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Abstract

A core element of microeconomics and game theory is that consumers have valuation functions over
bundles of goods and that these valuations functions drive their purchases. A common assumption
is that these functions are subadditive meaning that the value given to a bundle is at most the sum
of values on the individual items. In this paper, we provide nearly tight guarantees on the efficient
learnability of subadditive valuations. We also provide nearly tight bounds for the subclass of XOS
(fractionally subadditive) valuations, also widely used in the literature. We additionally leverage
the structure of valuations in a number of interesting subclasses and obtain algorithms with stronger
learning guarantees.

Keywords: learning, valuations, no complementarities, algorithmic game theory, economics

1. Introduction

A central problem in commerce is understanding one’s customers. Whether to assign prices to
goods, to decide how to bundle products, or to estimate how much inventory to carry, it is critical
for a company to understand customers’ preferences. In economics and (algorithmic) game theory,
these preferences are typically modeled as valuations, or monotone set functions, over subsets of
goods. Itis usually assumed that consumers’ valuations are known in advance, or that they are drawn
from a known distribution. In practice, however, these valuations must be learned. For example,
given past data of customer purchases of different bundles, a retailer would like to estimate how
much a (typical) customer would be willing to pay for new packages of goods that become available.
Companies may also conduct surveys querying customers about their valuations'. Motivated by
such scenarios, in this paper we investigate the learnability of classes of functions widely used
throughout economics and (algorithmic) game theory to model consumers’ valuations (Nisan et al.,
2007). We focus on subadditive valuations expressing ‘“no complementarities” (the value of the
union of two disjoint bundles is no more than the sum of the values on each bundle), and two of its
subclasses commonly used, in decreasing order of generality, XOS (Bhawalkar and Roughgarden,

1. See the site http: //bit.1y/1s774D for an example of an airline asking customers for a “reasonable” price for
in-flight Internet.
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2011; Dobzinski et al., 2005, 2006; Feige, 2006; Lehmann et al., 2001) and OXS (Buchfuhrer et al.,
2010a,b; Day and Raghavan, 2006; Singer, 2010).

To analyze these problems we use the PMAC learning model for approximate distributional
learning introduced by Balcan and Harvey (2011). In this model, a learning algorithm is given
a collection § = {S1,...,S,,} of polynomially many labeled examples drawn i.i.d. from some
fixed, but unknown, distribution D over points (sets) in 2. The points are labeled by a fixed, but
unknown, target function f* : 2" — R,. The goal is to output in polynomial time, with high
probability, a hypothesis function f that is a good multiplicative approximation for f* over most
sets with respect to D. Formally, we want to achieve

Prs, su~p | Prswp [f(S) < f7(S) <af(S)] =2 1-€e] 219

for an algorithm that uses m = poly(n, %, %) samples and that runs in poly(n, %, %) time. That is,
in this model one must approximate the value of a function on a set of large measure, with high con-
fidence. Asking for low multiplicative error on most points composes naturally with approximation
algorithms guarantees. Note that an alternative approach for dealing with real-valued functions is to
consider other loss functions such as the squared-loss or the L1-loss. However, these do not distin-
guish between the case of having low error on most of the distribution and high error on just a few
points, versus moderately high error everywhere. In comparison, the PMAC model allows for more
fine-grained control with separate parameters for the amount and extent of errors, and in addition it
allows for consideration of multiplicative error which is often more natural in this context.

Our first main result is a (nearly) tight bound of o = é(\/ﬁ) on the learnability of both subaddi-
tive and XOS—also known as fractionally subadditive—valuations. The class of XOS valuations is
a highly expressive subclass of subadditive functions and it has an appealing syntactic description: it
is the class of those functions that can be represented as a depth-two tree with a MAX root and SUM
inner nodes, where each such SUM node has a subset of items with associated positive weights as
leaves. For example, suppose items represent different attractions that a vacation destination might
have, such as skiing, hiking, swimming, and sightseeing. A traveler considering different possible
travel dates might value this destination as the maximum (over the possible dates) of different linear
functions over attractions for those dates (e.g., a summer date having higher value on swimming
and a winter date having higher value on skiing). In this paper, we show a nearly tight O(/n) upper
bound and §2(y/n/logn) lower bound on the learnability of XOS valuations in the PMAC model.
The key element in proving our upper bound is to show that any XOS function can be approxi-
mated by the square root of a linear function within a factor O(y/n). Using this, we then reduce the
problem of PMAC-learning XOS valuations to the standard problem of learning linear separators
in the PAC model which can be done efficiently. Our (/n/logn) lower bound is information
theoretic, applying to any procedure that uses a polynomial number of samples. Using the fact
that XOS valuations can approximate any valuation in the subadditive superclass up to a O(logn)
factor (Bhawalkar and Roughgarden, 2011; Dobzinski, 2007) and properties of the algorithm we
develop for XOS functions, we also show a O(/n log n) upper bound on the learnability of subad-
ditive valuations. This upper bound improves on the computationally efficient algorithm of Balcan
and Harvey (2011) which achieves a worse approximation factor of O(n). It also improves over
the concurrent and independent work of Badanidiyuru et al. (2012) which achieves a slightly worse
approximation factor (still O(ﬁ)) but via a computationally inefficient algorithm.

Our second main result is a target-dependent learnability result for XOS functions. Exploiting
the fact that XOS functions have a syntactic characterization, we consider learnability as a function
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of the complexity of the target function in the MAX of SUMs representation and provide efficient
algorithms with stronger guarantees for XOS functions of polynomial description length (such as
the XOS function in the traveler example above). Specifically, we show the class of XOS functions
representable with at most R trees can be PMAC-learned to an O(R¢) factor in time nO0/) for any
¢ > 0. In particular, for R polynomial in n, we get learnability to an O(nf) factor in polynomial
time for any constant & > 0. Technically, we prove this result via a novel structural result showing
that a XOS function can be approximated well by the L-th root of a degree-L polynomial over the
natural feature representation of the set S, for L = 1/£. Conceptually, this result highlights the
importance of the complexity of the target function for polynomial time learning.”

We also consider another class of valuations commonly used in (algorithmic) game theory,
namely OXS functions (representable as the SUM of MAX of item values), which include lin-
ear valuations. By exploiting novel structural results on approximability with simple functions, we
provide much better upper bounds for other interesting subclasses of OXS and XOS. These include
OXS and XOS functions with a small number of leaves per tree and OXS functions with a small
number of trees. Some of these classes have been considered in the context of economic optimiza-
tion problems (Babaioff et al., 2007; Bhawalkar and Roughgarden, 2011; Buchfuhrer et al., 2010a),
but we are the first to study their learnability.

We show that the structural results we derive for analyzing learnability in the distributional
learning setting also have implications for the model of approximate learning everywhere with value
queries, analyzed in recent years for several classes of set functions learning by (Blum et al., 2003;
Goemans et al., 2009; Svitkina and Fleischer, 2008). In particular, our structural results lead to new
upper bounds for XOS and OXS as well as new lower bounds for OXS and gross substitutes.

Finally, we introduce a new model for learning with prices in which the learner receives less
information on the values f*(S71), f*(S2),...: for each [, the learner can only quote a price p; and
observe whether the agent buys S; or not, i.e. whether p; < f*(S;) or not. This model is more
realistic in economic settings where agents interact with a seller via prices only. Interestingly, many
of our upper bounds, both for PMAC-learning and learning with value queries, are preserved in this
model (all lower bounds automatically continue to hold).

Related Work on Learning Valuations Balcan and Harvey (2011) analyze the PMAC learnabil-
ity of submodular functions (a subclass of XOS functions and superclass of OXS functions) and
subadditive functions. They provide a O(y/n) upper bound for submodular functions and O(n) up-
per bound for subadditive functions. We improve upon the latter result by providing a O(nl/ 2) upper
bound for subadditive functions, matching their result for the less general class of submodular func-
tions. Balcan and Harvey (2011) also show a technically involved lower bound of Q(n'/3/logn)
for matroid rank functions (and thus submodular functions). We exploit the power of XOS functions
and provide a much simpler Q(n'/2/logn) lower bound for such functions.

In concurrent and independent work, Badanidiyuru et al. (2012) provide several interesting (re-
lated, but largely complementary) results concerning both sketching and PMAC learning of several
subclasses of subadditive valuations.They focus on sketching valuation functions, where the goal is
to produce a hypothesis that can be represented in poly(n) space and that approximates the target
function at every point to within a multiplicative factor; that is, the goal is identical with that of
our model of approximate learning everywhere with value queries, but the queries allowed are more

2. Note that since the class of XOS functions representable with at most a polynomial number of trees has small
complexity, learnability would be immediate if we did not care about computational efficiency.
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general. Badanidiyuru et al. (2012) provide an algorithm that uses a polynomial number of demand
queries ® and outputs a sketch with an o = O(\/ﬁ) factor for XOS and subadditive functions. This
is a stronger (i.e., pointwise) guarantee than our PMAC learning result for these classes, but it uses
demand queries which are more powerful than value queries. They also show that, ignoring com-
putational considerations, sketching implies PMAC learning, and as a consequence, they obtain an
information theoretic upper bound of O(ﬁ) factor for PMAC-learning of XOS and subadditive
functions. In comparison, our PMAC learning result for these classes is computationally efficient
and moreover, it achieves a slightly better bound. Badanidiyuru et al. (2012) also provide several
lower bounds, some of them analogous to the ones we derive in this paper.

A few recent papers (Goemans et al., 2009; Svitkina and Fleischer, 2008) consider learnability
within the approximate learning everywhere with value queries model, but for submodular functions
only. Other models for the value queries paradigm require exact learning and are necessarily limited
to much less general function classes than the ones we study here: read-once and Toolbox DNF
valuations (Blum et al., 2003), polynomial or linear-threshold valuations (Lahaie and Parkes, 2004)
or MAX or SUM (of bundles) valuations (Lahaie et al., 2005).

Finally, recent work of Vainsencher et al. (2011) considers a quite different and online selec-
tion problem of bundles and shows that under the restriction that only pair-wise interaction affect
the valuation, that valuations can be elicited in a difficult online scenario. The types of valuation
functions we consider in this paper (though technically incomparable) are more general.

Other Applications Beyond learning valuation functions, the problem of learning set functions
of the type we consider in this paper is natural for a wide range of settings where, based on histor-
ical data, one would like to predict the value of some function over objects described by features.
Examples include predicting the rate of growth of jobs (or population) in cities as a function of
various amenities or enticements that the city offers, predicting the sales price of a house as a func-
tion of features (such as an updated kitchen, hardwood floors, extra bedrooms, etc.) that it might
have, or predicting the spread of infectious diseases in animals as a function of various features of
the population, landscape, and predators. In such settings it is natural to assume various degrees
of no-complementarities (OXS, XOS, subadditive), making them well-suited to a formulation as a
problem of learning set functions of the type we study.

Discussion We note that all our upper bounds are efficient and all the lower bounds are informa-
tion theoretic. We remark that it is quite interesting one can get a nearly tight, sublinear approxima-
tion efficiently (that is, in time polynomial in n only) for general XOS and subadditive functions,
since these functions can

Due to lack of space, we only include proof sketches in the main body, with further details in the ap-
pendices. Our results for approximate learning everywhere with value queries appear in Appendix C
and our results for the learning with prices model appear in Appendix E.

2. Setup

We consider a universe [n] = {1,...,n} of items and valuations, i.e. monotone non-negative set
functions f : 20" - R,: f(SU{i}) > f(S) > 0,¥S C [n],Vi & S. Foraset S C [n] we denote

3. In a demand query, an agent is presented with prices for each item, and is required to report a subset of items that
maximizes his utility. For certain classes such as OXS functions, a demand query can be simulated by a polynomial
number of value queries, but in general they are strictly more powerful than value queries.
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by x(S) € {0, 1}" its indicator vector; so (x(5)); = 1if i€ S and (x(S5)); = 0if i ¢ S. We often
use this natural isomorphism between {0, 1}" and 2[".

Learning Model The main model we consider in this paper is a passive supervised learning model
of real valued functions with a multiplicative approximation (Balcan and Harvey, 2011). We assume
that the input for a learning algorithm is given a set S of polynomially many labeled examples drawn
i.i.d. from some fixed, but unknown, distribution D over points in 2["). The points are labeled by a
fixed, but unknown, target function f* : 2"l — R_ . The goal is to output a hypothesis function f
such that, with large probability over the choice of examples, the set of points for which f is a good
approximation for f* has large measure with respect to D. Formally:

Definition 1 (Balcan and Harvey, 2011) Let F be a family of functions with domain 213"} We
say that F is PMAC-learnable with approximation factor « if there exists an algorithm A such that
for any distribution D over 215"} for any target function f* € F, and for any sufficiently small
e > 0,0 > 0, A takes as input a set of samples {(S;, f*(5i)) }1<i<m where each S; is drawn
independently from D and outputs a function f : 211" 5 R from F that satisfies

Prg, . Sm~p [Prsap [ f(S) < fY(S) Saf(S)]|>1-c]>1-46 (1)

The number m of samples used by A is poly(n, %, %) If A’s running time is poly(n, %7 %), then we
say that A efficiently learns F.

PMAC stands for Probably Mostly Approximately Correct. In this model, one must approximate
the value of a function on a set of large measure, with high confidence. Note that the traditional PAC
model requires one to predict the value exactly on a set of large measure, with high confidence. The
PAC model (Valiant, 1984) is the special case of this model with o = 1.

In Appendix C we also provide results on approximate learning everywhere with value queries.

Classes of Valuation Functions. We now define and give intuition for most valuation classes we
focus on. The most general type of valuations we consider, subadditive valuations model the lack
of synergies among sets: a set’s value is at most the sum of the values of its parts. Formally:

Definition 2 f : 2" — R, is subadditive if and only if f(SUS’) < £(S) + f(5'),VS, S’ C [n].

XOS is an important class of subadditive valuations studied in (algorithmic) game theory and
economics (Dobzinski et al., 2005, 2006; Feige, 2006; Lehmann et al., 2001). A valuation is XOS
iff it can be represented as a depth-two tree with a MAX root and SUM inner nodes. Each such SUM
node has as leaves a subset of items with associated positive weights. For example, a traveler may
choose the destination of maximum value among several different locations, where each location
has a number of amenities and the valuation for a location is linear in the set of amenities.

Definition 3 [ : 2" — R is XOS if and only if it can be represented as the maximum of k linear
valuations, for some k> 1. That is, f(S) = max;—;_j ijx(S’) where wj; > 0,Yj € [k],Vi € [n].

We say that item ¢ appears as a leaf in a SUM tree j if ¢ has a positive value in tree j.
When reversing the roles of operators MAX and SUM we obtain a strict subclass of XOS
valuations, called OXS,* that is also relevant to economics (Day and Raghavan, 2006; Dobzinski

4. XOS and OXS stand for XOR-of-OR-of-Singletons and OR-of-XOR-of-Singletons, where MAX is denoted by XOR
and SUM by OR(Nisan, 2006; Sandholm, 2001).
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et al., 2006; Lehmann et al., 2001; Singer, 2010). To define OXS we also define a unit-demand
valuation, in which the value of any set S is the highest weight of any item in .S. A unit-demand
valuation is essentially a tree, with a MAX root and one leaf for each item with non-zero associated
weight. In an OXS valuation, a set’s value is given by the best way to split the set among several
unit-demand valuations. An OXS valuation f has a natural representation as a depth-two tree, with
a SUM node at the root (on level 0), and subtrees’® corresponding to the unit-demand valuations
f1s-++, fx- The value f(.S) of any set S corresponds to best way of partitioning S into (S1, ..., Sk)
and adding up the per-tree values { f1(S1), ..., fx(Sk)}.

Definition 4 A unit-demand valuation f is given by weights {w1, ..., w,} C Ry such that f(S) =
max;es w;, VS C [n]. An OXS valuation f is given by the convolution of k > 1 unit-demand
valuations f1, ..., fi: that is,

f(S) =max{fi(S1)+ -+ fx(Sk) : (S1,...,Sk) is a partition of S},¥S C [n].

Two other common classes of valuation functions include submodular valuations and gross sub-
stitutes (GS). The classes of valuations discussed so far form a strict hierarchy. (See (Lehmann
et al., 2001) for examples separating these classes of valuations.)

Lemma 1 (Lehmannetal., 2001) OXS C gross substitutes C submodular C XOS C subadditive.

3. PMAC-learnability of XOS valuations and subadditive valuations

In this section we give nearly tight lower and upper bounds of C:)(\/ﬁ) for the PMAC-learnability of
XOS and subadditive valuations, as well as improved learnability guarantees for interesting special
classes of XOS functions.

3.1. Nearly tight lower and upper bounds for learning XOS and subadditive functions

We establish our ©(,/n) bounds by showing an Q(y/n/logn) lower bound for the class of XOS
valuations (hence valid for subadditive valuations) and upper bounds of O(y/n) and O(y/nlogn)
for the classes of XOS and subadditive valuations respectively.

Theorem 1 The classes of XOS and subadditive functions are PMAC-learnable to a (:)(\/ﬁ) ap-
proximation factor.

Proof Sketch: Lower bound: We start with an information theoretic lower bound showing that

the class of XOS valuations cannot be learned with an approximation factor of 0(%) from a

polynomial number of samples. Let k = n3loslosn For large enough n we can show that there

exists a family of sets A = {A1,..., Ax}, A1, A, ..., Ax C [n] such that we have both

(i) v/n/2 < |A;| < 2y/nforany 1 <i <k, i.e. all sets have large size ©(y/n) and

(i) |[A;NA;| <lognforany 1 <i < j <k, i.e. all pairwise intersections have small size O(log n).
We achieve this via a simple probabilistic argument, constructing each A; by picking each ele-

ment in [n] with probability ﬁ — see Lemma 1 in Appendix A. Given the existence of family A

5. Another OXS encoding uses a weighted bipartite graph G, . where edge (%, j) has the weight of item 4 in f;; f(S)
is the weight of a maximum matching of S to the k£ nodes for the unit-demand f;’s. Also, OXS valuations with
weights {0,1} are exactly rank functions of transversal matroids.
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we construct a hard family of XOS functions as follows. For any subfamily B C A, we construct
an XOS function f with large values for sets A; € B and small values for sets A; ¢ B. Let
ha,(S) = |S N A; forany S C [n]. For any subfamily B C A, define the XOS function fz by
/8(S) = MAX 4,eB ha,(S). We claim that fg(A;) = Q(/n), if A; € Bbut fz(A;) = O(logn),
if A; & B. Indeed, for any A; € B, we have hy,(A;) = |A;| > /n/2, hence fg(A;) = Q(y/n);
for any A; ¢ B, by our construction of A, we have ha,(A;) = |4; N A;| < logn, implying
f8(A;) = O(logn). For an unknown B, the problem of learning fz within a factor of o(y/n/logn)
under a uniform distribution on .4 amounts to distinguishing B from .A. This is not possible from
a polynomial number of samples since |A| = n3loslosn Iy particular, if B C A is chosen at ran-

7

logn

dom, then any algorithm from a polynomial-sized sample will have error €( ) on a region of

probability mass greater than 3 5= m.

Upper bounds: We show that the class of XOS valuations can be PMAC-learned to a O(y/n) factor
and that the class of subadditive valuations can be PMAC-learned to a O(+/nlog n) factor, by using
O(" log 4-) training examples and running time poly (7, %, %) To prove these bounds we start by
providing a structural result (Claim 1 below) showing that XOS valuations can be approximated to

a y/n factor by the square root of a linear function.

Claim 1 Let f2ll - R be a non-negative XOS function with f(0) = 0. Then there exists f of
the form f(S) = JwTx(S) where w € R} such that f(S) < f(S) < /nf(S) forall S C [n].

Proof First, we note that XOS valuations are known to be equivalent to fractionally subaddi-
tive valuations (Feige, 2006). A function f : 2l 5 R is called fractionally subadditive if
J(T) < > gAsf(S) whenever A\g > 0 and D g...gAs > 1 forany s € T. Second, we ex-
ploit the fact that a fractionally subadditive valuation f satisfies f(T") = max {},.p zs|z € P(f)}
forany T C [n], where P(f) is the associated polyhedron {z € R} : Y. qx; < f(S5),VS C [n]}.
Informally, this result states that one recovers f(7") when optimizing in the direction given by 7'
over the polyhedron P(f) associated with f. The proof of this result involves a pair of dual lin-
ear programs, one corresponding to the maximization and another one that is tailored for fractional
subadditivity, with an optimal objective value of f(7") (Feige, 2006). For completeness, we include
the formal proof of this result in Appendix A (see Lemma 2). Given this result, we proceed as
follows (a similar approach has been used by Goemans et al. (2009) for submodular functions.).
Define P = {x € R" : (|z1],...,|zn|) € P(f)}. Since P is bounded and central symmetric (i.e.
x € P & —x € P), there exists (John, 1948) an ellipsoid £ containing P such that ﬁé’ is contained

in P. Hence for f(T )—max{zleTxi'xeig} we have f(T) < f(T )<\ff( )VTC[]

Moreover, the ellipsoid £ is axis-alligned, and basic calculus implies f =\/w ) for some
w e RY. |

For PMAC-learning XOS valuations to with an approximation factor of \/n + €, we apply
Algorithm 1 with parameters R = n, ¢, and p = 2. The proof of correctness of Algorithm 1 follows
by using the structural result in Claim 1 and a technique of Balcan and Harvey (2011) that we sketch
briefly here. Full details of this proof appear in Appendix A.1.

Assume first that f*(S) > 0 for all S # (). The key idea is that Claim 1’s structural result
implies that the following examples in R™*! are linearly separable since nw" x(S) — (f*(S))% > 0
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and nwx(S) — (n + €)(f*(S))? < 0.

Examples labeled +1:  ex§ := (x(5), (£*(5))?) VS C [n]
Examples labeled —1:  exg := (x(5), (n+¢€) - (f*(5))?) VS C [n]

This suggests trying to reduce our learning problem to the standard problem of learning a linear
separator for these examples in the standard PAC model (Kearns and Vazirani, 1994; Vapnik, 1998).
However, in order to apply standard techniques to learn such a linear separator, we must ensure
that our training examples are i.i.d. To achieve this, we create a i.i.d. distribution D’ in R™*! that
is related to the original distribution D as follows. First, we draw a sample S C [n] from the
distribution D and then flip a fair coin for each. The sample from D’ is labeled exjg i.e. +1 if the
coin is heads and exg i.e. —1 if the coin is tails. As mentioned above, these labeled examples are
linearly separable in R"*!. Conversely, suppose we can find a linear separator that classifies most
of the examples coming from D’ correctly. Assume that this linear separator in R"*! is defined

by the function u"z = 0, where u = (1, —2), w € R™ and z > 0. The key observation is that
the function f(S) = @ ig)szx(S) approximates (f*(-))? to within a factor n + € on most of the

points coming from D.

If f* is zero on non-empty sets, then we can learn its set Z = { S : f*(S) =0 } of zeros
quickly since Z is closed to union and taking subsets for any subadditive f*. In particular, suppose
that there is at least an € chance that a new example is a zero of f*, but does not lie in the null
subcube over the sample. Then such a example should be seen in the next sequence of log(1/4) /e
examples, with probability at least 1 — §. This new example increases the dimension of the null
subcube by at least one, and therefore this can happen at most n times.

To establish learnability for the class of subadditive valuations, we use the fact that any sub-
additive valuation can be approximated by an XOS valuation to a Inn factor (Dobzinski, 2007;
Bhawalkar and Roughgarden, 2011)® and so, by Claim 1, any subadditive valuation is approxi-
mated to a y/n Inn factor by a linear function. This then implies that we can use Algorithm 1 with
parameters R = n1n”n, €, and p = 2. Correctness then follows by a reasoning similar to the one
for XOS functions. W
Note: Balcan and Harvey (2011) showed a much more technically involved and slightly weaker
lower bound of Q(n!/3/logn), but for the much more restricted class of matroid rank functions.
As matroid rank functions are known to be submodular and even satisfy the gross substitutes prop-
erty (Murota, 2003), their lower bound immediately applies to these classes as well. By contrast,
we use the power of XOS functions and provide a much simpler lower bound for such functions.

3.2. Better learnability results for XOS valuations with polynomial complexity

In this section we consider the learnability of XOS valuations representable with a polynomial
number of trees. Such functions arise often in practical applications’ and interestingly we can show
that we can achieve good PMAC learnability via polynomial time algorithms. (Since this class has
small complexity, it is easy to see that it is learnable in principle from a small sample size if we did

6. We are grateful to Shahar Dobzinski and Kshipra Bhawalkar for pointing out this fact to us.

7. Consider a buyer that owns a computer and that is interested in choosing an operating system together with software
applications for it. The buyer can choose between several operating systems (e.g. Unix, Macintosh or Windows) and
for each system there may a large number of applications. The valuation for a set of applications is the sum of all
values for individual applications. This valuation can be represented as an XOS function where each of the several
OR trees stands for an operating system.
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Algorithm 1 Algorithm for PMAC-learning via a reduction to a binary linear separator problem.
Input: Parameters: R, € and p. Training examples S ={(S1, f*(51)), ..., (Sm, [*(Sm)) }.

o Let Szo = {(Ai, f*(Ai))eS: f*(4;)#0} C S the examples with non-zero values, Sy =
S \ S;éo and Z/{() = Ulgm;f*(Sl):OSl-

e For each i in {1,...,|Sx|} let y; be the outcome of independently flipping a fair {+1, —1}-
valued coin.

(x(Ai), (f*(4:))") (if y; = +1)
(X(4i), (R +¢€)- (f*(4:))")  (fyi = =1).
e Find a linear separator u = (1, —z) € R"*!, where & € R™ and z > 0, such that (z, sgn(u'z))

is consistent with the labeled examples (z;,;) Vi € {1,...,|Sxo|}, and with the additional
constraint that w; = 0 V5 € Up.

Let z; € R™! be the point defined by x; = {

1
Output: The function f defined as f(.5) = <( R-‘yl-e) ﬁ)Tx(S)) /p.

not care about computational complexity.) In particular, we show that XOS functions representable
with at most R SUM trees can be PMAC-learned with a R¢ approximation factor in time n@0/8),
for any £ > 0. This improves the approximation factor of Theorem 1 for all such XOS functions.
Moreover, this implies that XOS valuations representable with a polynomial number of trees can
be PMAC-learned within a factor of n¢, in time n®1/¢), for any & > 0.

Theorem 2 For any & > 0, the class of XOS functions representable with at most R = n°")
SUM trees is PMAC-learnable in time n®/$) with approximation factor of (R + ¢)¢ by using

O ("16/g {log(n) + log( )D training examples.
Proof Let L = 1/¢ and assume for simplicity that it is integer. We start by deriving a key structural
result. We show that XOS functions can be approximated well by the L-th root of a degree-L
polynomial over (x(.5)); fori € [n]. Let Ty, ..., T be the R SUM trees in an XOS representation
T of f*. For a tree j and a leaf in T} corresponding to an element i € [n], let w;; the weight of
the leaf. For any set S, let k;(S) = EieijS wj; = w;fpx(S) be the sum of weights in tree T}
corresponding to leaves in S. k;(S) is the value assigned to set S by tree Tj. Note that f*(S) =
max; k;(S), i.e. the maximum value of any tree, from the definition of MAX . We define valuation
[ that averages the L-th powers of the values of all trees: f'(S) =1/R}, kJL(S), VS C [n]. We
claim that f’(-) approximates (f*(-))” to within an R factor on all sets S, namely

F1(8) < (f*(S)* < Rf(9), ¥S C [n] ie. 2
1/RYS; kj(S) < max; k7 (S) < 35, k7(S), VS € [n] 3)

The left-hand side inequalities in Eq. (3) follow as f* has at most R trees and k]L/ (S) <max; kjL (9)
for any tree T}. The right-hand side inequalities in Eq. (3) follow immediately.

This structural result suggests re-representing each set S by a new set of ©(n’) features, with
one feature for each subset of [n] with at most L items. Formally, for any set S C [n], we denote
by xa(5) its feature representation over this new set of features. Xxa7(5)i, 45,5, = 1 if all items
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i1,12, .. .91 appear in S and xa7(S)i iy,...i, = 0 otherwise. It is easy to see that f” is representable
as a linear function over this new set of features. This holds for each k:jL (S) = (ijx(S )% due to
its multinomial expansion, that contains one term for each set of up to L items appearing in tree 77,
i.e. for each such feature. Furthermore, f’ remains linear when the terms for each tree T; are added.

Given this, we can now use a variant of Algorithm 1 with parameters R, €, and p = L and to
prove correctness we can use a reasoning similar to the one in Theorem 1. Any sample Sj is fed
into Algorithm 1 as (x7(S;), (f*(S)*) or (xar(S1), (R+€) - (f*(S;))*) respectively. Since f’ is
linear over the set of features, Algorithm 1 outputs with probability at least 1 —4 a hypothesis f” that
approximates f* to an (R + £)'/Z factor on any point x 37 (S) corresponding to sets S C [n] from a
collection S with at least an 1 —¢ measure in D, i.e. f”(xa(S)) < f(S) < (R+e)YEf"(xm(S)).
We can output then hypothesis f(S) = f”(xa(S)), VS C [n], defined on the initial ground set [n]
of items, that approximates f*(-) well, i.e., as desired, for any S € S we have

£(S) = f"(xa(9)) < £4(S) < (R+)YE " (xmr(S)) = (R+e)VEf(S).

As desired, with high confidence the hypothesis f approximates f* to a (R + ¢)¢ factor on most
sets from D. |

Note: This result also has an appealing interpretation for submodular functions. It is known that any
submodular function is representable as an XOS tree (Lehmann et al., 2001), though with possibly
exponential number of SUM trees. What Theorem 2 implies that (submodular) functions that are
succinctly representable as XOS trees can be PMAC-learned well.

3.3. Better learnability results for XOS valuations with small SUM trees

In this section we consider the learnability of another interesting subclass of XOS valuations,
namely XOS valuations representable with “small” SUM trees and show learnability to a better
factor than that in Theorem 1. 8

Theorem 3 For any n > 0, the class of XOS functions representable with SUM trees with at
most R leaves is properly PMAC-learnable with approximation factor of R(1 + n) by using m =
O(% (nlog loan(%) +log(1/8))) and running time polynomial in m, where h and H are the
smallest and the largest non-zero values our functions can take.

Proof Algorithmically, we construct a (unit-demand) hypothesis function f as follows. For any ¢
that appears in at least one set .S; in the sample we define f(¢) as the smallest value f*(.S;) over all
the sets S in the sample containing 4. For ¢ that does not appear in any set S; define f(i) = 0. We
then define f(S) = max;cg f(i) forany S C {1,...,n}. See Algorithm 2 for a formal description.

We start by proving a key structural result showing that f approximates the target function
multiplicatively within a factor of R over the sample. That means:

f(S) < f*(S;) < Rf(S;) for all l€{1,2,...,m}. 4

8. For example, consider a traveler deciding between many trips, each to a different location with a small number of
tourist attractions. The traveler has an additive value for several attractions at the same location. This valuation can
be represented as an XOS function where each SUM tree stands for a location and has a small number of leaves.
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Algorithm 2 Algorithm for PMAC-Iearning interesting classes of XOS and OXS valuations.
Input: A sequence of training examples S = {(S1, f*(S1)), (S2, f*(52)), - - (Sm, [*(Sm)) }-

e Set f(i) = minjes; f*(5;) ifi € UL, S, and f(i) =0 ifi ¢ UL, S).

Output: The unit-demand valuation f defined by f(S) = max;es f(i) forany S C {1,...,n}.

To see this note that for any ¢ € S; we have f*(i) < f*(S;), forl € {1,2,...,m}. So
f(@) > f*(i) foranyie S;U...USy,. )

Therefore for any [ € {1,2,...,m}. : f*(S;) < Rmax;ecg, [*(i) < Rmaxes, f(i) = Rf(S),
where the first inequality follows by definition, and the second inequality follow from relation (5).
By definition, for any i € S;, f(i) < f*(S;). Thus, f(S;) = maxjes, f(i) < f*(S;). These
together imply relation (4), as desired.

To finish the proof we show that m = O(2 (nloglog, (%) + log(1/4))) is sufficient so that
with probability > 1 — § f approximates the target function f* multiplicatively within a factor of
R(14n)?onal — e fraction of the distribution. Let F}, be the class of unit-demand functions that
assign to each individual leaf a power of (1 4+ 7) in [h, H]. Clearly |F},| = (log1+n(%))”. It is easy
to see that m = O(2 (nlog log1+n(%) + log(1/4))) examples are sufficient s.t. any function in
F;, that approximates the target function on the sample multiplicatively within a factor of R(1 + 1)
will with probability at least 1 — ¢ approximate the target function multiplicatively within a factor
of R(1+n) onal — e fraction of the distribution. Since F;, is a multiplicative L, cover for the
class of unit-demand functions, we easily get the desired result (Anthony and Bartlett, 1999). N

4. PMAC-learnability of OXS valuations

In this section we study the learnability of OXS valuations, focusing on interesting subclasses of
OXS functions that arise in practice, namely OXS functions representable with a small number of
MAX trees or leaves’— see Appendix B for motivating examples.

Theorem 4 (1) Let F be the family of OXS functions representable with at most R MAX trees.
For any n, the family F is properly PMAC-learnable with approximation factor of R(1 + n) by
using m = O(% (nlog log1+n(%) +log(1/8))) training examples and running time polynomial
in m, where h and H are the smallest and the largest value our functions can take. For constant
R, the class F is PAC-learnable by using O(n'tlog(n/d)/¢) training examples and running time
poly(n,1/¢,1/9).

(2) For any € > 0, the class of OXS functions representable with MAX trees with at most
R leaves is PMAC-learnable with approximation factor R + € by using O(* log (i)) training
examples and running time poly(n,1/e,1/9).

Proof [Proof sketch] (1) We can show that a function f with an OXS representation 7 with at most
R trees can also be represented as an XOS function with at most R leaves per tree. Indeed, for

9. We note that the literature on algorithms for secretary problems (Babaioff et al., 2009, 2007) often considers a
subclass of the latter class, in which each item must have the same value in any tree.

4.11



BALCAN CONSTANTIN IWATA WANG

each tuple of leaves, one from each tree in 7, we create an SUM tree with these leaves. The XOS
representation of f* is the MAX of all these trees. Given this the fact that F is learnable to a factor
of of R(1 + n) for any n follows from Theorem 3. We now show that when R is constant the class
F is PAC-learnable. First, using a similar argument to the one in Theorem 3 we can show that
Algorithm 2 can be used to PAC-learn any unit-demand valuation by using m = O(nln(n/d)/e)
training examples and time poly(n, 1/€,1/J) — see Lemma 2 in Appendix B. Second, it is easy to
see that an OXS function f* representable with at most R trees can also be represented as a unit-
demand with at most n’? leaves, with R-tuples as items (see Lemma 3 in Appendix B). These two
facts together imply that for constant R, the class F is PAC-learnable by using O(n'*log(n/6)/¢)
training examples and running time poly(n, 1/¢,1/9).

(2) We start by showing the following structural result: if f* has an OXS representation with at
most R leaves in any MAX tree, then it can be approximated by a linear function within a factor
of R on every subset of the ground set. In particular, the linear function f defined as f(S) =
Yics JH(@), forall S C {1...n} satisfies

f(5)

</
By subadditivity, f*(S) < Rf(S), for all S. Let f*,,... f*, be the unit-demand functions that
define f*. Fix a set S C [n]. For any item ¢ € S, define j; to be the index of the f* ; under which
item 4 has highest value: f*(i) = f*; ({}). Then for the partition (S1, ..., Sk) of S in which item 4
is mapped to S}, for any 4, we have > .o f*(i) < Rf*1(S1) + ... Rf*;(Sk). Therefore:

f(S) :%Zzesf*(l) < maxgs,,...,Sy) partition of S (f*l(Sl)++f*k(Sk)) = f*(S)a

where the last equality follows simply from the definition of an OXS function.

Given the structural result 6, we can PMAC-learn the class of OXS functions representable with
MAX trees with at most R leaves y using Algorithm 1 with parameters R, € and p = 1. The cor-
rectness by using a reasoning similar to the one in Theorem 1. |

(S)<R-f*(S) foral SC{l...n} (6)

5. Discussion and open questions

Our most general results provide (nearly) tight bounds on the learnability of subadditive and frac-
tionally subadditive valuations. We additionally leverage the structure of valuations in a number of
interesting subclasses and obtain algorithms with stronger learning guarantees. However, none of
the guarantees for the subclasses are known to be tight. It is an interesting open question to pro-
vide tight approximation factors for these subclasses. More generally, our work provides the first
target dependent learnability results for several interesting subclasses of subadditive and submod-
ular functions. It would be interesting to further exploit this angle both in the context of learning
and combinatorial optimization. In particular, it would be interesting to provide and explore other
natural representations of submodular (and more generally subadditive) functions, and provide both
learning and optimization procedures with better guarantees for functions that have low complexity
under that representation.
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Appendix A. Additional proofs for section 3.1

Lemma 1 For large enough n, there exist A1, ...., Ay, C [n] where k = n5 181087 goh that:
(i) vn/2 <|A;| <2y/nforanyl <i <k
(ii) |A; N A;] <logn forany1 <i < j <k
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Proof Let random variables Y; =|A;| and X;; =|A;NA;|. Obviously, E[Y;] =+/n and E[X;;]=1.
By Chernoff bounds, we have

Pr[vn/2<Y;<2yn] >1-2e V"8

and

Pr[X;; >Inn] < S =p-0ln-1) ] <j < j <k

Inninn

By union bound the probability that (i) and (ii) hold is at least 1 -2 k e Vn/8_j2p—(nlnn-1) 5 ( m

Lemma 2 Any fractionally subadditive valuation f satisfies

(1) = max{inlm € P(f)} for any T C [n],
€T

where P(f) is the associated polyhedron {x € Rl : >, qx; < f(5),¥S C [n]}.

Proof The proof of this result involves a pair of dual linear programs, one corresponding to the
maximization and another one that is tailored for fractional subadditivity, with an optimal objective
value of f(T'). Formally, for any 7' C [n| we have ) .. x; < f(T') for any x € P(f). Therefore
f(T) =2 max {d_,cp zi|r € P(f)}. Now we prove that in fact f(T) < max {) ;. |z € P(f)}.
Consider the linear programming (LP1) for the quantity max {z(T")|x € P(f)} and its dual (LP2):
we assign a dual variable yg for each constraint in (LP1), and we have a constraint corresponding
to each primal variable indicating that the total amount of dual corresponding to a primal variable
should not exceed its coefficient in the primal objective.

maxy x;  (LP1) min Y ysf(S)  (LP2)
i€T 5C[n]
s.t.Z:ci < f(S) VS CInl, s.t. Z ys >1 VieT,
€S S:ies
x; >0 Vi€ |[n]. ys >0 VS Cn]

The classical theory of linear optimization gives that the optimal primal solution equals the
optimal dual solution. Let y* be an optimal solution of (LLP2). Therefore

> ysf(S) = max {z(T)[z € P(f)}.

SC[n]

Since f is fractionally subadditive and } ¢.;cqys = 1,Vi € T, we have f(T') < > g y5f(5),
hence f(T') < max {z(T)|z € P(f)}. Thus f(T) = max {)_,crzi|lx € P(f)}. - [ |

A.l. Additional details for the proof of Theorem 1

For PMAC-learning XOS valuations to an y/n + ¢ factor, we apply Algorithm 1 with parameters
R =n, ¢, and p = 2. The proof of correctness of Algorithm 1 follows by using the structural result
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in Claim 1 and a technique of Balcan and Harvey (2011). For completeness, we provide here the
full details of this proof (the description is taken from (Balcan and Harvey, 2011)).

Because of the multiplicative error allowed by the PMAC-learning model, we separately analyze
the subset of the instance space where f* is zero and the subset of the instance space where f* is
non-zero. For convenience, we define:

P={S:f(S)#0} and Z={S:f(S)=0}.

The main idea of our algorithm is to reduce our learning problem to the standard problem of learning
a binary classifier (in fact, a linear separator) from i.i.d. samples in the passive, supervised learning
setting (Kearns and Vazirani, 1994; Vapnik, 1998) with a slight twist in order to handle the points
in Z. The problem of learning a linear separator in the passive supervised learning setting is one
where the instance space is R™, the samples come from some fixed and unknown distribution D’
on R™, and there is a fixed but unknown target function ¢* : R™ — {—1, +1}, ¢*(z) = sgn(u'z).
The examples induced by D’ and c* are called linearly separable since there exists a vector u such
that ¢*(z) = sgn(u'z). The linear separator learning problem we reduce to is defined as follows.
The instance space is R™ where m = n + 1 and the distribution D’ is defined by the following
procedure for generating a sample from it. Repeatedly draw a sample S C [n] from the distribution
D until f*(S) # 0. Next, flip a fair coin for each. The sample from D’ is

(x(S), (f*(9))?) (if the coin is heads)
(x(9), (n+¢) - (£*(S))?) (if the coin is tails).

The function ¢* defining the labels is as follows: samples for which the coin was heads are labeled

+1, and the others are labeled —1. We claim that the distribution over labeled examples induced

by D’ and c* is linearly separable in R"*!. To prove this we use the assumption that for the linear

function f(S) = w'x(S) with w € R™, we have (f*(S5))? < £(S) < n(f*(S))? forall S C [n].

Letu = ((n+¢/2) - w,—1) € R™. For any point z in the support of D" we have

z = (x(5), (f*(5))%) = ule=(n+e/2)- f(S) - (f(5)* >0
z = (x(8), (n+e) - (f(5))%) = ule = (n+e/2)- f(S) = (n+e) - (f(5))* <0.
f

This proves the claim. Moreover, this linear function also satisfies
particular, f(.S) = 0 for all S € Sy and moreover,

(S) =0forevery S € Z. In

f({]}) =w; =0 forevery j € Up where Up = Ug,ez S;.

Our algorithm is as follows. It first partitions the training set S = {(S1, f*(S1)), ..., (Sm, f*(Sm))}
into two sets Sp and S, where Sy is the subsequence of S with f*(S;) = 0, and S,p = S\ Sp.
For convenience, let us denote the sequence S as

Sz0 = ((A1, f* (A1), ..., (Aa, F*(Ad))).

Note that a is a random variable and we can think of the sets the A; as drawn independently from
D, conditioned on belonging to P. Let

U = U i<m Si and Po={S:SCl}.
=0

1<
(S
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Using S, the algorithm then constructs a sequence ;IAO = ((3:1, Y1)y -5 (Ta, ya)) of training

examples for the binary classification problem. For each 1 < ¢ < a, let y; be +1 or —1, each
with probability 1/2. If y; = +1 set 2; = (x(4;), (f*(4;))?); otherwise set z; = (x(A4;), (n +
g) - (f*(A:))?). The last step of our algorithm is to solve a linear program in order to find a linear
separator v = (w,—z) where w € R", z € R consistent with the labeled examples (z;,y;),
t = 1 < i < a, with the additional constraints that w; = 0 for j € Uy. The output hypothesis is
£(5) = (G ()2,

To prove correctness, note first that the linear program is feasible; this follows from our earlier
discussion using the facts (1) S;so is a set of labeled examples drawn from D’ and labeled by ¢* and
(2) Uy € Up. It remains to show that f approximates the target on most of the points. Let ) denote
the set of points S € P such that both of the points (x(5), (f*(S))?) and (x(9), (n+¢)-(f*(9))?)
are correctly labeled by sgn(uT:r), the linear separator found by our algorithm. It is easy to show
that the function f(S) = ((n Jie)zuﬁ-rx(s ))!/2 approximates f* to within a factor n + ¢ on all the
points in the set ). To see this notice that for any point S € )/, we have

WTx(S) = 2(f*(8)* >0 and  BTX(S) — z(n+e)(f*(5))* <0

— () < () < (n+e) " x(9):

(n+e)z (n+¢)z

So, for any point in S € Y, the function f(S)? = mwa(S) approximates (f*())? to within
a factor n + €. Moreover, by design the function f correctly labels as 0 all the examples in Py. To
finish the proof, we now note two important facts: for our choice of m = 1%” log (%), with high

probability both P \ ) and Z \ Py have small measure.
Claim 1 With probability at least 1 — 0, the set Z \ Py has measure at most e.

Proof Let P, = {S : S CUj; }. Suppose that, for some k, the set Z \ Py has measure at least €.
Define k' = k+1log(n/d)/e. Then amongst the subsequent examples Sy 1, . . ., Sg/, the probability
that none of them lie in Z \ Py, is at most (1 — €)!°8("/9)/¢ < §/n. On the other hand, if one of them
does lie in Z \ Py, then |Uys| > |U|. But [Uy| < n for all k, so this can happen at most n times.
Since m > nlog(n/d)/e, with probability at least o the set Z \ P, has measure at most €. [

We now prove:

Claim 2 Ifm = 16T" log (%) then with probability at least 1 — 26, the set P\ Y has measure at
most 2€ under D.

Proof [Proof of Claim 2] Let ¢ = 1 — p = Prg.p [S € P . If ¢ < € then the claim is immediate,
since P has measure at most €. So assume that ¢ > €. Let u = E[a] = ¢m. By assumption
> 16nlog(n/d€)4. Then Chernoff bounds give that

Pr [a < 8n log(n/(Se)g] < exp(—nlog(n/d)q/e) < 0.

So with probability at least 1 — 0, we have a > 8nlog(qn/de)?. By a standard sample complexity
argument (Vapnik, 1998) with probability at least 1 — ¢, any linear separator consistent with S’ will
be inconsistent with the labels on a set of measure at most €/q under D’. In particular, this property
holds for the linear separator ¢ computed by the linear program. So for any set S, the conditional

4.17



BALCAN CONSTANTIN IWATA WANG

probability that either (x(.9), (f*(5))?) or (x(S), (n + €) - (f*(S))?) is incorrectly labeled, given
that S € P, is at most 2¢/q. Thus

PriSeP & S¢Y] = Pr[SeP|]-Pr(S¢Y | SeP] < q-(2€/q),

as required. |

In summary, our algorithm outputs a hypothesis f approximating f* to within a factor (n + ¢)*/2

on Y U Pp,. The complement of this set is (£ \ Py) U (P \ V), which has measure at most 3¢, with
probability at least 1 — 3.

Appendix B. Additional result concerning learnability of OXS valuations

In this section we provide additional details concerning the learnability of OXS valuations, fo-
cusing on interesting subclasses of OXS functions that arise in practice, namely OXS functions
representable with a small number of MAX trees or leaves.

Motivating Examples For example, a traveler presented with a collection of plane tickets, hotel
rooms, and rental cars for a given location might value the bundle as the sum of his values on the
best ticket, the best hotel room, and the best rental car. This valuation is OXS, with one MAX tree
for each travel requirement. The number of MAX trees, i.e. travel requirements, is small but the
number of leaves in each tree may be large. As another example, consider for example a company
producing airplanes that must procure many different components for assembling an airplane. The
number of suppliers for each component is small, but the number of components may be very
large (more than a million in today’s airplanes). The company’s value for a set of components of
the same type, each from a different supplier, is its highest value for any such component. The
company’s value for a set of components of different types is the sum of the values for each type.
This valuation is representable as an OXS, with one tree for each component type. The number of
leaves, i.e. suppliers, in each MAX tree is small but there may be many such trees. In this section,
we show good PMAC-learning guarantees for classes of functions of these types. Formally:

B.1. Additional results for Theorem 4

We prove that Algorithm 2 can be used to PAC-learn (i.e. PMAC-learn with o« = 1) any unit-demand
valuation.

Lemma 2 The class of unit-demand valuations is properly PAC-learnable by using m = O(nln(n/é)/e)
training examples and time poly(n,1/€,1/9).

Proof We first show how to solve the consistency problem in polynomial time: given a sample
(S1, f*(S1)), -+, (Sm, f*(Sm)) we show how to construct in polynomial time a unit-demand func-
tion f that is consistent with the sample, i.e., f(S;) = f*(5;), forl € {1,2,...,m}. In particular,
using the reasoning in Theorem 3 for R = 1, we show that the unit-demand hypothesis f output by
Algorithm 2 is consistent with the samples. We have

f(S) = %%i(f(i) = E%%?ffégj F7(85) < f7(Sh).
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Also note that for any ¢ € S; we have f*(i) < f*(9), for I € {1,2,...,m}. So f(i) >
f*(i) foranyie€ SqU...USy,.. Therefore forany! € {1,2,...,m} we have:
* * (. .
J7(81) = max (i) < max f (i) = (S).
Thus f*(S;) = f(S;) forl € {1,2,...,m}.

We now claim that m = O(nln(n/d)/e) training examples are sufficient so that with prob-
ability at least 1 — ¢, the hypothesis f produced has error at most €. In particular, notice that
Algorithm 2 guarantees that f(i) € {f*(1),..., f*(n)} for all ;. This means that for any given
target function f*, there are at most n" different possible hypotheses f that Algorithm 2 could gen-
erate. By the union bound, the probability that the algorithm outputs one of error greater than € is
at most n" (1 — )" which is at most ¢ for our given choice of m. |

Lemma 3 If f* is OXS with at most R trees, then it is also unit-demand with at most n't leaves
(with R-tuples as items). For constant R, the family F of OXS functions with at most R trees is
PAC-learnable using O(Rn'tlog(n/d)/¢) training examples and time poly(n,1/e,1/5).

Proof We start by noting that since f* is an OXS function representable with at most R MAX
trees, then f* is uniquely determined by its values on sets of size up to R. Formally,

f5(8) = max f*(S"),vS C{1,...,n} (7

We construct a unit-demand [/, closely related to f, on meta-items corresponding to each of the
O(n't) sets of at most R items. In particular, we define one meta-item igr to represent each set
SE C {1,...,n} of size at most R and let

I R
filisr) = f7(S7).
We define f’ as unit-demand over meta-items; i.e. beyond singleton sets, we have

J'({igps---sign}) = max ['(ign). ®)
By equations (7) and (8), for all S we have f*(S) = f'(Is) where Is = {igr : S® C S}.

Since we can perform the mapping from sets .S to their corresponding sets /g over meta-items in
time O(n'?), this implies that to PAC-learn f*, we can simply PAC-learn f’ over the O(n*) meta-
items using Algorithm 2. Lemma 2 guarantees that this will PAC-learn using O(n log(nft/6) /)
training examples and running time poly(n, 1/¢,1/§) for constant R. [ |

Appendix C. Learnability everywhere with value queries

We also consider approximate learning with value queries (considered previously for submodular
functions by Goemans et al. (2009) and Svitkina and Fleischer (2008)). This is relevant for settings
where instead of passively observing the values of f* on sets S drawn from a distribution, the learner
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is able to actively query the value f*(S) on sets S of its choice and the goal is to approximate with
certainty the target f* on all 2" sets after querying the values of f* on polynomially many sets.
Formally:

Definition 5 We say that an algorithm A learns the valuation family F everywhere with value
queries with an approximation factor of o > 1 if, for any target function f* € F, after querying the
values of f* on polynomially (in n) many sets, A outputs in time polynomial in n. a function f such

that £(S) < f*(S) < af(S),¥S C {1,...,n}.

Goemans et al. (2009) show that for submodular functions the learnability factor with value
queries is (:)(nl/ 2). We show here that their lower bound applies to the more restricted OXS and
GS classes (their upper bound automatically applies). We also show that this lower bound can be
circumvented for the interesting subclasses of OXS and XOS that we considered earlier (for PMAC
learning), efficiently achieving a factor of R.

Theorem 5 (1) The classes of OXS and GS functions are learnable with value queries with an
approximation factor of C:)(nl/ ). (2) The following classes are learnable with value queries with
an approximation factor of R: OXS with at most R leaves in each tree, OXS with at most R trees,
XOS with at most R leaves in each tree, and XOS with at most R trees.

Proof [Proof Sketch] (1) We show in Appendix D that the family of valuation functions used
in (Goemans et al., 2009) for proving the Q(%) lower bound for learning submodular valuations
with value queries is contained in OXS. The valuations in this family are of the form go3(S) =
min(|S|, a’) and g%(S) = min(B8+ |SN(({1,...,n})\ R)|,|S|,a’) for o/ = 2n'/?/5,3 = x2/5
with 22 = w(logn) and R a subset of {1,...,n} of size &’ (chosen uniformly at random). These
valuations are OXS; for example, go3(.S) can be expressed as a SUM of o/ MAX trees, each having
as leaves all items in [n] with weight 1.

(2) To establish learnability for these interesting subclasses, we recall that for the first three
of them (Theorems 3 and 4) any valuation f* in each class was approximated to an R factor
by a function f that only depended on the values of f* on items. An analogous result holds
for the fourth class, i.e. XOS with at most R trees — indeed, for such an XOS f*, we have
+ 3 ies [FH{i}) < f1(S) € R% Y f*({i}), VS C [n]. One can then query these n values
and output the corresponding valuation f. |

Note: We note that the lower bound technique in Goemans et al. (2009) has been later used in
a sequence of papers (Iwata and Nagano, 2009; Goel et al., 2009; Svitkina and Fleischer, 2008)
concerning optimization under submodular cost functions and our result (Lemma 5 in particular)
implies that all the lower bounds in these papers apply to the smaller class of OXS functions.

Note: We also note that since the class of XOS valuations contains all submodular valuations,
the lower bound of Goemans et al. (2009) implies that the XOS class is not learnable everywhere

with value queries to a o(ﬁlg/i) = 6(n'/?) factor. For the same Q(%) lower bound, our proof
technique (and associated family of XOS valuations) for Theorem 1 offers a simpler argument than

that in Goemans et al. (2009).
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SUM SUM
MAX .. MAX MAX .. MAX MAX - MAX
oo MR ri .. 1R 1 .. n 1 . n o MRy i . MR
| ) \ ) \
Y ! Y
o’- B MAX trees for R B MAX trees for 1..n ¢ MAX trees for R’

(a) OXS representation for the function in Eq. (9) when n>a’ > 3. (b) OXS representation for
the function in Eq. (10).

Figure 1: OXS representations for functions in Appendix D. All leaves have value 1.

Appendix D. Additional results for Theorem 5

Goemans et al. (2009) proved that a certain matroid rank function fz s g(-), defined below, is hard
to learn everywhere with value queries to an approximation factor of o(m ). We show that the
rank function fr o g(-) is in OXS (all leaves in all OXS trees will have value 1). fr 5(:) :
2{L-m} 5 R is defined as follows. Let subset R C {1,...,n} and R = ({1,...,n})\ R its
complement. Also fix integers o/, 3 € N. Then

fR,a’,ﬁ(S) = mln(ﬁ—i_ |SQR‘, |S‘,O/), VS C {17 7n} ©)

As a warm-up, we show that a simpler function than fz o g(-) is in OXS. This simpler function
essentially corresponds to 3 = 0 and will be used in the case analysis for establishing that fr o/ 5(-)
is in OXS.

Lemma4 Let R’ C {1,...,n} and ¢ € N. Then the function f(-) : 211"} 5 R defined as
fr (S) = min(c, |[SNR'|),VS C{1,...,n} (10)
is in OXS.

Proof For ease of notation let f(-) = fr/ (). We assume ¢ < |R'|; otherwise, f(S) = [S N
R'|,¥S C {1,...,n}, which is a linear function (f(S) = Y ¢ f(x) where f(z) = lifz € R
and f(z) = 0 otherwise) and any linear function belongs to the class OXS (Lehmann et al., 2001).
Assuming ¢ < |R’|, we construct an OXS tree T with ¢ MAX trees, each with one leaf for every
element in R’. All leaves have value 1. We refer the reader to Fig. 1(b).

Then T(S) = f(5),¥S C {1,...,n} since f(S) represents the smaller of the number of
elements in S N R’ (that can each be taken from a different MAX tree in T') and c. Note that
T(S) <, VS C{L,...,n}. |

Lemma 5 The matroid rank function fr o g(-) is in the class OXS.
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Proof For ease of notation let f(-) = fro 5(-). If n < o/ then'® |S| < o/,VS C {1,...,n} and
f(S) =min(8 +|SNR|,|S]) =|SNR|+min(8,|S N R|) (11)

From the proof of Lemma 4 we get that the function f/(S) = min(f, |S N R|) has an OXS tree
T (i.e. T'(S) = f'(S),VS C {1,...,n}) with 8 MAX trees each with leaves only in R. We
can create a new tree 7' by adding |R| MAX trees to T”, each with one leaf for every element
in R, and we get T(S) = f(5),VS C {1,...,n}. The additional |R| MAX trees encode the
|S N R| term in Eq. (11). If o/ < B then f(S) = min(c/, |S|); the claim follows by Lemma 4 for
c=da,R ={1,...,n}. We can thus assume that n > o’ > (3. We prove that the OXS tree T,
containing the two types of MAX trees below, represents f, i.e. T'(S) = f(5),VS. We refer the
reader to Fig. 1(a).

o o/ —AMAX trees Ty ...T,/_ 3, each having as leaves all the elements in R with value 1.

e 3 MAX trees Ty/—p41 - .. Ty, each having as leaves all the elements (in {1,...,n}) with
value 1.

We note that 7'(S) < min(]S|,a’) as no set S can use more than |S| leaves and 7" has exactly o
trees. We distinguish the following cases

e |S| < B implying f(S) = |S| and T'(S) = |S| as |S| leaves can be taken each from |S| trees
in Ta’—,@-‘rl e Ta/.

o f(S)=a <min(8+ SN R|,|S|). We claim T'(S) > . There must exist o/ — 3 elements
in |S N R, that we can select one from each tree T ... T,,y_g. Also |S| > o’ and we can take
the remaining 3 elements from T _g41 ... Ty

e f(S) = |S| < min(B + |S N R|,&’). This implies |S N Rl < Band |S] < o We
claim T'(S) > [S|: we can take all needed elements in S N R from T} ... Ty g (and from
To—pt1-.-To if |SNR| > o — f8) and elements in S N R from T _g41 ... Ty

e f(S)=pB+|SNR| <min(|S|,a’). We claim T'(S) > B+|SNR|: we can take 3 < |SNR|
elements from T, _g11 ... T, and |S N R| < o — 3 elements from T ... T, _g. Finally,
T(S) < B+ |S N R| since at most all elements in S N R can be taken from 77 ... T,/ 5 and
at most 3 elements in S N R from T _g4q ... Ty

Appendix E. Learning with prices

We introduce here a new paradigm that is natural in many applications where the learner can re-
peatedly obtain information on the unknown valuation function of an agent via the agent’s decisions
to purchase or not rather than via random samples from this valuation or via queries to it. In this
framework, the learner does not obtain the value of f* on each input set S1,.55,.... Instead, for
each input set .5;, the learner observes 5, quotes a price p; (of its choosing) on S; and obtains one

10. We note that n» > o in Goemans et al. (2009). We consider this case for completeness.
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bit of information: whether the agent purchases S; or not, i.e. whether p; < f*(S;) or not. The
goal remains to approximate the function f* well, i.e. within an o multiplicative factor: on most
sets from D with high confidence for PMAC-learning and on all sets with certainty for learning
everywhere with value queries. The learner’s challenge is in choosing prices that allow discovery of
the agent valuation. This framework is a special case of demand queries (Nisan et al., 2007), where
prices are: p; on S; and oo elsewhere. We call PMAC-learning with prices and VQ-learning with
prices the variants of this framework applied to PMAC and learning everywhere with value queries
models. Each variant in this framework offers less information to the learner than its respective
basic model.

Clearly, all our PMAC-learning lower bounds still hold for PMAC-learning with prices. More
interestingly, our upper bounds still hold as well. In particular, we provide a reduction from the
problem of PMAC-learning with prices to the problem of learning a linear separator, for functions
f* such that for some p > 0, (f*)? can be approximated to a [ factor by a linear function. Such f*
can be PMAC-learned to a 3'/? factor by Algorithm 1. What we show in Theorem 6 below is that
such f* are PMAC-learnable with prices to a factor of (1 + o(1))3'/? using only a small increase
in the number of samples over that used for PMAC learning.

For convenience, we assume that all valuations are integral and that H is an upper bound on the
values of f*,i.e. f*(S) < H,V¥S C [n].

Theorem 6 Consider a family F of valuations s. t. the p-th power of any f* € F can be approxi-
mated to a 3 factor by a linear function: i.e., for some w we have wx(S) < (f*(8))? < BwTx(S)
forall S C [n], where 3 > 1,p > 0. Then for any 0 < n < 1, F is PMAC-learnable with prices to

a (1 +n)BY? factor using O(MZEH ln(m?;)de)) samples and time poly(n, 1, %, %)

Proof Asin Algorithm 1, the idea is to use a reduction to learning a linear separator, but where now
the examples use prices (that the algorithm can choose) instead of function values (that the algorithm
can no longer observe). For each input set .S, the purchase decision amounts to a comparison
between the chosen price ¢; and f*(.S;). Using the result of this comparison we will construct
examples, based on the prices q;, that are always consistent with a linear separator obtained from
w'x(S;), the linear function that approximates (f*)?. We will sample enough sets S; and assign
prices ¢; to them in such a way that for sufficiently many [, the price ¢; is close to f*(.S;). We then
find a linear separator that has small error on the distribution induced by the price-based examples
and show this yield a hypothesis f(.S) whose error is not much higher on the original distribution
with respect to the values of the (unknown) target function.
Specifically, we take m = O("l';iiH ln("g’faH )) samples, and for convenience define N =
|log14,,/3 H|. We assign to each input bundle S; a price ¢; drawn uniformly at random from {(1 +
n/3)%} fori = 0,1,2,..., N+1, and present bundle S; to the agent at price ¢;. The key point is that
for bundles S; such that f*(.S;) > 1 this ensures at least a ﬁ probability that f*(.S;)(1+n/3)"! <
g < f*(S;) and at least a ﬁ probability that f*(S;) < ¢ < f*(S;)(1 + n/3) (the case of
f*(S;) = 0 will be noticed when the agent does not purchase at price ¢; = 1 and is handled as in
the proof of Theorem 1).

We construct new examples based on these prices and purchase decisions as follows. If f*(.5;) <
g (i.e. the agent does not buy) then we let (x7, ;) = ((x(S1), Bq}), —1). If f*(S;) > ¢ (i.e. the
agent buys) then we let (z,1;) = ((x(S),4)), +1). Note that by our given assumption, the exam-
ples constructed are always linearly separable. In particular the label y; matches sgn((Sw, —1)Txl)
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in each case: FuwTx(S1) < A(F*(S)) < Baf and gf < (f*(S))P < PuTx(Sy) respectively. Let
D”Jrl denote the induced distribution on R"*!. We now find a linear separator (1, —z) € R**1,
where w € R™ and z € Ry, that is consistent with (x;,;),VI. We construct an intermediary hy-
pothesis f/'(S) = éwa(S ) based on the learned linear separator. The hypothesis output will be
£(8) = 5 (F(S)VP.

By standard VC-dimension sample-complexity bounds, our sample size m is sufficient that the
linear separator (w, —z) has error on D{};;l N5+2 with probability at least 1 — §. We now
show that this implies that with probability at least 1 — §, hypothesis f(S) approximates f*(S) to a
factor (1 4+ 1/3)25'/? < (14 n)BYP over D, on all but at most an & probability mass, as desired.

Specifically, consider some bundle S for which f(.5) does not approximate f*(.5) to a factor
(14 1/3)?8Y/P and for which f*(S) > 1 (recall that zeroes are handled separately). We just need
to show that for such bundles .S, there is at least a ﬁ probability (over the draw of price g) that

(W, —z) makes a mistake on the resulting example from Dg@l. There are two cases to consider:

1. Tt could be that f is a bad approximation because f(S) > f*(S). This implies that f'(S) >
[(1+n/3)f*(S)P or equwalently that T x(S) > Bz[(1 +1/3) f*(S)]P. In this case we use
the fact that there is a N+2 chance that f*(S) < ¢ < f*(5)(1+n/3). If this occurs, then the
agent doesn’t buy (yielding z = (x(S5), 3¢?),y = —1) and yet @' x(S) > BzqP. Thus the
separator mistakenly predicts positive.

2. Alternatively, it could be that (1 + 1/3)28'/P£(S) < f*(S). This then implies that (1 +
n/3)BYP f'(S)/P < f*(S) or equivalently that ' x(S) < (Hn/;)p. In this case, we use
the fact that there is a ﬁ chance that 1f +§7% qg < ( ). If this occurs, then the agent

does buy (yielding z = (x(5),¢"),y = +1) and yet ' x(S) < zqP. Thus the separator
mistakenly predicts negative.

Thus, the error rate under DZ};; is at least a ﬁ fraction of the error rate under D, and so a low

error under Dl’flz} implies a low error under D as desired. |

Note: We note that if there is an underlying desired pricing algorithm A, for each input set S
we can take the price of S; to be A(.S;) with probability 1 — £ and a uniformly at random price
in {1,2,4...,H/2, H} as in the previous result with probability £. We can also recover our up-
per bounds on learnability everywhere with value queries (the corresponding lower bounds clearly
hold).

We can also recover our upper bounds on learnability everywhere with value queries (the corre-
sponding lower bounds clearly hold). By sequentially setting prices 1,2,4 ..., H/2, H on each item
we can learn f*’s values on items within a factor of 2. Our structural results proving the approx-
imability of f* from interesting classes with a function that only depends on f*({1}),..., f*({n})
then yield the VQ-learnability with prices of these classes.

Theorem 7 The following classes are VQ-learnable with prices to within an 2R factor: OXS with
at most R trees, OXS with at most R leaves in each tree, XOS with at most R trees, and XOS with
at most R leaves in each tree.
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