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Abstract
In this paper we propose and study a generalization of the standard active-learning model where a
more general type of queries including class conditional queries and mistake queries are allowed.
Such queries have been quite useful in applications, but have been lacking theoretical understand-
ing. In this work, we characterize the power of such queries under several well-known noise mod-
els. We give nearly tight upper and lower bounds on the number of queries needed to learn both for
the general agnostic setting and for the bounded noise model. We further show that our methods
can be made adaptive to the (unknown) noise rate, with only negligible loss in query complexity.
Keywords: Statistical Learning Theory, Interactive Learning, Query Complexity, Active Learning

1. Introduction

The ever-expanding range of application areas for machine learning, together with huge increases in
the volume of raw data available, has encouraged researchers to look beyond the classic paradigm
of passive learning from labeled data only. Perhaps the most extensively used and studied technique
in this context is Active Learning, where the algorithm is presented with a large pool of unlabeled
examples (such as all images available on the web) and can interactively ask for the labels of exam-
ples of its own choosing from the pool. The aim is to use this interaction to drastically reduce the
number of labels needed (which are often the most expensive part of the data collection process) in
order to reach a low-error hypothesis.

Over the past fifteen years there has been a great deal of progress on understanding active
learning and its underlying principles Freund et al. (1997); Balcan et al. (2006, 2007); Beygelzimer
et al. (2009); Castro and Nowak (2007); Dasgupta et al. (2007, 2005); Hanneke (2007a); Balcan et al.
(2008); Hanneke (2009); Koltchinskii (2010); Wang (2009); Beygelzimer et al. (2010). However,
while useful in many applications McCallum and Nigam (1998); Tong and Koller (2001), requesting
the labels of select examples is only one very specific type of interaction between the learning
algorithm and the labeler. When analyzing many real world situations, it is desirable to consider
learning algorithms that make use of other types of queries as well. For example, suppose we are
actively learning a multiclass image classifier from examples. If at some point, the algorithm needs
an image from one of the classes, say an example of “house”, then an algorithm that can only make
individual label requests may need to ask the expert to label a large number of unlabeled examples
before it finally finds an example of a house for the expert to label as such. This problem could be
averted by simply allowing the algorithm to display a list of around a hundred thumbnail images
on the screen, and ask the expert to point to an image of a house if there is one. The expert can

c© 2012 M.F. Balcan & S. Hanneke.



BALCAN HANNEKE

visually scan through those images looking for a house much more quickly than she can label every
one of them. We call such queries class conditional queries. As another example of a different type
of query, the algorithm could potentially select a subset of the unlabeled data and ask the expert to
point to two examples of opposite labels within a specified distance of each other (for instance, by
Euclidean distance after projecting the data to a 2-dimensional space) and provide back the labels
of those examples. As a third example, based on the data and interaction so far, the algorithm could
propose a labeling of a set of unlabeled images and ask for a few mistakes if any exist – we call these
mistake queries or sample-based equivalence queries. Queries of this type are commonly used by
commercial systems (e.g., Faces in Apple-iPhoto makes use of mistake queries for face recognition
and labeling), and have been studied in several papers Chang et al. (2005); Doyle et al. (2009), but
unfortunately have been lacking a principled theoretical understanding.

In this work we expand the study of active learning by considering a model that allows us to
analyze learning with types of queries motivated by such applications. For most of our analysis,
we focus on class-conditional queries, where the algorithm is able to select a subset of a pool
of unlabeled examples and request the oracle an example of a given label within that subset, if
one exists. Our results additionally have immediate implications for mistake queries, in which the
algorithm may instead ask for a mistake within the selected subset of unlabeled examples, for an
arbitrary specified classifier.1 In these cases, we provide nearly tight bounds on query complexity
under several commonly studied noise conditions. We also discuss how our techniques could be
adapted to a more general setting involving abstract families of queries.
Class Conditional Queries It is well known that if the target function resides in a known concept
class and there is no classification noise (the so-called realizable case), then a simple approach
based on the Halving algorithm Littlestone (1988) can learn a function ε-close to the target function
using a number of class conditional queries dramatically smaller than the number of random labeled
examples required for PAC learning Hanneke (2009).

In this paper, we provide the first results for the more realistic non-realizable setting. Specif-
ically, we provide general and nearly tight results on the query complexity of class-conditional
queries in a multiclass setting under some of the most widely studied noise models including ran-
dom classification noise, bounded noise, as well as the purely agnostic setting.

In the purely agnostic case with noise rate η, we show that any interactive learning algorithm
in this model seeking a classifier of error at most η + ε must make Ω(dη2/ε2) queries, where d
is the Natarajan dimension; we also provide a nearly matching upper bound of Õ(dη2/ε2), for a
constant number of classes. This is smaller by a factor of η compared to the sample complexity of
passive learning (see Lemma 10), and represents a reduction over the known results for the query
complexity of active learning in many cases.

In the bounded noise model, we provide nearly tight upper and lower bounds on the query
complexity of class conditional queries as a function of the query complexity of active learning.
In particular, we find that the query complexity of the class conditional query model is essentially
within a factor of the noise bound of the query complexity of active learning. Interestingly, both
our upper and lower bounds are proven via reductions from active learning. In the case of the upper
bound, we illustrate a technique for using the method developed for the purely agnostic case as a
subroutine in batch-based active learning algorithms, using it to get the labels of all samples in a
given batch of unlabeled data.

1. We note that both class conditional queries and mistake queries strictly generalize the traditional model of active
learning by label requests.
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We additionally study learning in the one-sided noise model, and show that in the case of
intersection-closed concept classes, it is possible to get around our lower bounds and recover the
much-better realizable-case query complexity of Õ(d log(1/ε)). Our analysis of this scenario is
based on recent analyses of the frequency of mistakes made by the Closure algorithm along a se-
quence of i.i.d examples.

We further show that our methods can be made adaptive to the (unknown) noise rate η, with
only negligible loss in query complexity. Specifically, our method for the purely agnostic case has
the property that it produces a correctly labeled pool of i.i.d. labeled examples. We are able to use
this property in both the agnostic and bounded noise settings as a way to verify that the method is
successful; combined with a guess-and-double trick, this allows us to adapt to the noise rate. The
method we develop for one sided noise naturally adapts to the unknown noise rate.

Overall, we find that the reductions in query complexity for this model, compared to the tra-
ditional active learning model, 2 largely concerned with a factor relating to the noise rate of the
learning problem, so that the closer to the realizable case we are, the greater the potential gains in
query complexity. However, for larger noise rates, the benefits are more modest, a fact that sharply
contrasts with the enormous benefits of using these types of queries in the realizable case; this is
true even for very benign types of noise, such as bounded noise. On this, it is interesting to note
that, for both active learning and for passive learning, the difference between the realizable case
sample complexity and bounded-noise sample complexity is at most a logarithmic factor (consider-
ing the noise bound as a constant). As a result, bounded noise is typically considered quite benign
in passive and active learning. What our work shows is that, quite surprisingly, this trend fails to
hold for class-conditional queries. That is, comparing the query complexity for the realizable case
to that of the bounded noise case, there is often a dramatic increase. Specifically, while in the re-
alizable case, the query complexity is always O(d log(1/ε)), when we move to the bounded noise
case (with constant noise bound), the query complexity jumps up to be essentially proportional to
the label complexity of active learning. Interestingly, both our upper and lower bounds are proven
via reductions from active learning.

Other General Queries We additionally generalize these techniques and results to apply in more
general setting, making them available for many other types of queries. Specifically, we prove
upper bounds on the query complexity for an abstract type of sample-dependent query, for both
the general agnostic case and for the bounded noise case. The results are similar to those obtained
for class-conditional queries, except that they are multiplied by a complexity measure defined in
terms of the specific family of queries available to the algorithm. The methods achieving these
bounds are themselves somewhat more involved than those presented for class-conditional queries.
In contrast to the results on class-conditional queries, we do not establish corresponding lower
bound or tightness results for these more general cases.

Related Work Early work in the the exact learning literature also considers more general type of
queries Angluin (1998); Balcázar et al. (2002, 2001). Our results are different from those in several
respects. First, following the active learning literature, we are concerned with the case where we can

2. We are slightly overloading the meaning of reduction here since class conditional queries, mistake queries, and the
more general type of queries we consider are technically incomparable with active learning queries (label requests).
We note however that answering for example a class conditional query or a mistake query on a query set S could
be significantly easier than labeling all the examples in S which can only be achieved by |S| label requests. This is
observed in practice and also demonstrated by the fact that such queries are incorporated in commercial applications
such as Faces in Apple-iPhoto.
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ask queries only on subsets of our large pool of unlabeled examples, rather than directly on subsets
of the instance space of our choosing. Second, we are mainly concerned with achieving tight query
complexity guarantees in the presence of noise (e.g., purely agnostic or bounded noise). By contrast,
the earlier work on exact learning has been focused on noise-free learning (the realizable case). Both
of these differences make our treatment more appropriate and realistic for the statistical learning
setting. Technically, our methods blend and extend the techniques of the classical literature on Exact
Learning with the more recent literature on active learning in the statistical learning setting. Some
of our results also have novel implications for the traditional active learning setting; in particular,
we present the first query complexity bounds under bounded noise in terms of the splitting index.

Due to lack of space, we only include proof sketches of our results for class conditional queries
in the main body, with further details in the appendices. We provide our results about one-sides
noise appear in Appendix D and our results for other types of queries appear in Appendix E.

2. Formal Setting

We consider an interactive learning setting defined as follows. There is an instance space X , a label
space Y , and some fixed target distribution DXY over X ×Y , with marginal DX over X . Focusing
on multiclass classification, we assume that Y = {1, 2, . . . , k}, for some k ∈ N. In the learning
problem, there is an i.i.d. sequence of random variables (x1, y1), (x2, y2), (x3, y3), . . ., each with
distribution DXY . The learning algorithm is permitted direct access to the sequence of xi values
(unlabeled data points). However, information about the yi values is obtainable only via interaction
with an oracle, defined as follows.

At any time, the learning algorithm may propose a label ` ∈ Y and a finite subsequence of
unlabeled examples S = {xi1 , ..., xim} (for any m ∈ N); if yij 6= ` for all j ≤ m, the oracle
returns “none.” Otherwise, the oracle selects an arbitrary xij ∈ S for which yij = ` and returns the
pair (xij , yij ). In the following we call this model the CCQ (class-conditional queries) interactive
learning model. Technically, we implicitly suppose the set S also specifies the unique indices of the
examples it contains, so that the oracle knows which yi corresponds to which xij in the sample S;
however, we make this detail implicit below to simplify the presentation.

In the analysis below, we fix a set of classifiers h : X → Y called the hypothesis class, denoted
C. We will denote by d the Natarajan dimension of C Natarajan (1989); Haussler and Long (1995);
Ben-David et al. (1995), defined as the largest m ∈ N such that ∃(a1, b1, c1), . . . , (am, bm, cm) ∈
X ×Y×Y with bi 6= ci for each i s. t. {b1, c1}×· · ·×{bm, cm} ⊆ {(h(a1), . . . , h(am)) : h ∈ C}.3
The Natarajan dimension has been calculated for a variety of hypothesis classes, and is known to be
related to other commonly used dimensions, including the pseudo-dimension and graph dimension
Haussler and Long (1995); Ben-David et al. (1995). For instance, for neural networks of n nodes
with weights given by b-bit integers, the Natarajan dimension is at most bn(n−1) Natarajan (1989).

For any h : X → Y and distribution P over X × Y , define the error rate of h as errP (h) =
P(X,Y )∼P {h(X) 6= Y }; when P = DXY , we abbreviate this as err(h). For any finite sequence of
labeled examples L = {(xi1 , yi1), . . . , (xim , yim)}, we define the empirical error rate errL(h) =
|L|−1

∑
(x,y)∈L I[h(x) 6= y]. In some contexts, we also refer to the empirical error rate on a finite

sequence of unlabeled examples U = {xi1 , . . . , xim}, in which case we simply define errU (h) =
|U |−1

∑
xij∈U

I[h(xij ) 6= yij ], where the yij values are the actual labels of these examples.

3. If there are only two classes the Natarajan dimension is equal to the VC dimension.
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Let h∗ be the classifier in C of smallest err(h∗) (for simplicity, we suppose the minimum is
always realized), and let η = err(h∗), called the noise rate. The objective of the learning algorithm
is to identify some h with err(h) close to η using only a small number of queries. In this context, a
learning algorithm is simply any algorithm that makes some number of queries and then halts and
returns a classifier. We are particularly interested in the following quantity.

Definition 1 For any ε, δ ∈ (0, 1), any hypothesis class C, and any family of distributions D on
X × Y , define the quantity QCCCQ(ε, δ,C,D) as the minimum q ∈ N such that there exists a
learning algorithm A, which for any target distribution DXY ∈ D, with probability at least 1 − δ,
makes at most q queries and then returns a classifier ĥ with err(ĥ) ≤ η + ε. We generally refer to
the function QCCCQ(·, ·,C,D) as the query complexity of learning C under D.

The query complexity, as defined above, represents a kind of minimax statstical analysis, where
we fix a family of possible target distributions D, and calculate, for the best possible learning algo-
rithm, how many queries it makes under its worst possible target distribution DXY in D. Specific
families of target distributions we will be interested in include the random classification noise model,
the bounded noise model, and the agnostic model which we define formally in the sections below.

3. The General Agnostic Case

We start by considering the most general, agnostic setting, where we consider arbitrary noise dis-
tributions subject to a constraint on the noise rate. This is particularly relevant to many practical
scenarios, where we often do not know what type of noise we are faced with, potentially including
stochastic labels or model misspecification, and would therefore like to refrain from making any
specific assumptions about the nature of the noise. Formally, consider the family of distributions
Agnostic(C, α) = {DXY : infh∈C err(h) ≤ α}, α ∈ [0, 1/2). We prove nearly tight upper and
lower bounds on the query complexity of our model. Specifically, supposing k is constant, we have:

Theorem 2 For any hypothesis class C of Natarajan dimension d, for any η ∈ [0, 1/32),

QCCCQ(ε, δ,C,Agnostic(C, η)) = Θ̃
(
dη

2

ε2

)
.

The first interesting thing is that our bound differs from the sample complexity of passive learn-
ing only in a factor of η (see Lemma 10). This contrasts with the realizable case, where it is possible
to learn with a query complexity that is exponential smaller than the query complexity of passive
learning. On the other hand, is also interesting that this factor of η is consistently available regard-
less of the structure of the concept space. This contrasts with active learning where the extra factor
of η is only available in certain special cases Hanneke (2007a).

3.1. Proof of the Lower Bound

We first prove the lower bound. We specifically prove that for 0 < 2ε ≤ η < 1/4,

QCCCQ(ε, 1/4,C,Agnostic(C, η)) = Ω
(
dη2/ε2

)
.

Monotonicity in δ extends this to any δ ∈ (0, 1/4]. In words, this says that there is no algorithm
based on class-conditional queries that, in the worst case, with probability greater than 3/4, makes
fewer than O(dη2/ε2) queries and returns a classifier h with err(h) ≤ η + ε.
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Proof The key idea of the proof is to provide a reduction from the (binary) active learning model (la-
bel request queries) to our multiclass interactive learning model (general class-conditional queries)
for the hard case known previously for the active learning model Beygelzimer et al. (2009).

In particular, consider a set of d points x0, x1, x2,..., xd−1 shattered by C, and let (y0, z0), . . . ,
(yd−1, zd−1) be the label pairs that witness the shattering. Here is a distribution over X × Y :
point x0 has probability 1 − β, while each of the remaining xi has probability β/(d − 1), where
β = 2(η + 2ε). At x0 the response is always Y = y0. At xi, 1 ≤ i ≤ d− 1, the response is Y = zi
with probability 1/2 + γbi and Y = yi with probability 1/2− γbi, where bi is either +1 or −1, and
γ = 2ε/β = ε/(η + 2ε).

Beygelzimer et al. (2009) show that for any active learning algorithm, one can set b0 = 1 and
all the bi, i ∈ {1, . . . , d − 1} in a certain way so that the algorithm must make Ω(dη2/ε2) label
requests in order to output a classifier of error at most η + ε with probability at least 1/2. Building
on this, we can show any interactive learning algorithm seeking a classifier of error at most η + ε
must make Ω(dη2/ε2) queries to succeed with probability at least 3/4, as follows.

Assume that we have an algorithm A that works for the CCQ model with query complexity
QCCCQ(ε, δ,C,Agnostic(C, η)). We show how to use A as a subroutine in an active learning
algorithm that is specifically tailored to the above hard set of distributions.

In particular, we can simulate an oracle for the CCQ algorithm as follows. Suppose our CCQ
algorithm queries with a set Si for a label `. If ` is not one of the y0, . . . , yd−1, z0, . . . , zd−1 labels,
we may immediately return that none exist. If there exists xi,j ∈ Si such that xi,j = x0 and
` = z0, then we may simply return to the algorithm this (xi,j , z0). Otherwise, we need only make
(in expectation) 1

1/2−γ active learning queries to respond to the class-conditional query, as follows.
We consider the subset Ri of Si of points xi,j among those xj with ` ∈ {yj , zj}. We pick an
example x(1)i at random in Ri and request its label y(1)i . If x(1)i has label y(1)i = `, then we return
to the algorithm (x

(1)
i , y

(1)
i ); otherwise, we continue sampling random x

(2)
i , x

(3)
i , . . . points from

Ri (whose labels have not yet been requested) and requesting their labels y(2)i , y
(3)
i , . . ., until we

find one with label `, at which point we return to the algorithm that example. If we exhaust Ri
without finding such an example, we return to the algorithm that no such point exists. Since each
xi,j ∈ Ri has probability at least 1/2 − γ of having yi,j = `, we can answer any query of A using
in expectation no more than 1

1/2−γ label request queries.
In particular, we can upper bound this number of queries by a geometric random variable and

apply concentration inequalities for geometric random variables to bound the total number of label
requests, as follows. Let Ai be a random variable indicating the actual number of label requests we
make to answer query number i in the reduction above, before returning a response. For j ≤ Ai, if
h∗(x

(j)
i ) 6= `, let Zj = I[y

(j)
i = `], and if h∗(x(j)i ) = `, let Cj be an independent Bernoulli((1/2−

γ)/(1/2 + γ)) random variable, and let Zj = CjI[y
(j)
i = `]. For j > Ai, let Zj be an independent

Bernoulli(1/2−γ) random variable. LetBi = min{j : Zj = 1}. Since, ∀j ≤ Ai, Zj ≤ I[y
(j)
i = `],

we clearly haveBi ≥ Ai. Furthermore, note that the Zj are independent Bernoulli(1/2−γ) random
variables, so that Bi is a Geometric(1/2 − γ) random variable. By Lemma 9 in Appendix A, we
obtain that with probability at least 3/4 we have that ifQ is any constant andAmakes≤ Q queries,
then with probability greater than 3/4,

∑
iAi ≤

∑Q
i=1Bi ≤

2
1/2−γ [Q+ 4 ln(4)].

Without loss, we can supposeAmakes at mostQ = QCCCQ(ε, 1/4,C,Agnostic(C, η)) queries
(otherwise, simply halt the algorithm if it exceeds this, and it will still achieve this optimal query
complexity). Since

∑
iAi represents the total number of label requests made by this algorithm, we
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have that if QCCCQ(ε, 1/4,C,Agnostic(C, η)) < 1/2−γ
2 m− 4 ln(4), where m = O(dη2/ε2) is the

Beygelzimer et al. (2009) lower bound, then with probability > 3/4, the number of label requests is
< m. Since any algorithm making < m queries fails with probability at least 1/2, there is a greater
than 1/4 probability that the number of label request is< m and the above active learning algorithm
fails. But this active learning algorithm succeeds if and only if A succeeds, given these responses
to its queries; thus, the probability A succeeds is less than 3/4, contradicting the assumption that it
achieves query complexity QCCCQ(ε, 1/4,C,Agnostic(C, η)).

3.2. Upper bound

In this section, we describe an algorithm whose query complexity is Õ
(
kdβ

2

ε2

)
. For clarity, we

start by considering in the case where we know an upper bound β on η. We will discuss how to
remove the assumption of knowing an upper bound β on η, adapting to η, in Section 3.2. Our main
procedure (Algorithm 1) has two phases: in Phase 1, it uses a robust version of the classic halving
algorithm to produce a classifier whose error rate is at most 10(β + ε) by only using Õ

(
kd log 1

ε

)
queries. In Phase 2, we run a simple refining algorithm that uses Õ

(
kdβ

2

ε2

)
queries to turn the

classifier output in Phase 1 into a classifier of error η + ε. To implement Phase 1, we use a robust
version of the classic halving algorithm. The idea here is that rather than eliminating a hypothesis
when making just one mistake (as in the classic halving algorithm), we will eliminate a hypothesis
when it makes at least one mistake in some number out of several sets (of an appropriate size) chosen
uniformly at random from the unlabeled pool. The key point is that if the set size is appropriate (say
1/(16η)), then we will not eliminate the best hypothesis in the class since it does not make mistakes
on too many sets. On the other hand, if the plurarity vote function has a high error (at least 10η),
then it will make mistakes on enough sets and we can show that this then implies that a constant
fraction of the version space will make mistakes on more sets than the best classifier in the class
does (so we will be able to eliminate a constant fraction of the version space).

We express these algorithms in terms of a useful subroutine (Subroutine 1, Find-Mistake), which
identifies an example in a given set on which a given classifier makes a mistake. Also, given V ⊆ C,
define the plurality vote classifier as plur(V )(x) = argmaxy∈Y

∑
h∈V I[h(x) = y]. Also, for

ε > 0, we call a set H an ε-cover of C if, for every h ∈ C, infg∈H PX∼D(g(X) 6= h(X)) < ε. An
ε-cover is called “minimal” if it has minimal possible cardinality among all ε-covers. It is known
that the size of a minimal ε-cover of a class C of Natarajan dimension d is at most (ck2/ε)d for
an appropriate constant c van der Vaart and Wellner (1996); Haussler and Long (1995). Note that
constructing an ε-cover only requires access to the distribution D of the unlabeled examples, and
in particular, one can construct a cover of near-minimal size based on a sample of Õ(d/ε) random
unlabeled examples. Below, for brevity, we simply suppose we have access to a minimal ε-cover;
it is a simple exercise to extend these results to near-minimal covers constructed from random
unlabeled examples.

Note that, if errS(h) > 0, then Find-Mistake returns a labeled example (x, y) with y the true
label of x, such that h(x) 6= y, and otherwise it returns an indication that no such point exists.

Lemma 3 below characterizes the performance of Phase 1 and Lemma 4 characterizes the per-
formance of Phase 2. Note that the budget parameter in these methods is only utilized in our later
discussion of adaptation to the noise rate.
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Subroutine 1 Find-Mistake
Input: The sequence S = (x1, x2, . . . , xm); classifier h

1. For each y ∈ {1, . . . , k},

(a) Query the set {x ∈ S : h(x) 6= y} for label y

(b) If received back an example (x, y), return (x, y)

2. Return “none”

Algorithm 1 General Agnostic Interactive Algorithm
Input: The sequence (x1, x2, ..., ); values u, s, δ; budget n (optional; default value =∞).

1. Let V be a (minimal) ε-cover of the space of classifiers C with respect to DX . Let U be {x1, ..., xu}.

2. Run the Generalized Halving Algorithm (Phase 1) with input U ; V , s, c ln 4 log2 |V |
δ , n/2, and get h.

3. Run the Refining Algorithm (Phase 2) with input U , h, n/2, and get labeled sample L returned.

4. Find an hypothesis h′ ∈ V of minimum errL(h′).

Output Hypothesis h′ (and L).

Phase 1 Generalized Halving Algorithm
Input: The sequence U = (x1, x2, ..., xps); set of classifiers V ; values s, N ; budget n (n optional: default
value =∞).

1. Set b = true, t = 0.

2. while (b and t ≤ n−N )

(a) Draw S1, S2, ..., SN of size s uniformly without replacement from U .

(b) For each i, call Find-Mistake with arguments Si, and plur(V ). If it returns a mistake, we record
the mistake (x̃i, ỹi) it returns.

(c) If Find-Mistake finds a mistake in more than N/3 of the sets, remove from V every h ∈ V making
mistakes on > N/9 examples (x̃i, ỹi), and set t← t+N ; else b← 0.

Output Hypothesis plur(V ).

Phase 2 Refining Algorithm
Input: The sequence U = (x1, x2, ..., xps); classifier h; budget n (n optional: default value =∞).

1. Set b = 1, t = 0, W = U , L = ∅.

2. while (b and t < n)

(a) Call Find-Mistake with arguments W , and h.

(b) If it returns a mistake (x̃, ỹ), then set L← L ∪ {(x̃, ỹ)}, W ←W \ {x̃}, and t← t+ 1.

(c) Else set b = 0 and L← L ∪ {(x, h(x)) : x ∈W}.

Output Labeled sample L.
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Lemma 3 Assume that some ĥ ∈ V has errU (ĥ) ≤ β for β ∈ [0, 1/32]. With probability≥ 1−δ/2,
running Phase 1 with U , and values s =

⌊
1

16β

⌋
and N = c ln 4 log2 |V |

δ (for an appropriate constant
c ∈ (0,∞)), we have that for every round of the loop of Step 2, the following hold.

• ĥ makes mistakes on at most N/9 of the returned (x̃i, ỹi) examples.

• If errU (plur(V )) ≥ 10β, then Find-Mistake returns a mistake for plur(V ) on > N/3 of the sets.

• If Find-Mistake returns a mistake for plur(V ) on > N/3 of the sets Si, then the number of h in
V making mistakes on > N/9 of the returned (x̃i, ỹi) examples in Step 3(b) is at least (1/4)|V |.

Proof Sketch: Phase 1 and Lemma 3 are inspired by the analysis of Hanneke (2007b). In the
following, by a noisy example we mean any xi such that ĥ(xi) 6= yi. The expected number of noisy
points in any given set Si is at most 1/16, which (by Markov’s inequality) implies the probability
Si contains a noisy point is at most 1/16. Therefore, the expected number of sets Si with a noisy
point in them is at most N/16, so by a Chernoff bound, with probability at least 1− δ/(4 log2 |V |)
we have that at most N/9 sets Si contain any noisy point, establishing claim 1.

Assume that errU (plur(V )) ≥ 10β. The probability that there is a point x̃i in Si such that
plur(V ) labels x̃i differently from ỹi is≥ 1−(1−10β)s ≥ .37 (discovered by direct optimization).
So (for an appropriate value of c > 0 in N ) by a Chernoff bound, with probability at least 1 −
δ/(4 log2 |V |), at least N/3 of the sets Si contain a point x̃i such that plur(V )(x̃i) 6= ỹi, which
establishes claim 2. Via a combinatorial argument, this then implies with probability at least 1 −
δ/(4 log2 |V |), at least |V |/4 of the hypotheses make mistakes on more than N/9 of the sets Si.

A union bound over the above two events, as well as over the iterations of the loop (of which
there are at most log2 |V | due to the third claim) obtains the claimed overall 1− δ/2 probability.

Lemma 4 Suppose some ĥ has errU (ĥ) ≤ β, for some β ∈ [0, 1/32]. Running Phase 2 with
parameters U , ĥ, and any budget n, if L is the returned sample, and |L| = |U |, then every (xi, y) ∈
L has y = yi (i.e., the labels are in agreement with the oracle’s labels); furthermore, |L| = |U |
definitely happens for any n ≥ β|U |+ 1.

Proof Sketch: Every call to Find-Mistake returns a new mistake for ĥ from U , except the last call,
and since there are only β|U | such mistakes, the procedure requires only β|U | + 1 calls to Find-
Mistake. Furthermore, every label was either given to us by the oracle, or was assigned at the end,
and in this latter case the oracle has certified that they are correct.

We are now ready to present our main upper bounds for the agnostic noise model.

Theorem 5 Suppose β ≥ η, and β + ε ≤ 1/32. Running Algorithm 1 on the data sequence
x1, x2, . . ., with parameters u = O(d((β + ε)/ε2) log(k/εδ)), s =

⌊
1

16(β+ε)

⌋
, and δ, with prob-

ability at least 1 − δ it produces a classifier h′ with err(h′) ≤ η + ε using a number of queries
O
(
kdβ

2

ε2
log 1

εδ + kd log log(1/ε)
δ log 1

ε

)
.

Proof Sketch: We have chosen u large enough so that errU (h∗) ≤ η+ ε ≤ β+ ε, with probability
at least 1− δ/4, by a (multiplicative) Chernoff bound. By Lemma 3, we know that with probability
1−δ/2, h∗ is never discarded in Step 2(c) in Phase 1, and as long as errU (plur(V )) ≥ 10(β+ε), then
we cut the set |V | by a constant factor. So, with probability 1− 3δ/4, after at most O(kN log(|V |))
queries, Phase 1 halts with the guarantee that errU (plur(V )) ≤ 10(β + ε). Thus, by Lemma 4, the
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execution of Phase 2 returns a set L with the true labels after at most (10(β + ε)u + 1)k queries.
Therefore, due to the aforementioned bound on the size of a minimal ε-cover, by Chernoff and union
bounds, we have chosen u large enough so that the h′ of minimal errU (h′) has err(h′) ≤ η+ ε with
probability at least 1− δ/4. Combining the above events by a union bound, with probability 1− δ,
the h′ chosen at the conclusion of Algorithm 1 has err(h′) ≤ η + ε and the total number of queries
is at most kN log4/3(|V |) + k(10(β + ε)u+ 1), which is bounded by the claimed value.

In particular, if we take β = η, Theorem 5 implies the upper bound part of Theorem 2.

Note: It is sometimes desirable to restrict the size of the sample we make the query for, so that
the oracle does not need to sort through an extremely large sample searching for a mistake. To this
end, we can run Phase 2 on chunks of size 1/(η + ε) from U , and then union the resulting labeled
samples to form L. The number of queries required for this is still bounded by the desired quantity.

Note: We note that if η = Ω(ε2/3), then we could replace the first phase with a much simpler
method, such as running empirical risk minimization on a labeled sample of size Õ(d/η), while still
producing a classifier h with a similar err(h) = O(η) guarantee, which would then be suitable to
use in the second phase; indeed, this would allow us to avoid the use of the ε-cover V , which can
often be exponentially large in d. However, when η � ε2/3, the bound in Theorem 5 will generally
be smaller than Õ(d/η), so that the additional complexity of using our robust halving technique
is warranted by an improved query complexity. Moreover, in the special case where we are only
interested in finding a classifier h with err(h) = O(η), the query complexity bound in Theorem 5 is
merely Õ(kd log(1/η)), which is preferable to the sample complexity Õ(d/η) for passive learning.

In practice, knowledge of an upper bound β reasonably close to η is typically not available.
As such, it is important to design algorithms that adapt to the unknown value of η. The following
theorem indicates this is possible in our setting, without significant loss in query complexity.

Theorem 6 There exists an algorithm that is independent of η and ∀η ∈ [0, 1/2) achieves query
complexity QCCCQ(ε, δ,C,Agnostic(C, η)) = Õ

(
kdη

2

ε2

)
.

Proof Sketch: First, note that if we set the budget parameter n large enough (at roughly 1/k times
the value of the query complexity bound of Theorem 2), then the largest value of β for which the
algorithm (with parameters as in Theorem 5) produces Lwith |L| = u has β ≥ η, so that it produces
h′ with err(h′) ≤ η + ε. So for a given budget n, we can simply run the algorithm for each β value
in a log-scale grid of [ε, 1], and take the h′ for the largest such β with |L| = u (if n is large enough
that such a β exists). The second part of the problem then becomes determining an appropriately
large budget n, so that this works. For this, we can simply search for such a value by a guess-and-
double technique, where for each n we check whether it is large enough by evaluating a standard
confidence bound on the excess error rate; the key that allows this to work is that, if |L| = u, then
L is an iid DXY -distributed sequence of labeled examples, so that we can use known confidence
bounds for working with iid labeled data.

4. Bounded Noise

In this section we study the Bounded noise model (also known as Massart noise), which has been
extensively studied in the learning theory literature (Massart and Nedelec, 2006; Gine and Koltchin-
skii, 2006; Hanneke, 2011). This model represents a significantly stronger restriction on the type
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of noise. The motivation for bounded noise is that, in some scenarios, we do have an accurate
representation of the target function within our hypothesis class (i.e., the model is correctly spec-
ified), but we allow for nature’s labels to be slightly randomized. Formally, the we consider the
family BN(C, α) = {DXY : ∃h∗ ∈ C s.t. PDXY

(Y 6= h∗(X)|X) ≤ α}, for α ∈ [0, 1/2). We are
sometimes interested in the special case of Random Classification Noise, defined as RCN(C, α) =
{DXY : ∃h∗ ∈ C s.t. ∀` 6= h∗(x),PDXY

(Y = `|X = x) = α/(k−1)}. Also define BN(C, α;DX)
and RCN(C, α;DX) as those DXY in these respective classes with marginal DX on X .

In this section we show a lower bound on the query complexity of interactive learning with class-
conditional queries as a function of the query complexity of active learning (label request queries).
The proof follows via a reduction from the (multiclass) active learning model (label request queries)
to our interactive learning model (general class-conditional queries), very similar in spirit to the
reduction given in the proof of the lower bound in Theorem 2.

Theorem 7 Consider any hypothesis class C of Natarajan dimension d ∈ (0,∞). For any α ∈
[0, 1/2), and any distribution DX over X , in the random classification noise model we have the
following relationship between the query complexity of interactive learning in the class-conditional
queries model and the the query complexity of active learning with label requests:

α
2(k−1)QCAL(ε, 2δ,C,RCN(C, α;DX))− 4 ln

(
1
δ

)
≤ QCCCQ(ε, δ,C,RCN(C, α;DX))

To complement this lower bound, we prove a related upper bound via an analysis of an algorithm
below, which operates by reducing to a kind of batch-based active learning algorithm. Specifically,
assume we have an active learning algorithmA that proceeds in rounds, and in each round it interacts
with an oracle by providing a region R of the instance space and a number m and and it expects
in return m labeled examples from the conditional distribution given that x is in R. For example
the A2 algorithm Balcan et al. (2006) and the algorithm of Koltchinskii (2010) can be written to
operate this way. We show in the following how we can use our algorithms from Section 3 in order
to provide the desired labeled examples to such an active learning procedure while using fewer than
m queries to our oracle. In the description below we assume that algorithm A returns its state, a
region R of the instance space, a number m of desired samples, a boolean flag b for halting (b = 0)
or not (b = 1), and a classifier h.

The value δ′ in this algorithm should be set appropriately depending on the context, essentially
as δ divided by a coarse bound on the total number of batches the algorithm A will request the
labels of; for our purposes a value δ′ = poly(εδ(1− 2α)/d) will suffice. To state an explicit bound
on the number of queries, we first review the following definition of Hanneke (2007a, 2009). For
r > 0, define B(h, r) = {g ∈ C : PDX

(h(X) 6= g(X)) ≤ r}. For any H ⊆ C, define the region
of disagreement: DIS(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) 6= g(x)}. Define the disagreement
coefficient for h ∈ C: θh(ε) = sup

r>ε
PDX

(DIS(B(h, r)))/r. Define the disagreement coefficient of

the class C as θ(ε) = suph∈C θh(ε).

Theorem 8 For C of Natarajan dimension d, and α ∈ [0, 1/2), for any distribution DX over X ,
QCCCQ(ε, δ,C,BN(C, α;DX)) = O

((
1 + αθ(ε)

(1−2α)2

)
dk log2

(
dk

εδ(1−2α)

))
.

The significance of this result is that θ(ε) is multiplied by α, a feature not present in the known
results for active learning. In a sense, this factor of θ(ε) is a measure of how difficult the active
learning problem is, as the other terms are inevitable (up to the log factors).
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Algorithm 2 General Interactive Algorithm for Bounded Noise
Input: The sequence (x1, x2, ..., ); allowed error rate ε, noise bound α, algorithm A.

1. Set b = 1, t = 1. Initialize A and let S(A), R, m, b and ĥ be the returned values.

2. Let V be a minimal ε-cover of C with respect to the distribution DX .

3. While (b)

(a) Let ps = cd
ε2 log k

εδ and let (xi1 , xi2 , . . . , xips+m) be the first ps+m points in (xt+1, xt+2, . . .)∩R.

(b) Run Phase 1 with parameters U1 = (xi1 , xi2 , . . . , xips), V ,
⌊

1
16(α+ε)

⌋
, c log 4 log2 |V |

δ′

Let h be the returned classifier.

(c) Run Phase 2 with parameters U2 = (xips+1
, xips+2

, . . . , xips+m
), h.

Let L be the returned labeled sequence.

(d) Run A with parameters L and S(A). Let S(A), R, m, b and ĥ be the returned values.

(e) Let t = ips+m

Output Hypothesis ĥ.

By the same reasoning as in the above proof, plugging in a different kind of active learn-
ing algorithm A (which space limitations prevent description of here), one can prove an anal-
ogous bound based on the splitting index of Dasgupta (2005), rather than the disagreement co-
efficient. This is interesting, in that one can also prove a lower bound on QCAL in terms of
the splitting index, so that composed with Theorem 7, we have a nearly tight characterization of
QCCCQ(ε, δ,D,BN(C, α;DX)). See Appendix C.2.

As before, since the value of the noise bound α is typically not known in practice, it is often
desirable to have an algorithm capable of adapting to the value of α, while maintaining the query
complexity guarantees of Algorithm 2. Fortunately, we can achieve this by a similar argument to
that used above in Theorem 6. That is, starting with an initial guess of α̂ = ε as the noise bound
argument to Algorithm 2, we use the budget argument to Phase 2 to guarantee we never exceed the
query complexity bound of Theorem 8 (with α̂ in place of α), halting early if ever Phase 2 fails
to label the entire U1 set within its query budget. Then we repeatedly double α̂ until finally this
modified Algorithm 2 runs to completion. Setting the budget sizes and δ′ values appropriately, we
can maintain the guarantee of Theorem 8 with only an extra log factor increase.

5. Discussion and Open Questions

A concrete open question is determining the query complexity of class conditional and mistake
queries under Tsybakov noise. Another concrete open question is providing computationally effi-
cient procedures that the meet a nearly optimal query complexity for such queries in the presence of
certain types of noise. While our analysis provides an upper bound on query complexity for general
classes of queries, it is not clear that we have yet identified the appropriate quantities to appear in a
tight analysis in the query complexity in a general case.
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Appendix A. Useful Facts

Lemma 9 Let B1, . . . , Bk be independent Geometric(α) random variables. With probability at
least 1− δ,

k∑
i=1

Bi ≤
2

α

(
k + 4 ln

(
1

δ

))
.

Proof Letm = 2
α

(
k + 4 ln

(
1
δ

))
. LetX1, X2, . . . be i.i.d. Bernoulli(α) random variables.

∑k
i=1Bi

is distributionally equivalent to a valueN defined as the smallest value of n for which
∑n

i=1Xi = k,
so it suffices to show P(N ≤ m) ≥ 1− δ.
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Let H =
∑m

i=1Xi. We have E[H] = αm ≥ 2k. By a Chernoff bound, we have

P (H ≤ k) ≤ P (H ≤ (1/2)E[H]) ≤ exp {−E[H]/8} ≤ exp

{
− ln

(
1

δ

)}
= δ.

Therefore, with probability 1− δ, we have N ≤ m, as claimed.

The following is a direct consequence of a result of Vapnik (1998) (except substituting the
appropriate quantities for the multiclass case).

Lemma 10 For L a finite sequence of i.i.d. DXY labeled examples, and any δ ∈ (0, 1), with
probability at least 1− δ, for all h ∈ C,∣∣∣∣(errL(h)−min

g∈C
errL(g)

)
− (err(h)− err(h∗))

∣∣∣∣ ≤ 8d

|L|
ln

(
3|L|
δ

)
+

√
errL(h)

16d

|L|
ln

(
3|L|
δ

)
.

This follows from the fact that

|err(h)− errL(h)| ≤ O

(
d

|L|
ln

(
|L|
δ

)
+

√
err(h)

d

|L|
ln

(
|L|
δ

))
,

which in particular also implies that the sample complexity of passive learning (by empirical risk
minimization) is at most Õ

(
dη+ε
ε2

)
.

Appendix B. Class Conditional Queries. The Agnostic Case

Lemma 3 Assume that some ĥ ∈ V has errU (ĥ) ≤ β for β ∈ [0, 1/32]. With probability
≥ 1−δ/2, running Phase 1 with U , and values s =

⌊
1

16β

⌋
andN = c ln 4 log2 |V |

δ (for an appropriate
constant c ∈ (0,∞)), we have that for every round of the loop of Step 2, the following hold.

• ĥ makes mistakes on at most N/9 of the returned (x̃i, ỹi) examples.

• If errU (plur(V )) ≥ 10β, then Find-Mistake returns a mistake for plur(V ) on > N/3 of the sets.

• If Find-Mistake returns a mistake for plur(V ) on > N/3 of the sets Si, then the number of h in V
making mistakes on > N/9 of the returned (x̃i, ỹi) examples in Step 3(b) is at least (1/4)|V |.

Proof Phase 1 and Lemma 3 are inspired by the analysis of Hanneke (2007b). In the following, by
a noisy example we mean any xi such that ĥ(xi) 6= yi. The expected number of noisy points in any
given set Si is at most 1/16, which (by Markov’s inequality) implies the probability Si contains a
noisy point is at most 1/16. Therefore, the expected number of sets Si with a noisy point in them is
at most N/16, so by a Chernoff bound, with probability at least 1 − δ/(4 log2 |V |) we have that at
most N/9 sets Si contain any noisy point, establishing claim 1.

Assume that errU (plur(V )) ≥ 10β. The probability that there is a point x̃i in Si such that
plur(V ) labels x̃i differently from ỹi is≥ 1−(1−10β)s ≥ .37 (discovered by direct optimization).
So (for an appropriate value of c > 0 in N ) by a Chernoff bound, with probability at least 1 −
δ/(4 log2 |V |), at least N/3 of the sets Si contain a point x̃i such that plur(V )(x̃i) 6= ỹi, which
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establishes claim 2. Via a combinatorial argument, this then implies with probability at least 1 −
δ/(4 log2 |V |), at least |V |/4 of the hypotheses will make mistakes on more thanN/9 of the sets Si.
To see this consider the bipartite graph where on the left hand side we have all the classifiers in V
and on the right hand side we have all the returned (x̃i, ỹi) examples. Let us put an edge between a
node i on the left and a node j on the right if the hypothesis hi associated to node i makes a mistake
on (x̃i, ỹi). Let M be the number of vertices in the right hand side. Clearly, the total number of
edges in the graph is at least (1/2)|V ||M |, since at most |V |/2 classifiers label x̃i as ỹi. Let α|V |
be the number of classifiers in V that make mistakes on at most N/9 (x̃i, ỹi) examples. The total
number of edges in the graph is then upper bounded by α|V |N/9 + (1− α)|V |M. Therefore,

(1/2)|V ||M | ≤ α|V |N/9 + (1− α)|V |M,

which implies
|V ||M |(α− 1/2) ≤ α|V |N/9.

Applying the lower bound M ≥ N/3, we get (N/3)|V |(α − 1/2) ≤ α|V |N/9, so α ≤ 3/4. This
establishes claim 3.

A union bound over the above two events, as well as over the iterations of the loop (of which
there are at most log2 |V | due to the third claim of this lemma) obtains the claimed overall 1− δ/2
probability.

Lemma 4 Suppose some ĥ has errU (ĥ) ≤ β, for some β ∈ [0, 1/32]. Running Phase 2 with
parameters U , ĥ, and any budget n, if L is the returned sample, and |L| = |U |, then every (xi, y) ∈
L has y = yi (i.e., the labels are in agreement with the oracle’s labels); furthermore, |L| = |U |
definitely happens for any n ≥ β|U |+ 1.
Proof Every call to Find-Mistake returns a new mistake for ĥ from U , except the last call, and
since there are only β|U | such mistakes, the procedure requires only β|U |+1 calls to Find-Mistake.
Furthermore, every label was either given to us by the oracle, or was assigned at the end, and in this
latter case the oracle has certified that they are correct.

Formally, if |L| = |U |, then either every x ∈ U was returned as some (x̃, ỹ) pair in Step 2.b, or
we reached Step 2.c. In the former case, these ỹ labels are the oracle’s actual responses, and thus
correspond to the true labels. In the latter case, every element of L added prior to reaching 2.c was
returned by the oracle, and is therefore the true label. Every element (xi, y) ∈ L added in Step 2.c
has label ĥ(xi), which the oracle has just told us is correct in Find-Mistake (meaning we definitely
have ĥ(xi) = yi). Thus, in either case, the labels are in agreement with the true labels. Finally, note
that each call to Find-Mistake either returns a mistake for ĥ we have not previously received, or is
the final such call. Since there are at most β|U | mistakes in total, we can have at most β|U | + 1
calls to Find-Mistake.

Theorem 5 Suppose β ≥ η, and β + ε ≤ 1/32. Running Algorithm 1 with parameters u =

O(d((β + ε)/ε2) log(k/εδ)), s =
⌊

1
16(β+ε)

⌋
, and δ, with probability at least 1 − δ it produces a

classifier h′ with err(h′) ≤ η+ε using a number of queriesO
(
kdβ

2

ε2
log 1

εδ + kd log log(1/ε)
δ log 1

ε

)
.

Proof We have chosen u large enough so that errU (h∗) ≤ η + ε ≤ β + ε, with probability at least
1−δ/4, by a (multiplicative) Chernoff bound. By Lemma 3, we know that with probability 1−δ/2,
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h∗ is never discarded in Step 2(c) in Phase 1, and as long as errU (plur(V )) ≥ 10(β + ε), then we
cut the set |V | by a constant factor. So, with probability 1 − 3δ/4, after at most O(kN log(|V |))
queries, Phase 1 halts with the guarantee that errU (plur(V )) ≤ 10(β + ε). Thus, by Lemma 4, the
execution of Phase 2 returns a set L with the true labels after at most (10(β + ε)u+ 1)k queries.

Furthermore, we can choose the ε-cover V so that |V | ≤ 4(ck2/ε)d for an appropriate constant
c (van der Vaart and Wellner, 1996; Haussler and Long, 1995).

Therefore, by Chernoff and union bounds, we have chosen u large enough so that the h′ of
minimal errU (h′) has err(h′) ≤ η + ε with probability at least 1 − δ/4. Combining the above
events by a union bound, with probability 1− δ, the h′ chosen at the conclusion of Algorithm 1 has
err(h′) ≤ η + ε and the total number of queries is at most

kN log4/3(|V |) + k(10(β + ε)u+ 1) = O

(
kd log

d log(k/ε)

δ
log

1

ε
+ kd

(β + ε)2

ε2
log

k

εδ

)
.

Theorem 6 There exists an algorithm that is independent of η and ∀η ∈ [0, 1/2) achieves query
complexity QCCCQ(ε, δ,C,Agnostic(C, α)) = Õ

(
kdη

2

ε2

)
.

Proof We consider the proof of this theorem in two stages, with the following intuitive motivation.
First, note that if we set the budget parameter n large enough (at roughly 1/k times the value of
the query complexity bound of Theorem 2), then the largest value of β for which the algorithm
(with parameters as in Theorem 5) produces L with |L| = u has β ≥ η, so that it produces h′ with
err(h′) ≤ η + ε. So for a given budget n, we can simply run the algorithm for each β value in a
log-scale grid of [ε, 1], and take the h′ for the largest such β with |L| = u. The second part of the
problem then becomes determining an appropriately large budget n, so that this works. For this, we
can simply search for such a value by a guess-and-double technique, where for each n we check
whether it is large enough by evaluating a standard confidence bound on the excess error rate; the
key that allows this to work is that, if |L| = u, then the set L is an i.i.d. DXY -distributed sequence
of labeled examples, so that we can use known confidence bounds for working with sequences of
random labeled examples. The details of this strategy follow.

Consider values nj = 2j for j ∈ N, and define the following procedure. We can consider
a sequence of values ηi = 21−i for i ≤ log2(1/ε). For each i = 1, 2, . . . , log2(1/ε), we run
Algorithm 1 with parameters

u = ui = O(d((ηi + ε)/ε2) log(k/εδ)),

s = si =
1

16(ηi + ε)
, δi = δ/(8 log2(1/ε))

and budget parameter nj/ log2(1/ε). Let hji and Lji denote the return values from this execution
of Algorithm 1, and let ĥj and L̂j denote the values hji and Lji, respectively, for the smallest value
of i for which |Lji| = ui (if such an i exists): that is, for which the execution of Phase 2 ran to
completion.

Note that for some j with nj = O
(
dη

2

ε2
log k log2(1/ε)

εδ + d log log2(1/ε)
δ log k

ε

)
log2

1
ε , Theorem 5

implies that with probability 1−δ/4, every i ≤ blog2(1/η)cwith |Lji| = ui has err(hji) ≤ η+ε/2,
and |Lji| = ui for at least one such i value: namely, i = blog2(1/max{η, ε})c. Thus, err(ĥj) ≤
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η + ε/2 for this value of j. Let j∗ denote this value of j, and for the remainder of this subsection
we suppose this high-probability event occurs.

All that remains is to design a procedure for searching over nj values to find one large enough to
obtain this error rate guarantee, but not so large as to lose the query complexity guarantee. Toward
this end, define

Ej =
8d

|L̂j |
ln

(
12|L̂j |j2

δ

)
+

√√√√errL̂j
(ĥj)

16d

|L̂j |
ln

(
12|L̂j |j2

δ

)
.

Lemma 10 implies that with probability at least 1− δ/2, ∀j for which L̂j and ĥj are defined,∣∣∣∣(errL̂j
(ĥj)−min

h∈C
errL̂j

(h)

)
−
(

err(ĥj)− err(h∗)
)∣∣∣∣ ≤ Ej .

Consider running the above procedure for j = 1, 2, 3, . . . in increasing order until we reach the
first value of j for which L̂j and ĥj are defined, and

errL̂j
(ĥj)−min

h∈C
errL̂j

(h) + Ej ≤ ε.

Denote this first value of j as ĵ. Note that choosing ĵ in this way guarantees err(ĥĵ) ≤ η + ε.
It remains only to bound the value of this ĵ, so that we may add up the total number of queries

among the executions of our procedure for all values j ≤ ĵ. By setting the constants in ui appro-
priately, the sample size of |L̂j | is large enough so that, for j = j∗, a Chernoff bound (to bound
errL̂j

(h∗) ≥ errL̂j
(ĥj)) guarantees that with probability 1− δ/4, Ej ≤ ε/4. Furthermore, we have

errL̂j
(ĥj)−min

h∈C
errL̂j

(h) ≤ err(ĥj)− err(h∗) + Ej ≤ ε/2 + ε/4 = (3/4)ε,

so that in total errL̂j
(ĥj)−minh∈C errL̂j

(h) + Ej ≤ (3/4)ε+ ε/4 = ε. Thus, we have ĵ ≤ j∗, so
that the total number of queries is less than 2nj∗ .

Therefore, by a union bound over the above events, with probability 1 − δ, the selected ĥĵ has

err(ĥĵ) ≤ η + ε, and the total number of queries is less than

2knj∗ = O

(
dk
η2

ε2
log

log(1/ε)

εδ
log

1

ε
+ dk log

log(1/ε)

δ
log2

1

ε

)
.

Thus, not having direct access to the noise rate only increases our query complexity by at most a
logarithmic factor compared to the bound of Theorem 2.

Appendix C. Class Conditional Queries. Bounded Noise

Theorem 7 Consider any hypothesis class C of Natarajan dimension d ∈ (0,∞). For any α ∈
[0, 1/2), and any distribution DX over X , in the random classification noise model we have the
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following relationship between the query complexity of interactive learning in the class-conditional
queries model and the the query complexity of active learning with label requests:

α

2(k − 1)
QCAL(ε, 2δ,C,RCN(C, α;DX))− 4 ln

1

δ
≤ QCCCQ(ε, δ,C,RCN(C, α;DX))

Proof The proof follows via a reduction from the active learning model (label request queries) to our
interactive learning model (general class-conditional queries). Assume that we have an algorithm
that works for the CCQ model with query complexity QCCCQ(ε, δ,C,RCN(C, α;DX)). We can
convert this into an algorithm that works in the active learning model with a query complexity of
QCAL(ε, 2δ,C,RCN(C, α;DX)) = 2(k−1)

α [QCCCQ(ε, δ,C,RCN(C, α;DX))+4 ln 1
δ ], as follows.

When our CCQ algorithm queries the ith time, say querying for a label y among a set Si, we pick
an example xi,1 at random in Si and (if the label of xi,1 has never previously been requested), we
request its label yi,1. If y = yi,1, then we return (xi,1, yi,1) to the algorithm, and otherwise we keep
taking examples (xi,2, xi,3, . . .) at random in the set Si and (if their label has not yet been requested)
requesting their labels (yi,2, yi,3, . . .), until we find one with label y, at which point we return this
labeled example to the algorithm. If we exhaust Si and we find example of label y, we return to the
algorithm that there are no examples in Si with label y.

Let Ai be a random variable indicating the actual number of label requests we make in round i
before getting either an example of label y or exhausting the set Si. We also define a related random
variable Bi as follows. For j ≤ Ai, if h∗(xi,j) 6= y, let Zj = I[yi,j = y], and if h∗(xi,j) = y, let Cj
be an independent Bernoulli((α/(k−1))/(1−α)) random variable, and let Zj = CjI[yi,j = y]. For
j > Ai, letZj be an independent Bernoulli(α/(k−1)) random variable. LetBi = min{j : Zj = 1}.
Since, ∀j ≤ Ai, Zj ≤ I[yi,j = y], we clearly have Bi ≥ Ai. Furthermore, note that the Zj are
independent Bernoulli(α/(k − 1)) random variables, so that Bi is a Geometric(α/(k − 1)) random
variable. By Lemma 9 in Appendix A, we obtain that with probability at least 1− δ we have∑

i

Ai ≤
∑
i

Bi ≤
2(k − 1)

α
[QCCCQ(ε, δ,C,RCN(C, α;DX)) + 4 ln

1

δ
].

This then implies

QCAL(ε, 2δ,C,RCN(C, α;DX)) ≤ 2(k − 1)

α
[QCCCQ(ε, δ,C,RCN(C, α;DX)) + 4 ln

1

δ
],

which implies the desired result.

Theorem 8 For any concept space C of Natarajan dimension d, and any α ∈ [0, 1/2), for any
distribution DX over X ,

QCCCQ(ε, δ,C,BN(C, α;DX)) = O

((
1 +

αθ(ε)

(1− 2α)2

)
dk log2

(
dk

εδ(1− 2α)

))
.

Proof We show that, for DXY ∈ BN(C, α), running Algorithm 2 with the algorithm A as the
method from (Koltchinskii, 2010) returns a classifier ĥ with err(ĥ) ≤ η + ε using a number of
queries as in the claim.
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For bounded noise, with noise bound α, on each round of Algorithm 2, we run Algorithm 1 on
a set U1 that, by Hoeffding’s inequality and the size of ps, with probability 1− δ/ log(1/ε), has

min
h∈V

errU1(h) ≤ α+ ε.

Thus, by Lemma 3, the fraction of examples in each U1 = (xi1 , . . . , xips) on which the returned h
makes a mistake is at most 10(α + ε). Then the size of ps and Hoeffding’s inequality implies that
err(h) ≤ O(α+ ε) with probability 1− δ/ log(1/ε), and a Chernoff bound implies that Algorithm
2 is run on a set U2 with

errU2(h) ≤ O(α+ ε+
√

(α+ ε) log(log(1/ε)/δ)/m+ log(log(1/ε)/δ)/m).

Thus, by Lemmas 3 and 4, the number of queries per round is

O(k(α+ ε)m+ k
√

(α+ ε)m log(log(1/ε)/δ) + kd log(d/εδ(1− 2α))).

In particular, for the algorithm of Koltchinskii (2010), it is known that with probability 1− δ/2,
every round has m ≤ O

(
θ(ε)d

(1−2α)2 log
(

1
εδ(1−2α)

))
, and there are at most O(log(1/ε)) rounds, so

that the total number of queries is at most O
(
k (αθ(ε) + 1) d

(1−2α)2 log2
(

d
εδ(1−2α)

))
.

C.1. Adapting to Unknown α

Algorithm 2 is based on having direct access to the noise bound α. As in Section 3.2, since this in-
formation is not typically available in practice, we would prefer a method that can obtain essentially
the same query complexity bounds without direct access to α. Fortunately, we can achieve this by a
similar argument to Section 3.2, merely by doubling our guess at the value of α until the algorithm
behaves as expected, as follows.

Consider modifying Algorithm 2 as follows. In Step 6, we include the budget argument to
Algorithm 2, with value O((1 + αm) log(1/δ′)). Then, if the set L returned has |L| < m, we
return Failure. Note that if this α is at least as large as the actual noise bound, then this bound is
inconsequential, as it will be satisfied anyway (with probability 1 − δ′, by a Chernoff bound). Call
this modified method Algorithm 2′.

Now consider the sequences αi = 2i−1ε, for 1 ≤ i ≤ log2(1/ε). For i = 1, 2, . . . , log2(1/ε)
in increasing order, we run Algorithm 2′ with parameters (x1, x2, . . .), ε, αi, A. If the algorithm
runs to completion, we halt and output the ĥ returned by Algorithm 2′. Otherwise, if the algorithm
returns Failure, we increment i and repeat.

Since Algorithm 2′ runs to completion for any i ≥ dlog(α/ε)e, and since the number of queries
Algorithm 2′ makes is monotonic in its α argument, for an appropriate choice of δ′ = O(δε2/d)
(based on a coarse bound on the total number of batches the algorithm will request labels for),
we have a total number of queries at most O

(
(1 + αθ(ε)) d

(1−2α)2 log2
(

d
εδ(1−2α)

)
log
(
1
ε

))
for the

method of Koltchinskii (2010), only a O(log(1/ε)) factor over the bound of Theorem 8; similarly,
we lose at most a factor of O(log(1/ε)) for the splitting method, compared to the bound of Theo-
rem 14.
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C.2. Bounds Based on the Splitting Index

By the same reasoning as in the proof of Theorem 8, except running Algorithm 2 with Algorithm 3
instead, one can prove an analogous bound based on the splitting index of Dasgupta (2005), rather
than the disagreement coefficient. This is interesting, in that one can also prove a lower bound
on QCAL in terms of the splitting index, so that composed with Theorem 7, we have a nearly tight
characterization of QCCCQ(ε, δ,D,BN(C, α;DX)). Specifically, consider the following definitions
due to Dasgupta (2005).

Let Q ⊆ {{h, g} : h, g ∈ C} be a finite set of unordered pairs of classifiers from C. For x ∈ X
and y ∈ Y , define Qyx = {{h, g} ∈ Q : h(x) = g(x) = y}. A point x ∈ X is said to ρ-split Q if

max
y∈Y
|Qyx| ≤ (1− ρ)|Q|.

Fix any distribution DX on X . We sayH ⊆ C is (ρ,∆, τ)-splittable if for all finite Q ⊆ {{h, g} ⊆
C : PDX

(x : h(x) 6= g(x)) > ∆},

PDX
(x : x ρ-splits Q) ≥ τ.

A large value of ρ for a reasonably large τ indicates that there are highly informative examples that
are not too rare. Following Dasgupta (2005), for each h ∈ C, τ > 0, ε > 0, we define

ρh,τ (ε) = sup{ρ : ∀∆ ≥ ε/2, B(h, 4∆) is (ρ,∆, τ)-splittable}.

Here, B(h, r) = {g ∈ C : PDX
(x : h(x) 6= g(x)) ≤ r} for r > 0. Though Dasgupta (2005) ex-

plores results on the query complexity as a function of h∗,DX , for our purposes (minimax analysis)
we will take a worst-case value of ρ. That is, define

ρτ (ε) = inf
h∈C

ρh,τ (ε).

Theorem 7 (in the main body) relates the query complexity of CCQ to that of AL. There
is much known about the latter, and in the interest of stating a concrete particularly tight result
here, we provide a new particularly tight result, inspired by the analysis of Dasgupta (2005). For
simplicity, we will only discuss the k = 2 case in this section.

Theorem 11 Suppose k = 2. There exist universal constants c1, c2 ∈ (0,∞) such that, for any
concept space C of VC dimension d, any α ∈ [0, 1/2), ε, δ ∈ (0, 1/16), and distribution DX over
X ,

inf
τ>0

c1
ρτ (4ε)

≤ QCAL(ε, δ,C,BN(C, α;DX)) ≤ inf
τ>0

c2d
3

(1− 2α)2ρτ (ε)
log5

(
1

εδτ(1− 2α)

)
.

The proof of Theorem11 is included in Section C.2.1. The implication of the lower bound given
by Theorem 7, combined with Theorem 11 is as follows.

Corollary 12 Suppose k = 2. There exists a universal constant c ∈ (0,∞) such that, for any
concept space C of Natarajan dimension d, any α ∈ [0, 1/2), ε, δ ∈ (0, 1/32), and distribution DX
over X ,

QCCCQ(ε, δ,C,BN(C, α;DX)) ≥ α

2
· inf
τ>0

c

ρτ (4ε)
− 4 ln (4) .
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In particular, this means that in some cases, the query complexity of CCQ learning is only
smaller by a factor proportional to α compared to the number of random labeled examples required
by passive learning, as indicated by the following example, which follows immediately from Corol-
lary 12 and Dasgupta’s analysis of the splitting index for interval classifiers (Dasgupta, 2005).

Corollary 13 For X = [0, 1] and C = {2I[a,b] − 1 : a, b ∈ [0, 1]} the class of interval classifiers,
there is a constant c ∈ (0, 1) such that, for any α ∈ [0, 1/2) and sufficiently small ε > 0,

QCCCQ(ε, 1/32,C,BN(C, α)) ≥ cα
ε
.

There is also a near-matching upper bound compared to Corollary 12. That is, running Algo-
rithm 2 with Algorithm 3 of Appendix C.2.1, we have the following result in terms of the splitting
index.

Theorem 14 Suppose k = 2. For any concept space C of VC dimension d, and any α ∈ [0, 1/2),
for any distribution DX over X ,

QCCCQ(ε, δ,C,BN(C, α;DX))

= O

(
d log2

(
d

εδ(1− 2α)

)
+ inf
τ>0

αd3

(1− 2α)2ρτ (ε)
log5

(
1

εδτ(1− 2α)

))
.

Logarithmic factors and terms unrelated to ε and α aside, in spirit the combination of Corol-
lary 12 with Theorem 14 imply that in the bounded noise model, the specific reduction in query
complexity of using class-conditional queries instead of label request queries is essentially a factor
of α.

C.2.1. PROOF OF THEOREM 11

We prove Theorem 11 in two parts. First, we establish the lower bound. The technique for this
is quite similar to a result of Dasgupta (2005). Recall that QCAL(ε, δ,C,Realizable(C;DX)) ≤
QCAL(ε, δ,C,BN(C, α;DX)). Thus, the following lemma implies the lower bound of Theorem 11.

Lemma 15 For any hypothesis class C of Natarajan dimension d, for any distribution DX over X ,

QCAL(ε, 1/16,C,Realizable(C;DX)) ≥ inf
τ>0

c

ρτ (4ε)
.

Proof The proof is quite similar to that of a related result of Dasgupta (2005). Fix any τ ∈
(0, 1/4), and suppose A is an active learning algorithm that considers at most the first 1/(4τ)
unlabeled examples, with probability greater than 7/8. Let h ∈ C be such that ρh,τ (4ε) ≤ 2ρτ (4ε),
and let ∆ ≥ 2ε and Q ⊆ {{f, g} ⊆ B(h, 4∆) : PDX

(x : f(x) 6= g(x)) > ∆} be such that
PDX

(x : x 2ρh,τ (4ε)-splits Q) < τ . In particular, with probability at least (1 − τ)1/(4τ) ≥ 3/4,
none of the first 1/(4τ) unlabeled examples 2ρh,τ (4ε)-splits Q. Fix any such data set, and denote
ρ = 2ρh,τ (4ε).

We proceed by the probabilistic method. We randomly select the target h∗ as follows. First,
choose a pair {f∗, g∗} ∈ Q uniformly at random. Then choose h∗ from among {f∗, g∗} uniformly
at random.
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For each unlabeled example x among the first 1/(4τ), call the label y with |Qyx| > (1 − ρ)|Q|
the “bad” response. Given the initial 1/(4τ) unlabeled examples, the algorithmA has some fixed (a
priori known, though possibly randomized) behavior when the responses to all of its label requests
are the bad responses. That is, it makes some number t of queries, and then returns some classifier
ĥ.

For any one of those label requests, the probability that both f∗ and g∗ agree with the bad
response is greater than 1 − ρ. Thus, by a union bound, the probability both f∗ and g∗ agree
with the bad responses for the t queries of the algorithm is greater than 1 − tρ. On this event, the
algorithm returns ĥ, which is independent from the random choice of h∗ from among f∗ and g∗.
Since PDX

(x : f∗(x) 6= g∗(x)) > ∆ ≥ 2ε, ĥ can be ε-close to at most one of them, so that there is
at least a 1/2 probability that err(ĥ) > ε.

Adding up the failure probabilities, by a union bound the probability the algorithm’s returned
classifier h′ has err(h′) > ε is greater than 7/8 − 1/4 − tρ − 1/2. For any t < 1/(16ρ), this
is greater than 1/16. Thus, there exists some deterministic h∗ ∈ C for which A requires at least
1/(16ρ) queries, with probability greater than 1/16.

As any active learning algorithm has a 7/8-confidence upper bound M on the number of unla-
beled examples it uses, letting τ → 0 in the above analysis allows M → ∞, and thus covers all
possible active learning algorithms.

We will establish the upper bound portion of Lemma 11 via the following algorithm. Here we
write the algorithm in a closed form, but it is clear that we could rewrite the method in the batch-
based style required by Algorithm 2 above, simply by including its state every time it makes a batch
of label request queries. The value ε0 in this method should be set appropriately for the result below;
specifically, we will coarsely take ε0 = O((1− 2α)3ε2τ2δ2/d3), based on the analysis of Dasgupta
(2005) for the realizable case.

We have the following result for this method, with an appropriate setting of the constants in the
“O(·)” terms.

Lemma 16 Suppose k = 2. There exists a constant c ∈ (0,∞) such that, for any hypothesis class
C of VC dimension d, for any α ∈ [0, 1/2) and τ > 0, for any distribution DX over X , for any
DXY ∈ BN(C, α;DX), Algorithm 3 produces a classifier ĥ with err(ĥ) ≤ η+ ε using a number of
label request queries at most

O

(
d3

(1− 2α)2ρh∗,τ (ε)
log5

(
1

(1− 2α)εδτ

))
.

Proof [Sketch] Since V is initially an ε0-cover, the ĥ ∈ V of minimal err(ĥ) has err(ĥ) ≤ ε0.
Furthermore, ε0 was chosen so that, as long as the total number of unlabeled examples processed
does not exceed O( d3

(1−2α)3ε2τ2δ ), with probability 1 − O(δ), we will have ĥ agreeing with h∗ on
all of the unlabeled examples, and in particular on all of the examples whose labels the algorithm
requests. This means that, for every example x we request the label of, P(ĥ(x) = y|x) ≥ 1−α. By
Chernoff and union bounds, with probability 1−O(δ), for every g ∈ V , we always have

Mĥg −Mgĥ ≤ O

(√
max{Mhg,Mgh}d log

(
1

ε0

)
+ d log

(
1

ε0

))
,
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Algorithm 3 An active learning algorithm for learning with bounded noise, based on splitting.
Input: The sequence U = (x1, x2, ...); allowed error rate ε; value τ ∈ (0, 1); noise bound α ∈ [0, 1/2).

I. Let V denote a minimal ε0-cover of C

II. For each pair of classifier h, g ∈ V , initialize Mhg = 0

III. For T = 1, 2, . . . , dlog2(4/ε)e

1. Consider the set Q ⊆ V 2 of pairs {h, g} ⊆ V with PDX
(x : h(x) 6= g(x)) > 2−T

2. While (|Q| > 0)

(a) Let S = ∅

(b) Do O
(

1
(1−2α)2

(
d log

(
1
ε

)
+ log

(
1
δ

)))
times

i. Let Q̃ = Q

ii. While (|Q̃| > 0)
A. From among the next 1/τ unlabeled examples, select the one x̃ with minimum

maxy∈Y |Q̃yx|, and let ỹ denote the maximizing label
B. S ← S ∪ {x̃}
C. Q̃← Q̃ỹx̃

(c) Request the labels for all examples in S, and let L be the resulting labeled examples

(d) For each h, g ∈ V , let Mhg ←Mhg + |{(x, y) ∈ L : h(x) 6= y = g(x)}|

(e) Let V ←
{
h ∈ V : ∀g ∈ V,Mhg −Mgh ≤ O

(√
max{Mhg,Mgh}d log

(
1
ε0

)
+ d log

(
1
ε0

))}
(f) Let Q← {{h, g} ∈ Q : h, g ∈ V }

Output Any hypothesis h ∈ V .

so that we never remove ĥ from V . Thus, for each round T , the set V ⊆ B(h∗, 4∆T ), where
∆T = 2−T . In particular, this means the returned h is in B(h∗, ε), so that err(h) ≤ η + ε.

Also by Chernoff and union bounds, with probability 1−O(δ), any g ∈ V with Mĥg +Mgĥ >

O
(

d
(1−2α)2 log 1

ε0

)
has

Mgĥ −Mĥg > O

(√
max{Mhg,Mgh}d log

(
1

ε0

)
+ d log

(
1

ε0

))
,

so that we remove it from V at the end of the round.
That V ⊆ B(h∗, 4∆T ) also means V is (ρ,∆T , τ)-splittable, for ρ = ρh∗,τ (ε). In particular,

this means we get a ρ-splitting example for Q̃ every 1
τ examples (in expectation). Thus, we always

satisfy the |Q̃| = 0 condition after at most O
(
d
ρ log2 1

ε0

)
rounds of the inner loop (by Chernoff and

union bounds, and the definition of ρ). Furthermore, among the examples added to S during this
period, regardless of their true labels we are guaranteed that at least 1/2 of pairs {h, g} in Q have
at least one of (Mhĥ + Mĥh) or (Mgĥ + Mĥg) incremented as a result: that is, for at least |Q|/2
pairs, at least one of the two classifiers disagrees with ĥ on at least one of these examples. This
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is because, if the y labels used in the algorithm to prune the Q̃ set are the actual labels, then every
pair in Q has this property, whereas if any of these y labels are not the actual label, then for the first
such instance, all the pairs already eliminated from Q̃ have that property, while at least 1/2 of those
remaining also have that property (since that y value minimizes |Q̃yx|). Thus, after executing this
O
(

1
(1−2α)2d log

(
1
ε0

))
times, we are guaranteed that at least half of the {h1, h2} pairs in Q have

(for some i ∈ {1, 2}) Mĥhi
+Mhiĥ

> O
(

d
(1−2α)2 log 1

ε0

)
, thus reducing |Q| by at least a factor of

2. Repeating this log |Q| = O(d log(1/ε0)) times satisfies the |Q| = 0 condition.
Thus, the total number of queries is at most O

(
1

(1−2α)2
d3

ρ log5 1
ε0

)
, as desired.

Appendix D. One-sided noise

Consider the special case of binary classification (i.e., k = 2). In this case, the Natarajan dimension
is simply the well-known VC dimension Vapnik (1998). In this context, the one-sided noise model
Simon (2012) is a special subclass of BN(C, α) characterized by the property that only one of the
two labels gets corrupted by noise. Specifically, let OSN(C, α) denote the set of joint distributions
DXY for which ∃h∗ ∈ C such that for every x ∈ X with h∗(x) = 1, PDXY

(Y = 1|X = x) = 1,
while for every x ∈ X with h∗(x) = 2, PDXY

(Y = 2|X = x) = 1 − α. In this context, a
hypothesis class C is called intersection-closed if, for every h, g ∈ C, there exists f ∈ C such that
{x : f(x) = 2} = {x : h(x) = 2} ∩ {x : g(x) = 2} Helmbold et al. (1990); Auer and Ortner
(2007). In this context, we have the following result, the proof of which is included below. This
result is particularly interesting, as it shows that it is sometimes possible to circumvent the lower
bounds prove above and obtain close to the realizable-case query complexity, even with certain
types of bounded noise.

Theorem 17 If k = 2, then for any intersection-closed concept space C of VC dimension d, and
any α ∈ [0, 1), QCCCQ(ε, δ,C,OSN(C, α)) = Õ ((d+ log(1/δ)) log(1/δ) log(1/ε)).

In the case of intersection-closed spaces, there is one quite natural learning strategy, based on
choosing the minimum consistent hypothesis, called the closure. Specifically, define the closure
hypothesis ĥm by the property that {x : ĥm(x) = 2} =

⋂
h∈V +

m
{x : h(x) = 2}, where V +

m =
{h ∈ C : ∀i ≤ m s.t. yi = 2, h(xi) = 2}. The following lemma concerns the sample complexity
of passive learning with intersection-closed concept classes under one-sided noise.

Lemma 18 If k = 2 and C is intersection-closed of VC dimension d, for any α ∈ [0, 1), and any
DXY ∈ OSN(C, α), for a universal constant c ∈ (0,∞), for any m ∈ N, with probability at least
1− δ, the closure hypothesis ĥm satisfies PDXY

(ĥm(X) 6= h∗(X)) ≤ c(d log(d)+log(1/δ))
(1−α)m .

Loosely speaking, Lemma 18 says that after observing m samples, the closure hypothesis is
roughly d/m-close to h∗. We can use this observation to derive a result for learning with class-
conditional queries via the following reasoning. Suppose we are able to determine the closure
hypothesis ĥm for some value ofm ∈ N. Then consider repeatedly asking for examples labeled 2 in
the set {xi : m < i ≤ m(1 + 1/d), ĥm(xi) = 1}, removing each returned example before the next
query for a 2 label among the remaining examples. After we exhaust all of the examples labeled
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2 among these points, we have all the information we need to calculate the closure hypothesis
ĥm(1+1/d). Proceeding inductively in this manner, we can arrive at ĥn for a value of n roughly
Õ(d/ε) after roughly d log(1/ε) rounds (supposing the initial value of m is d), at which point
Lemma 18 indicates err(ĥn)− err(h∗) is roughly ε. To bound the number of queries made on each
of these d log(1/ε) rounds, note that Lemma 18 indicates we expect roughlyO(1) examples labeled
2 among {xi : m < i ≤ m(1 + 1/d), ĥm(xi) = 1}, so that each round makes only O(1) queries,
for a total of O(d log(1/ε)) queries. This informal reasoning leads to the following result, which is
only slighly larger to account for needing these claims to hold with high probability 1− δ.
Proof [Theorem 17] Consider Algorithm 4 (where c is from Lemma 18).

Algorithm 4 Algorithm for learning intersection-closed C under one-sided noise
Input: The sequence (x1, x2, . . .)

1. Set m← dc(d log(d) + log(1/δ′))e

2. Request labels y1, . . . , ym individually, and set ĥ← ĥm, the closure hypothesis

3. While m < (c/ε)(d log(d) + log(1/δ′))

(a) Let m←
⌈
m
(

1 + 1
c(d log(d)+log(1/δ′))

)⌉
(b) Let U ← {xi : i ≤ m, ĥ(xi) = 1}, L ← {(xi, 2) : i ≤ m, ĥ(xi) = 2}
(c) Do

i. Query U for label 2

ii. If we receive (xi, yi) returned from the query, let U ← U \ {xi}, L ← L ∪ {(xi, 2)}
iii. Else let ĥ ← ĥm, the closure hypothesis (which can be determined based solely on L), and

break out of loop (c)

Output Hypothesis ĥ

At the conclusion, we have m ≥ c
ε (d log(d) + log(1/δ′)), while the number of rounds of the

outer loop is O((d log(d) + log(1/δ′)) log(1/ε)). Furthermore, the closure hypothesis ĥ at the end
of each round is precisely the same as that for the true labeled data set {(x1, y1), . . . , (xm, ym)}.
By Lemma 18, with probability at least 1− δ′, PDXY

(ĥ(X) 6= h∗(X)) ≤ (c/m(1−α))(d log(d) +
log(1/δ′)), so that err(ĥ)− err(h∗) ≤ (c/m)(d log(d) + log(1/δ′)). Thus, if this is the final round
of the algorithm, this guarantees err(ĥ) − err(h∗) ≤ PDXY

(ĥ(X) 6= h∗(X))(1 − α) ≤ ε with
probability at least 1− δ′.

It remains only to bound the number of queries. Note that the responses to queries are always
points (xi, yi) for which ĥ(xi) 6= h∗(xi) and yi = 2. Thus, if this is not the final round of the
algorithm, but PDXY

(ĥ(X) 6= h∗(X)) ≤ (c/m(1 − α))(d log(d) + log(1/δ′)), then a Chernoff
bound implies that with probability at least 1 − δ′, the number of queries on the next round is at
most O(log(1/δ′)).

We reach the final round of the algorithm after at most c(d log(d) + log(1/δ′)) log(1/ε) rounds.
So with probability at least 1−δ′2c(d log(d)+log(1/δ′)) log(1/ε), the total number of queries is at
most O ((d log(d) + log(1/δ′)) log(1/ε) log(1/δ′)). Taking δ′ = δ

4c(d log(d)+log(d log(1/ε)/δ)) log(1/ε) ,

we have that with probability at least 1 − δ, the final ĥ has err(ĥ) − err(h∗) ≤ ε, and the total
number of queries is at most O ((d log(d) + log(d log(1/ε)/δ)) log(1/ε) log(d log(1/ε)/δ)).
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Since the closure hypothesis can be computed efficiently for many intersection-closed spaces,
such as intervals, conjunctions, and axis-aligned rectangles, Algorithm 4 can also be made efficient
in these cases.

Appendix E. Other types of queries

Though the results of this paper above are all formulated for class conditional queries, similar argu-
ments can be used to study the query complexity of other types of queries as well. For instance, as is
evident from the fact that our methods interact with the oracle only via the Find-Mistake subroutine,
all of the results in this work also apply (up to a factor of k) to a kind of sample-based equivalence
query (or mistake query), in which we provide a sample of unlabeled examples to the oracle along
with a classifier h, and the oracle returns an instance in the sample on which h makes a mistake,
if one exists. However, many of the techniques and results also apply to a much broader family
of queries. In much the same spirit as the general dimensions explored in quantifying the query
complexity in the Exact Learning setting, we can work in our present setting with an abstract family
of queries, and characterize the query complexity in terms of an abstract combinatorial complexity
measure. The resulting query complexity bounds relate the complexity of learning to a measure of
the complexity of teaching or verification. The formal details of this abstract characterization are
provided below.

E.1. IA and AI dimensions

To present our results on this abstract setting, we adopt the notation of Hanneke (2009), which
derives from earlier works in the Exact Learning literature Balcázar et al. (2002, 2001). A query
is a function q mapping a function f to a nonempty collection of sets of functions q(f) such that
∀a ∈ q(f), f ∈ a, and ∀g ∈ a, we have a ∈ q(g). We interpret the set q(f) as the set of valid
answers the teacher can give to the query q when the target function is f , and for each such answer
a ∈ q(f), we interpret the functions g ∈ a as precisely those functions consistent with the answer
a: that is, those functions g for which the teacher could have validly answered the query q in this
way had g been the target function. Further define an oracle as any function T mapping a query q
to a set of functions T (q) ∈

⋃
f q(f); we denote by T f the set of oracles T such that every query q

has T (q) ∈ q(f): that is, the oracle’s answers are always consistent with f . We also overload this
notation, defining for Q a set of queries, T (Q) =

⋂
q∈Q T (q).

For any m ∈ N and U ∈ Xm, define the set of data-dependent queries Q∗∗U to be those queries
q such that, for any functions f and g with f(x) = g(x) for every x ∈ U , we have q(f) = q(g).
This corresponds to the set of queries about the labels of the examples in U .

In the present work, we study a further restriction on the allowed types of queries. Specifically,
for any m ∈ N and U = (z1, . . . , zm) ∈ Xm, we suppose Q∗U ⊆ Q∗∗U be the set of data-dependent
queries q with the property that, for any function f , ∀a ∈ q(f), ∃Y1,Y2, . . . ,Ym ⊆ {1, . . . , k}
such that a =

⋂m
i=1{g|g(xi) ∈ Yi}. Queries of this type actually return constraints on the labels

of particular examples: so answers such as “f(x1) 6= 2” are valid, but answers such as “f(x1) 6=
f(x2)” are not. In our setting, the learning algorithm is only permitted to make queries from QU
for (finite) sets U ⊆ {x1, x2, . . .}.

For the remainder of this section, for every m ∈ N and U ∈ Xm, fix some arbitrary set of
valid queries QU ⊆ Q∗U , and let Q = {QU : U ∈

⋃
mXm}. In this setting, we define the query
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complexity, analogous to the above, as a minimal quantity QCQ(ε, δ,C,D) such that there exists an
algorithm A which, for any target distribution DXY ∈ D, with probability at least 1 − δ, makes
at most QCQ(ε, δ,C,D) queries from

⋃
finite U⊂{x1,x2,...}QU and then returns a classifier ĥ with

err(ĥ) ≤ η + ε. Also denote by V [U ] a subset of V such that ∀h ∈ V , |{g ∈ V [U ] : g(U) =
h(U)}| = 1.

Following analogous to Balcázar et al. (2002); Hanneke (2009, 2007b), define the abstract iden-
tification dimension of a function f with respect to V ⊆ C and U ∈ Xm (for any m ∈ N) as
AIdim(f, V,U) = inf{n|∀T ∈ T f , ∃Q ⊆ QU s.t. |Q| ≤ n and |V [U ] ∩ T (Q)| ≤ 1}. Then define
AIdim(f, V,m, δ) = inf{n : PU∼Dm(AIdim(f, V,U) ≥ n) ≤ δ}, and finally AIdim(V,m, δ) =
supf AIdim(f, V,m, δ), where f ranges over all classifiers. This notion of complexity is inspired
by analogous notions (of the same name) defined for the Exact Learning model by Balcázar et al.
(2002), where it tightly characterizes the query complexity. The extension of this complexity mea-
sure to this sample-based setting runs analogous to the extension of the extended teaching dimension
by Hanneke (2007b) from the original notion of Hegedüs (1995), to study the query complexity of
active learning with label requests; indeed, in the special case that the sets QU correspond to label
request queries, the above AIdim(f, V,U) quantity is equal to the generalization of the extended
teaching dimension explored by Hanneke (2007b). In the case of class-conditional queries, we al-
ways have AIdim(V,m, δ) ≤ k, while for sample-based equivalence queries (requesting a mistake
for a given proposed labeling of the sample S ⊆ U), AIdim(V,m, δ) = 1.

For our present purposes, rather than AIdim, we define a related quantity, which we call
the IAdim, which reverses certain quantifiers. Specifically, let IAdim(f, V,U) = inf{n|∃Q ⊆
QU s.t. |Q| ≤ n and ∀T ∈ T f , |V [U ] ∩ T (Q)| ≤ 1}. Then define IAdim(f, V,m, δ) = inf{n :
PU∼Dm(IAdim(f, V,U) ≥ n) ≤ δ}, and finally IAdim(V,m, δ) = supf IAdim(f, V,m, δ).

In words, IAdim(f, V,U) is the smallest number of queries such that any valid answers consis-
tent with f will leave at most one equivalence class in V [U ] consistent with the answers: that is,
there will be at most one labeling of U consistent with a classifier in V that is itself consistent with
the answers to the queries. This contrasts with AIdim(f, V,U), in which we allow the choice of
queries to adapt based on the oracle’s choice of answers.

Examples In the special case where Q corresponds to label requests, we have IAdim(f, V,U) =
AIdim(f, V,U), and both are equal to the extended teaching dimension quantity from Hanneke
(2007b). For instance, when V is a set of threshold classifiers, we have IAdim(f, V,U) = 2,
simply taking any two adjacent examples in U for which f has opposite labels. In fact, for several
families of queries mentioned in various contexts above (class conditional queries, mistake queries,
label requests, close examples labeled differently), the notions of AIdim and IAdim are actually
identical. Indeed, one can show they will be equal in binary classification whenever the queries
QU have a certain projective property (where any query whose answer only constrains the labels of
U ′ ⊆ U has a query in QU ′ that allows this same answer).

Focusing queries Formally, when k = 2, we say the family Q of queries is focusing if, for any
finite set U ⊆ X , any query q ∈ QU , any classifier f , and any a ∈ q(f), letting U ′ = {x ∈ U :
{h(x) : h ∈ a} 6= {1, 2}}, there exists q′ ∈ QU such that a ∈ q′(f) ⊆ {a′ ∈ q(f) : ∀x ∈
U \ U ′, {h(x) : h ∈ a′} = {1, 2}}. That is, by restricting the unlabeled sample to just those where
the answer is informative, there is a query for that subsample such that the answer is still valid, and
furthermore there are no answers for the query on the subset that were not valid for the original set.
For instance, if q is a label request query for the label of a point x ∈ U , then q ∈ QU , but also
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q ∈ Q{x}, so label requests are a focusing query (where q′ = q in this case). As another example,
if q requests a mistake for some classifier g from the sample U , then for any point x ∈ U that the
query could possibly indicate as a mistake, this remains a valid response to a mistake query q′ for
g from the subset {x}; thus, mistake queries are also focusing. We can show that, when k = 2 and
Q is focusing, AIdim(f, V,U) = IAdim(f, V,U) for all f , V , and U . Specifically, let T ∈ T f be
a maximizer of min{|Q| : Q ⊆ QU s.t. |V [U ] ∩ T (Q)| ≤ 1}, and without loss, we can suppose
that for each q ∈ QU , there is no T ′ ∈ T f with T (q) ⊂ T ′(q) (since changing T (q) to T ′(q)
would still result in a maximizer). Let Q ⊆ QU be of minimal |Q| such that |V [U ] ∩ T (Q)| ≤ 1.
Then let Q′ ⊆ QU denote the set of queries q′ guaranteed to exist by the definition of focusing,
corresponding to the queries in Q. Now, for the purpose of obtaining a contradiction, suppose there
exists T ′ ∈ T f such that |V [U ] ∩ T ′(Q′)| > 1. Then by the definition of focusing, there exists
T ′′ ∈ T f such that T ′′(q) = T ′(q′) for each pair of corresponding q ∈ Q and q′ ∈ Q′, and for each
such q ∈ Q, {x ∈ U : {h(x) : h ∈ T ′′(q)} = {1, 2}} ⊇ {x ∈ U : {h(x) : h ∈ T (q)} = {1, 2}},
with the inclusion being strict for at least one q ∈ Q, so that T ′′(q) ⊃ T (q); but this contradicts the
assumption that no such T ′′ exists. Thus, we must have |V [U ] ∩ T ′(Q′)| ≤ 1 for every T ′ ∈ T f ,
so that Q′ satisfies the criterion in the definition of IAdim(f, V,U), with |Q| = AIdim(f, V,U), so
that IAdim(f, V,U) ≤ AIdim(f, V,U); the reverse inequality is obvious from the definitions, so
that IAdim(f, V,U) = AIdim(f, V,U).

E.2. A bound on query complexity based on IAdim.

We present here a result a bound on query complexity in terms of IAdim. Specifically, using a
technique essentially analogous to those used for class-conditional queries above, except with some
additional work required in Phase 2 (analogous to the method of Hanneke (2007b)), we are able to
prove the following results.

Theorem 19 In the case of k = 2, for any C of VC dimension d, for η ≤ 1/64, there are values s =

Θ
(

1
η+ε

)
and q = O

((
η2

ε2
+ 1
) (
d log 1

ε + log 1
δ

) (
log d

εδ

))
such that, for IA = IAdim (C, s, δ/q),

QCQ(ε, δ,C,Agnostic(C, η)) ≤ IAq = O
(

IA
(
η2

ε2
+ 1
) (
d log 1

ε + log 1
δ

) (
log d

εδ

))
.

Moreover, this result also holds for k > 2 (with additional k-dependent constant factors) if ε ≥ ckη,
for an appropriate constant c > 0.

A similar result should also hold for the bounded noise case, analogous to Theorems 8 and 14.
We conjecture that these results remain valid in general when we replace IAdim by AIdim, even
for non-focusing types of queries. However, a proof of such a result would require a somewhat new
line of reasoning compared with that used here.

E.2.1. PROOF OF THEOREM 19

Intuition The primary tool used to obtain these results is a replacement for the Find-Mistake
subroutine above, now based on queries from Q. Our goal in constructing this new subroutine
(which we call Simulated-Find-Mistake) is the following behavior: given a classifier h, a set of
classifiers V , and a set of unlabeled examples S, if there exists a classifier g ∈ V that correctly
labels the points in S (in agreement with their true yi labels), then the procedure either identifies a
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point in S where hmakes a mistake, or if no such point exists it identifies the complete true labeling
of S. Based on the definition of IAdim, for a given set S of unlabeled examples, a classifier h, and
a set of classifiers V , we can find IAdim(h, V, S) queries M ⊆ QS such that, if h happens to be
consistent with the oracle’s responses to those queries (based on the true labels of points in S), then
all of the classifiers in V that are consistent with the oracle’s responses agree on the labels of all
points in S: that is, there is at most one equivalence class in V [S] consistent with the answers.4 Note
that this is not always the same as getting back the true labels of S when h is consistent with the
answers, since some of the labels may be noisy (hence, it is possible that no g ∈ V has errS(g) = 0).
However, we can guarantee that if there is a classifier g ∈ V that correctly labels all of the points in
S, and h happens to be consistent with all of the answers given by the oracle (corresponding to the
true labels) for the queries in M , then all of the classifiers in V consistent with the oracle’s answers
will correctly label all of the points in S.

For example, if Q corresponds to label request queries, and V is a set of threshold classifiers
x 7→ 2I[t,∞)(x)−1 on R, then for any S and any h, the queries could be for any two adjacent points
in S that h labels differently (or the extremal points in S if h is homogeneous on S). If those two
points happen to actually be labeled as in h, then there will be at most one labeling corresponding to
a threshold classifier consistent with these labels. However, if one of these two labels corresponded
to a noisy point, then h∗ will not agree with this one consistent labeling.

Summarizing, for a given set S of random unlabeled samples, at a given time in the algorithm
when the set of surviving classifiers so far is denoted V , there exist IAdim(plur(V ), V, S) queries
such that, if any of the responses are not consistent with plur(V ), we receive a label constraint
contradicting at least a 1/k fraction of V , and if the responses are all consistent with plur(V ), then
there is at most one labeling of S by a classifier consistent with the answers.

Thus, in Phase 1, we can proceed as before, taking samples of size Θ( 1
η+ε), so that most of them

do not contain a point contradicting h∗, but for which plur(V ) makes mistakes on a significantly
larger fraction of them. By using the above tool to elicit responses that eitehr contradict plur(V )
or contradict the vast majority of V , we can proceed as in Phase 1 by keeping a tally of how many
contradicting answers each classifier in V suffers, and removing it if that tally exceeds the number
of such contradictions we expect for h∗.

As before, Phase 1 will only work up to a certain point, at which the error rate of plur(V ) is
within a constant factor of the error rate of h∗. At this point, we would like something analogous to
Phase 2 above. However, things are not quite as simple as they were for class-conditional queries,
since our tool for finding contradictions does not necessarily give us the true labels but rather the
labels of some classifier in V consistent with the responses. However, as long as h∗ does not make
any mistakes on that sample, those will be precisely the h∗ labels. Since the error rates of both h∗

and plur(V ) are ∝ η + ε, taking a large enough number of random subsets of size Θ( 1
η+ε) should

guarantee that for most of those sets (a constant fraction greater than 1/2), h∗ and plur(V ) are
both correct (with respect to the true labels), so that the answers to our queries will be consistent
with both plur(V ) and h∗, and thus we can reliably infer the labels of the points in such sets.
However, some fraction of such sets will have points inconsistent with plur(V ) or h∗, and we may
have no way to tell which ones. To resolve this, we make use of a trick from Hanneke (2007b):
namely, we sample the sets of size Θ( 1

η+ε) from a fixed pool U with replacement, and take enough

4. Recall that, in this context, the classifiers consistent with each answer might have disagreements on the labels of
points in S (possibly even all of the labels). But when combining all the answers, only (at most) one equivalence
class will be consistent with all of the answers to these IAdim(h, V, S) queries.
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of these sets so that, for each x ∈ U , x appears in a large enough number of these small subsamples
that we are guaranteed with high probability that most of them do not have any (other) points for
which h∗ or plur(V ) make mistakes. Thus, assuming the answers to the queries do not reveal any
information about the label of x itself, the answers to the queries will be consistent with plur(V ),
and the h∗ labeling will be the one consistent with the answers, so that we get an accurate inference
of h∗(x) for the majority of the sets containing x: that is, the majority vote over the inferred labels
for x will be h∗(x) with high probability. On the other hand, if the answers to the queries directly
reveal information about the label of x, then we can simply use that revealed label itself, rather than
inferring the h∗ label. Thus, in the end, we produce a label for each x ∈ U , some the actual y labels,
the others the h∗(x) labels. All that remains is to show that a labeled data set of this type, in the
contexts the labeled sample was used above for class-conditional queries, will serve the same (or
better) purpose, so that the required guarantees remain valid.

Formal Description The formal details are analogous to Hanneke (2007b), and are specified as
follows. Define the following methods, intended to replace their respective counterparts in the
General Agnostic Interactive Algorithm above.

Subroutine 2 Simulated-Find-Mistake
Input: The sequence S = (x1, x2, . . . , xm); classifier h; set of classifiers V

1. Let Q be the minimal set of queries from the definition of IAdim(h, V, S)

2. Make the queries in Q, and let T (Q) denote the oracle’s answers

Output: T (Q)

Algorithm 5 General Queries Agnostic Interactive Algorithm
Input: The sequence (x1, x2, ..., ); values u, s1, s2, δ;

1. Let V be a (minimal) ε-cover of the space of classifiers C with respect to DX . Let U be {x1, ..., xu}.

2. Run the General Queries Halving Algorithm (Subroutine 3) with input U ; V , s1, c ln 4 log2 |V |
δ , and get h.

3. Run the General Queries Refining Algorithm (Subroutine 4) with input U , V , h, s2,
⌈
c us2 ln u

δ

⌉
, and get

labeled sample L returned.

4. Find an hypothesis h′ ∈ V of minimum errL(h′).

Output Hypothesis h′ (and L).

The only major changes compared to Algorithm 1 are in Find-Mistake and the Refining Algo-
rithm. We have the following lemmas.

Lemma 20 Suppose that some ĥ ∈ V has errU (ĥ) ≤ β, for β ∈ [0, 1/(32k)]. With probability
≥ 1− δ/4, running Subroutine 3 with U , V , and values s =

⌊
1

16kβ

⌋
and N = c ln 4 log2 |V |

δ (for an
appropriate constant c ∈ (0,∞)), we have that for every round of the loop of Step 2, the following
hold.

• There are at most N/(9k) samples Si containing a point xj for which ĥ(xj) 6= yj; in particular,
ĥ /∈ Ti for at most N/(9k) of the returned Ti values.
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Subroutine 3 General Queries Halving Algorithm
Input: The sequence U = (x1, x2, ..., xps); set of classifiers V ; values s, N

1. Set b = true, t = 0.

2. while b

(a) Draw S1, S2, ..., SN of size s uniformly without replacement from U .

(b) For each i, call Simulated-Find-Mistake with arguments Si, plur(V ), and V . Let Ti be the return
value.

(c) If more than N/(3k) of the sets have plur(V ) /∈ Ti, remove from V every h ∈ V with |{i : h /∈
Ti}| > N/(9k)

(d) Else b← 0

Output Hypothesis plur(V ).

Subroutine 4 General Queries Refining Algorithm
Input: The sequence U = (x1, x2, ..., xps); set of classifiers V ; classifier h; values s,M ;

2. Draw S1, S2, . . . , SM for size s uniformly without replacement from U

3. For each i, call Simulated-Find-Mistake with arguments Si, h, and V , and let Ti denote the returned value

4. For each j ≤ ps, let Îj = {i : xj ∈ Si, h ∈ Ti, and Ti ∩ V 6= ∅}

5. For each i ∈
⋃
j Îj , let hi ∈ Ti ∩ V

6. For each j ≤ ps, let ŷj be the plurality value of {hi(xj) : i ∈ Îj}

7. Let L = {(x1, ŷ1), . . . , (xps, ŷps)}

Output Labeled sample L

• If errU (plur(V )) ≥ 11kβ, then plur(V ) /∈ Ti for > (2/3− 1/(9k))N of the returned values.

• If plur(V ) /∈ Ti for > (2/3 − 1/(9k))N of the returned values, then the number of h in V with
h /∈ Ti for > N/(9k) of the returned values Ti in Step 3(c) is at least (1−1/k)(1−1/(6k))

(1−1/(3k)) |V | < |V |.

Proof As before, a Chernoff bound implies the first claim holds with probability at least 1 −
δ/(c′ log2 |V |). Similarly for the second claim, as before, a Chernoff bound implies that with
probability at least 1 − δ/(c′ log2 |V |), at least (2/3)N of the sets Si contain a point xj such that
plur(V )(xj) 6= yj . In particular, any such set Si for which the labels are consistent with ĥ neces-
sarily has |V ∩ Ti| ≥ |V |/k. This happens for at least (2/3 − 1/(9k))N of the sets. Following
the combinatorial argument as before, now consider a bipartite graph where the left side has all the
classifiers in V , while the right side has the returned Ti sets for those i with plur(V ) /∈ Ti, and an
edge connects a left vertex to a right vertex if the associated hypothesis is not in the associated Ti
set. Let M be the number of right vertices. The total number of edges is at least M |V |/k. Let α|V |
be the number of classifiers in V missing from at most N/(9k) of the Ti sets. The total number of
edges is then upper bounded by α|V |N/(9k) + (1− α)|V |M . Therefore,

M |V |/k ≤ α|V |N/(9k) + (1− α)|V |M,
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which implies
|V |M(α− 1 + 1/k) ≤ α|V |N/(9k).

Applying the lower bound M ≥ (2/3− 1/(9k))N , we get

(2/3− 1/(9k))(α− 1 + 1/k) ≤ α/(9k),

so that α ≤ (2/3−1/(9k))(1−1/k)
(2/3−2/(9k)) = (1−1/(6k))(1−1/k)

(1−1/(3k)) . This establishes the third claim. Note that
α < 1, since (1− 1/k) < (1− 1/(3k)).

The full result then follows by a union bound, as before, where now the constant c′ will depend
on k due to a change in the base of the logarithm to be (1−1/(3k))

(1−1/k)(1−1/(6k)) .

Lemma 21 For this result, we suppose k = 2. Suppose some ĥ ∈ V has errU (ĥ) ≤ β, for
β ∈ [0, 1/64], and that h has errU (h) ≤ 22β. Consider running Subroutine 4 with U , V , h, and
values s =

⌊
1

64β

⌋
and M =

⌈
cus ln u

δ

⌉
(for an appropriate constant c > 1), where u = |U |, and let

L be the returned sample. Then |L| = |U |, and for every j with xj ∈ U , there is exactly one y ∈ Y
with (xj , y) ∈ L; also, with probability at least 1 − δ/4, every (xj , y) ∈ L has either y = yj or
y = ĥ(xj).

Proof This argument runs similar to that of Lemma 2 in Hanneke (2007b). First note that, for any
xj ∈ U with yj 6= ĥ(xj), the (xj , y) ∈ L trivially satisfies the requirement, regardless of which
value y takes.

Let A = {i : ĥ /∈ Ti} and B = {i : h /∈ Ti}. A (respectively B) represent the indices
of subsamples Si for which ĥ (respectively, h) is contradicted by the answers. Since A ⊆ {i :
errSi(ĥ) > 0} and B ⊆ {i : errSi(h) > 0}, we have E[|A| + |B|] ≤ 23

64M . By a Chernoff bound,
P
(
|A ∪B| > 3

8M
)
< e−c

′M , for an appropriate constant c′ ∈ (0, 1).
For each xj ∈ U with yj = ĥ(xj), let Ixj = {i : xj ∈ Si}. Note that if |Ixj∩(A∪B)c| > 1

2 |Ixj |,
then ŷj = ĥ(xj). The remainder of the proof bounds the probability this fails to happen. Toward
this end, we note (by a union bound)

P

(
|Ixj ∩ (A ∪B)| ≥ 1

2
|Ixj |

)
≤ P

(
|Ixj | <

sM

2u

)
+ P

(
|A ∪B| > 3

8
M

)
+ P

(
|Ixj ∩ (A ∪B)| ≥ 1

2
|Ixj | ∧ |Ixj | ≥

sM

2u
∧ |A ∪B| ≤ 3

8
M

)
.

As shown above, the second term is at most e−c
′M . By a Chernoff bound, the first term is at most

e−
sM
8u . Finally, by a Chernoff bound, the last term is at most e−

sM
144u . By setting the constant c in

M appropriately, we have e−c
′M + e−

sM
8u + e−

sM
144u ≤ δ/(4u). A union bound over xj ∈ U with

yj = ĥ(xj) then implies this holds for all such xj , with probability at least 1− δ/4.

The difficulty in extending this to k > 2 is that, for the noisy points, every set they appear in will
contain a noisy point (trivially). But that means there might not be a classifier in V that correctly
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labels that set, so that we do not predictably infer a correct label for that point. In fact, the behavior
in these cases might be somewhat unpredictable, so that we may even infer a label that is neither
the true yj nor the ĥ(xj) label. But then there could potentially be a classifier g ∈ V with errU (g)
slightly smaller than 2β such that, for the L output by this proceedure, errL(g) < β and in particular
errL(g) < errL(ĥ), where ĥ = argminh′∈V errU (h′).

Note that this issue is not present if we are only interested in identifying a classifier h of err(h) =
O(η), since then it suffices to use Subroutine 3, so that we can achieve this result even for k > 2.

Proof [Proof of Theorem 19 (Sketch)] Theorem 19 now follows from the above two lemmas, in
the same way that Theorem 5 followed from Lemmas 3 and 4. The only two twists are that now
some of the labels in the set labeled set L are denoised, in the sense that (xj , y) ∈ L has yj 6=
y = h′(xj), which does not change the fact that h′ is still the minimizer of errL(h) over h ∈ V ;
so the above two lemmas, combined with the reasoning from the proof of Theorem 5 regarding the
sufficiency of taking u = O

((η+ε
ε2

) (
d log 1

ε + log 1
δ

))
random unlabeled examples U to guarantee

errU (h∗) ≤ η + ε and that the empirical risk minimizer h′ has err(h′) ≤ η + ε, with probability
at least 1 − δ/4, the above two lemmas (with β = η + ε in each) imply that Algorithm 5 (with
u as above, s1 = b1/(32β)c, and s2 = b1/(64β)c) returns a classifier with err(h′) ≤ η + ε with
probability at least 1− 3δ/4.

Additionally, the total number of calls to Simulated-Find-Mistake is c ln 4 log2 |V |
δ +

⌈
c us2 ln u

δ

⌉
=

O
((

η2

ε2
+ 1
) (
d log 1

ε + log 1
δ

) (
log d

εδ

))
; in the theorem, suppose n is 4 times this value. Since

each call to Simulated-Find-Mistake uses at most IA(C, s, δ/n) queries with probability at least
1− δ/n (where s is either b1/(32β)c or b1/(64β)c, which ever gives the larger IA), a union bound
implies that every call to Simulated-Find-Mistake will use at most IA queries, with probability at
least 1− δ/4. Composing this with the results from above via a union bound gives the result.
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