ ] ≤ Pr[σn(Ât) < τ ].

Proof This argument is similar to one given by Recht (2009). We first prove that Pr[σn(Ãt) < τ ]
is non-increasing in t. For any t′ ≤ t, consider the following coupling between Ãt and Ãt′ :

1. First, sample t row indices in [m] uniformly at random without replacement, and select those
rows in A to form Ãt.

2. Then, given these t row indices, choose t− t′ of them uniformly at random without replace-
ment, and remove them to form Ãt′ .

Since σn(Ãt′) ≤ σn(Ãt),
σn(Ãt) < τ =⇒ σn(Ãt′) < τ,

and consequently
Pr[σn(Ãt) < τ ] ≤ Pr[σn(Ãt′) < τ ]. (14)
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Now we prove the proposition. Let Uniquet ∈ [t] be the number of distinct row indices selected
to form Ât. Then

Pr[Ât < τ ] =
t∑
i=1

Pr[Ât < τ |Uniquet = i] Pr[Uniquet = i]

=
t∑
i=1

Pr[Ãi < τ ] Pr[Uniquet = i]

≥
t∑
i=1

Pr[Ãt < τ ] Pr[Uniquet = i] (by (14), as i ≤ t)

= Pr[Ãt < τ ]
t∑
i=1

Pr[Uniquet = i]

= Pr[Ãt < τ ].

D.2. Relaxation of Condition 2 using higher-order moments

Even if Condition 2 does not hold (e.g., if ~µv,j ≡ ~m ∈ Rd (say) for all v ∈ [`], j ∈ [k] so all of
the component distributions have the same mean), one may still apply Algorithm B to the model
(h, ~y1, ~y2, . . . , ~y`) where ~yv ∈ Rd+d(d+1)/2 is the random vector that include both first- and second-
order terms of ~xv, i.e., ~yv is the concatenation of xv and the upper triangular part of ~xv ⊗ ~xv. In this
case, Condition 2 is replaced by a requirement that the matrices

M ′v :=
[
E[~yv|h = 1] E[~yv|h = 2] · · · E[~yv|h = k]

]
∈ R(d+d(d+1)/2)×k

of conditional means and covariances have full rank. This requirement can be met even if the means
~µv,j of the mixture components are all the same. Extending this to higher-order terms is immediate.

D.3. Empirical moments for multi-view mixtures of subgaussian distributions

The required concentration behavior of the empirical moments used by Algorithm B can be easily
established for multi-view Gaussian mixture models using known techniques (Chaudhuri et al.,
2009). This is clear for the second-order statistics P̂a,b for {a, b} ∈ {{1, 2}, {1, 3}}, and remains
true for the third-order statistics P̂1,2,3 because ~x3 is conditionally independent of ~x1 and ~x2 given
h. The magnitude of 〈Û3

~θi, ~x3〉 can be bounded for all samples (with a union bound; recall that
we make the simplifying assumption that P̂1,3 is independent of P̂1,2,3, and therefore so are Û3 and
P̂1,2,3). Therefore, one effectively only needs spectral norm error bounds for second-order statistics,
as provided by existing techniques.

Indeed, it is possible to establish Condition 3 in the case where the conditional distribution of
~xv given h (for each view v) is subgaussian. Specifically, we assume that there exists some α > 0
such that for each view v and each component j ∈ [k],

E
[
exp
(
λ〈~u, cov(~xv|h = j)−1/2(~xv − E[~xv|h = j])〉

)]
≤ exp(αλ2/2), ∀λ ∈ R, ~u ∈ Sd−1
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where cov(~x|h = j) := E[(~xv − E[~xv|h = j]) ⊗ (~xv − E[~xv|h = j])|h = j] is assumed to be
positive definite. Using standard techniques (e.g., Vershynin (2012)), Condition 3 can be shown to
hold under the above conditions with the following parameters (for some universal constant c > 0):

wmin := min
j∈[k]

wj

N0 := c · α
3/2(d+ log(1/δ))

wmin
log

α3/2(d+ log(1/δ))

wmin

Ca,b := c ·
(

max
{
‖ cov(~xv|h = j)‖1/22 , ‖E[~xv|h = j]‖2 : v ∈ {a, b}, j ∈ [k]

})2
C1,2,3 := c ·

(
max

{
‖ cov(~xv|h = j)‖1/22 , ‖E[~xv|h = j]‖2 : v ∈ [3], j ∈ [k]

})3
f(N, δ) :=

√
k2 log(1/δ)

N
+

√
α3/2

√
log(N/δ)(d+ log(1/δ))

wminN
.

D.4. Recovering the component covariances

While Algorithm B recovers just the means of the mixture components, we remark that a slight
variation can be used to recover the covariances as well. Note that

E[~xv ⊗ ~xv|h] = (Mv~eh)⊗ (Mv~eh) +Σv,h = ~µv,h ⊗ ~µv,h +Σv,h

for all v ∈ [`]. For a pair of vectors ~φ ∈ Rd and ~ψ ∈ Rd, define the matrix Q1,2,3(~φ, ~ψ) ∈ Rd×d of
fourth-order moments by Q1,2,3(~φ, ~ψ) := E[(~x1 ⊗ ~x2)〈~φ, ~x3〉〈~ψ, ~x3〉].

Proposition 19 Under the setting of Lemma 5, the matrix given by

F1,2,3(~φ, ~ψ) := (U>1 Q1,2,3(~φ, ~ψ)U2)(U
>
1 P1,2U2)

−1

satisfies F1,2,3(~φ, ~ψ) = (U>1 M1) diag(〈~φ, ~µ3,t〉〈~ψ, ~µ3,t〉 + 〈~φ,Σ3,t
~ψ〉 : t ∈ [k])(U>1 M1)

−1 and
hence is diagonalizable (in fact, by the same matrices as B1,2,3(~η)).

Proof As in the proof of Lemma 4, it is easy to show that

Q1,2,3(~φ, ~ψ) = E[E[~x1|h]⊗ E[~x2|h]〈~φ,E[~x3 ⊗ ~x3|h]~ψ〉]

= M1E[~eh ⊗ ~eh〈~φ, (~µ3,h ⊗ ~µ3,h +Σ3,h)~ψ〉]M>
2

= M1 diag(〈~φ, ~µ3,t〉〈~ψ, ~µ3,t〉+ 〈~φ,Σ3,t
~ψ〉 : t ∈ [k]) diag(~w)M>

2 .

The claim then follows from the same arguments used in the proof of Lemma 5.

D.5. Proof of Proposition 8

The conditional independence properties follow from the HMM conditional independence assump-
tions. To check the parameters, observe first that

Pr[h1 = i|h2 = j] =
Pr[h2 = j|h1 = i] · Pr[h1 = i]

Pr[h2 = j]
=
Tj,iπi
(T~π)j

= ~ei diag(~π)T> diag(T~π)−1~ej
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by Bayes’ rule. Therefore

M1~ej = E[~x1|h2 = j] = OE[~eh1 |h2 = j] = O diag(~π)T> diag(T~π)−1~ej .

The rest of the parameters are similar to verify.

Appendix E. General results from matrix perturbation theory

The lemmas in this section are standard results from matrix perturbation theory, taken from Stewart
and Sun (1990).

Lemma 20 (Weyl’s theorem) Let A,E ∈ Rm×n with m ≥ n be given. Then

max
i∈[n]
|σi(A+ E)− σi(A)| ≤ ‖E‖2.

Proof See Theorem 4.11, p. 204 in Stewart and Sun (1990).

Lemma 21 (Wedin’s theorem) Let A,E ∈ Rm×n with m ≥ n be given. Let A have the singular
value decomposition  U>1

U>2
U>3

A [ V1 V2
]

=

 Σ1 0
0 Σ2

0 0

 .
Let Ã := A+E, with analogous singular value decomposition (Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2). Let Φ be
the matrix of canonical angles between range(U1) and range(Ũ1), and Θ be the matrix of canonical
angles between range(V1) and range(Ṽ1). If there exists δ, α > 0 such that mini σi(Σ̃1) ≥ α + δ
and maxi σi(Σ2) ≤ α, then

max{‖ sin Φ‖2, ‖ sin Θ‖2} ≤
‖E‖2
δ

.

Proof See Theorem 4.4, p. 262 in Stewart and Sun (1990).

Lemma 22 (Bauer-Fike theorem) LetA,E ∈ Rk×k be given. IfA = V diag(λ1, λ2, . . . , λk)V
−1

for some invertible V ∈ Rk×k, and Ã := A+ E has eigenvalues λ̃1, λ̃2, . . . , λ̃k, then

max
i∈[k]

min
j∈[k]
|λ̃i − λj | ≤ ‖V −1EV ‖2.

Proof See Theorem 3.3, p. 192 in Stewart and Sun (1990).

Lemma 23 (Perturbation of inverses) LetA,E ∈ Rk×k be given. IfA is invertible, and ‖A−1E‖2 <
1, then Ã := A+ E is invertible, and

‖Ã−1 −A−1‖2 ≤
‖E‖2‖A−1‖22
1− ‖A−1E‖2

.

Proof See Theorem 2.5, p. 118 in Stewart and Sun (1990).
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Appendix F. Probability inequalities

Lemma 24 (Accuracy of empirical probabilities) Fix ~µ = (µ1, µ2, . . . , µn) ∈ ∆m−1. Let ~x be a
random vector for which Pr[~x = ~ei] = µi for all i ∈ [m], and let ~x1, ~x2, . . . , ~xn be n independent
copies of ~x. Set µ̂ := (1/n)

∑n
i=1 ~xi. For all t > 0,

Pr

[
‖µ̂− ~µ‖2 >

1 +
√
t√

n

]
≤ e−t.

Proof This is a standard application of McDiarmid’s inequality (using the fact that ‖µ̂ − ~µ‖2 has√
2/n bounded differences when a single ~xi is changed), together with the bound E[‖µ̂ − ~µ‖2] ≤

1/
√
n. See Proposition 19 in Hsu et al. (2012).

Lemma 25 (Random projection) Let ~θ ∈ Rn be a random vector distributed uniformly over
Sn−1, and fix a vector ~v ∈ Rn.

1. If β ∈ (0, 1), then

Pr

[
|〈~θ,~v〉| ≤ ‖~v‖2 ·

1√
n
· β
]
≤ exp

(
1

2
(1− β2 + lnβ2)

)
.

2. If β > 1, then

Pr

[
|〈~θ,~v〉| ≥ ‖~v‖2 ·

1√
n
· β
]
≤ exp

(
1

2
(1− β2 + lnβ2)

)
.

Proof This is a special case of Lemma 2.2 from Dasgupta and Gupta (2003).

Lemma 26 (Matrix Chernoff bound) Let X be a symmetric random m × m matrix such that
0 � X � rI almost surely, and set l := λmin(E[X]). Let X1, X2, . . . , Xn be i.i.d. copies of X . For
any ε ∈ [0, 1],

Pr

[
λmin

(
1

n

n∑
i=1

Xi

)
≤ (1− ε) · l

]
≤ m · e−nε2l/(2r).

Proof This is a direct corollary of Theorem 19 from Ahlswede and Winter (2002).

Appendix G. Insufficiency of second-order moments

Chang (1996) shows that a simple class of Markov models used in mathematical phylogenetics
cannot be identified from pair-wise probabilities alone. Below, we restate (a specialization of) this
result in terms of the document topic model from Section 2.1.

Proposition 27 (Chang, 1996) Consider the model from Section 2.1 on (h, x1, x2, . . . , x`) with
parameters M and ~w. Let Q ∈ Rk×k be an invertible matrix such that the following hold:
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1. ~1>Q = ~1>;

2. MQ−1, Qdiag(~w)M> diag(M ~w)−1, and Q~w have non-negative entries;

3. Qdiag(~w)Q> is a diagonal matrix.

Then the marginal distribution over (x1, x2) is identical to that in the case where the model has
parameters M̃ := MQ−1 and w̃ := Q~w.

A simple example for d = k = 2 can be obtained from

M :=

[
p 1− p

1− p p

]
, ~w :=

[
1/2
1/2

]
, Q :=

 p
1+
√

1+4p(1−p)
2

1− p 1−
√

1+4p(1−p)
2


for some p ∈ (0, 1). We take p = 0.25, in which case Q satisfies the conditions of Proposition 27,
and

M =

[
0.25 0.75
0.75 0.25

]
, ~w =

[
0.5
0.5

]
,

M̃ = MQ−1 ≈
[
0.6614 0.1129
0.3386 0.8871

]
, w̃ = Q~w ≈

[
0.7057
0.2943

]
.

In this case, both (M, ~w) and (M̃, w̃) give rise to the same pair-wise probabilities

M diag(~w)M> = M̃ diag(w̃)M̃> ≈
[
0.3125 0.1875
0.1875 0.3125

]
.

However, the triple-wise probabilities, for η = (1, 0), differ: for (M, ~w), we have

M diag(M>η) diag(~w)M> ≈
[
0.2188 0.0938
0.0938 0.0938

]
;

while for (M̃, w̃), we have

M̃ diag(M̃>η) diag(w̃)M̃> ≈
[
0.2046 0.1079
0.1079 0.0796

]
.
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