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Abstract
In this paper, we examine a spectral clustering algorithm for similarity graphs drawn from a simple
random graph model, where nodes are allowed to have varying degrees, and we provide theoretical
bounds on its performance. The random graph model we study is the Extended Planted Partition
(EPP) model, a variant of the classical planted partition model.

The standard approach to spectral clustering of graphs is to compute the bottom k singular vec-
tors or eigenvectors of a suitable graph Laplacian, project the nodes of the graph onto these vectors,
and then use an iterative clustering algorithm on the projected nodes. However a challenge with
applying this approach to graphs generated from the EPP model is that unnormalized Laplacians
do not work, and normalized Laplacians do not concentrate well when the graph has a number of
low degree nodes.

We resolve this issue by introducing the notion of a degree-corrected graph Laplacian. For
graphs with many low degree nodes, degree correction has a regularizing effect on the Laplacian.
Our spectral clustering algorithm projects the nodes in the graph onto the bottom k right singular
vectors of the degree-corrected random-walk Laplacian, and clusters the nodes in this subspace.
We show guarantees on the performance of this algorithm, demonstrating that it outputs the correct
partition under a wide range of parameter values. Unlike some previous work, our algorithm does
not require access to any generative parameters of the model.
Keywords: Spectral clustering, unsupervised learning, normalized Laplacian

1. Introduction

Spectral clustering of similarity graphs is a fundamental tool in exploratory data analysis, which
has enjoyed much empirical success (Shi and Malik, 2000; Ng et al., 2002; von Luxburg, 2007) in
machine-learning. In this paper, we examine a spectral clustering algorithm for similarity graphs
drawn from a simple random graph model, where nodes are allowed to have varying degrees, and
we provide theoretical bounds on its performance. Such clustering problems arise in the context
of partitioning social network graphs to reveal hidden communities, or partitioning communication
networks to reveal groups of nodes that frequently communicate.

The random graph model we study is the Extended Planted Partition (EPP) model, a variant of
the classical planted partition model. A graph G = (V,E) generated from this model has a hidden
partition V1, . . . , Vk, as well as a number du associated with each node u. If two nodes u and v
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lie in the same cluster Vi, then the edge (u, v) is present in G with probability dupdv; otherwise,
it is present with probability duqdv. Given a graph G generated from this model, the Extended
Planted Partition problem is to recover the hidden partition V1, . . . , Vk without prior knolwedge of
the specific model parameters.

The standard approach to spectral clustering of graphs is to compute the bottom k singular vec-
tors or eigenvectors of a suitable graph Laplacian, project the nodes of the graph onto these vectors,
and then use an iterative clustering algorithm on the projected nodes. This approach performs well
when nodes from different clusters are well-separated when projected on to the bottom k singular
space or eigenspace of the appropriate graph Laplacian. For graphs drawn from the EPP model,
projecting onto the bottom few eigenvectors of the unnormalized Laplacian does not work; indeed
it is shown by Mihail and Papadimitriou (2002) that high-degree nodes skew the top eigenspace
of the adjacency matrix in the direction of the indicator vectors of those vertices. Thus, to cluster
such graphs, we must counteract this effect with suitable degree normalization. However, if the
minimum degree of any node in the graph is low, then the usual normalized Laplacians have poor
concentration properties, and their bottom singular space or eigenspace may not correspond to a
subspace where the clusters are well-separated.

A line of previous work (Dasgupta et al., 2004) on clustering graphs generated by this model
bypasses this problem by assuming that the generative parameter vector of du’s is given to the
algorithm. Their algorithm and analysis depend critically on the known parameters assumption,
which does not usually hold in real graph partitioning problems. A second line of work (Coja-
Oghlan and Lanka, 2009) addresses poor concentration by eliminating the low degree nodes and
clustering the rest of the graph. Their algorithm thus applies to graphs which have a small number
of low degree nodes; moreover, they use the adjacency matrix normalized by the product of the
degrees, which requires further constraints on the nodes and cluster sizes – see Section 6 for more
details.

In this paper, we resolve the issue of poor concentration by introducing the notion of a degree-
corrected normalized graph Laplacian. For a constant τ ≥ 0 and a graph with adjacency matrix Â,
the degree-corrected random-walk Laplacian is the matrix I−(T̂+τI)−1Â, where T̂ is the diagonal
matrix of degrees. For τ = 0, the degree-corrected Laplacian reduces to the regular Laplacian. If
all the nodes in the graph have high degrees relative to τ , then the bottom k singular subspace of the
degree-corrected random walk Laplacian is close to the bottom k singular subspace of the random-
walk Laplacian. However, if the graph has a number of low degree nodes, then degree-correction
has a regularizing effect on the Laplacian.

Our spectral clustering algorithm projects the nodes in the graph onto the bottom k right singu-
lar vectors of the degree-corrected random-walk Laplacian, and clusters the nodes in this subspace.
We show guarantees on the performance of this algorithm, demonstrating that it outputs the correct
partition under a wide range of parameter values. Unlike Coja-Oghlan and Lanka (2009), our al-
gorithm can find the correct partition even if the cluster sizes are not well-balanced. Our analysis
is also tighter than Dasgupta et al. (2004); while our bounds may generally be worse, particularly
when the graph has many low degree nodes, under certain conditions, we can show that our perfor-
mance guarantees are better than those of Dasgupta et al. (2004). Finally, even if the graph has very
many low degree nodes, which cannot be reliably clustered because we simply do not have enough
adjacent edges available, our algorithm can still use these nodes in the degree-corrected Laplacian
to compute a subspace for clustering the high degree nodes reliably.
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A key tool in our analysis is a sharp concentration bound on the spectral norm of the degree-
corrected random-walk graph Laplacian, which approximately degrades with Õ( 1√

τ
). These bounds

are then used to show that if the clusters are well-separated, then, after projection onto the bottom k
right singular subspace of the degree-corrected random walk Laplacian, nodes from different clus-
ters are well-separated while nodes from the same cluster are close together. A simple thresholding
algorithm can then be used to recover the clusters correctly.

Finally, we provide some statistical lower bounds on the performance of any algorithm for
finding planted partitions in graphs generated by the EPP model. Our bounds show that when the
nodes have uniform degrees, the separation between the clusters required by our algorithm is within
a factor of Õ( 1√

wmin
) of the optimal separation; here wmin is the fraction of nodes that belong to the

smallest cluster in the graph.

2. Preliminaries

Planted Partition Model. The planted partition (PP) model is a generative model for random
graphs. A graph G = (V,E) generated according to this model has a hidden partition V1, . . . , Vk
such that V1 ∪ V2 ∪ . . . Vk = V , and Vi ∩ Vj = ∅ for i 6= j. If a pair of nodes u and v both lie in
some Vi, then, Pr[(u, v) ∈ E] = p; otherwise Pr[(u, v) ∈ E] = q. Thus, in the planted partition
model, if u and v are two nodes in the same cluster, then their expected degrees are equal.

In the planted partition problem, we are given a graph G generated by the planted partition
model, and our goal is to find the hidden partition V1, . . . , Vk with high probability over graphs
generated according to this model.

Extended Planted Partition Model. The extended planted partition (EPP) model extends this
model to graphs with non-uniform degree distributions. A graph G = (V,E) generated according
to this model again has a hidden partition V1 ∪ . . . ∪ Vk = V . In addition each node u is associated
with a number du. If two nodes u and v lie in the same cluster Vi, then, Pr[(u, v) ∈ E] = dupdv;
otherwise Pr[(u, v) ∈ E] = duqdv.

An extended planted partition model is characterized by parameters (V,d, p, q), where V =
{V1, . . . , Vk} is the hidden partition, d is the vector of du’s and p and q are numbers between 0 and
1. We note that the description of a particular model is not unique; for example, for any constant
c > 0, the parameters (V,d, p, q) and (V, cd, p/c2, q/c2) describe the same EPP model.

In the extended planted partition problem, we are given a graph G generated by an extended
planted partition model, and our goal is to find the hidden partition V1, . . . , Vk with high probability
over graphs generated according to this model. Observe that unlike the work of Dasgupta et al.
(2004), we do not have access to the du vector.

Laplacian. The Laplacian of a graph G = (V,E) is defined as the matrix L̂ = T̂ − Â, where T̂ is
the diagonal matrix of degrees and Â is the adjacency matrix of the graph.

Random-walk Laplacian. The random-walk Laplacian of a graph G = (V,E) is defined as the
matrix ∆̂ = I − T̂−1Â, where T̂ is the diagonal matrix of degrees and Â is the adjacency matrix of
the graph.

Degree-corrected Random-walk Laplacian. The degree-corrected random-walk Laplacian of a
graph G = (V,E) is defined as the matrix: ∆̂′ = I − (T̂ + τI)−1Â, where T̂ is the diagonal matrix
of degrees, Â is the adjacency matrix of the graph, and τ is a constant to be specified later.
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Normalized Laplacian. The normalized Laplacian of a graph G = (V,E) is defined as the matrix
L̂ = I − T̂−1/2ÂT̂−1/2, where T̂ is the diagonal matrix of degrees and Â is the adjacency matrix
of the graph.

Degree-corrected Normalized Laplacian. The degree-corrected normalized Laplacian of a graph
G = (V,E) is defined as the matrix: L̂′ = I−(T̂+τI)−1/2Â(T̂+τI)−1/2, where T̂ is the diagonal
matrix of degrees, Â is the adjacency matrix of the graph, and τ is a constant to be specified later.

Notation. For a node u in graph G, we use the notation deg(u) to denote the actual degree of u,
and E[deg(u)] to denote its expected degree.

We use the notation A = E[Â] and T = E[T̂ ]. In addition, we use Ŝ to denote the n × n
diagonal matrix T̂ + τI , where τ is a constant to be specified later, and S to denote its expectation
E[Ŝ]. We use the notation ∆′ = I − S−1A and L′ = I − S−1/2AS−1/2.

For much of the paper, we work with a subgraph of G = (V,E) induced by some subset P
of nodes. In this case, we use the subscript P to denote the relevant quantities for this subgraph.
For example, ÂP denotes the adjacency matrix of the subgraph on P , degP (u) denotes the total
number of edges between a node u and the nodes in P , and so on.

For a matrix M , we use the notation ‖M‖ to denote its spectral or L2 norm. For the rest of the
paper, all expectations are taken over graphs drawn from the extended planted partiton model.

We use the notation d̄ to denote the average of the du’s in the graph: d̄ = 1
n

∑
u∈V du, and for

a cluster Ci, we use the notation d̄i to denote the average of the du’s among nodes in cluster Ci:
d̄i = 1

|Ci|
∑

u∈V du. For a cluster Ci, we use wi to denote the fraction of nodes in the graph that
belong to cluster Ci. We use: wmin = miniwi. Moreover, we use the notation 1 to denote the
all-ones vector of length n, and 1j to denote the vector of size n the u-th entry of which is 1 if node
u belongs to cluster j and 0 otherwise.

We use the notation D to denote the diagonal matrix diag(d).

3. Algorithm

We provide Algorithm 1, an algorithm for finding a planted partition in a graph G = (V,E) drawn
from an EPP model. To facilitate the analysis, we split V randomly into two parts P and Q; Q
is then projected on to the bottom k right singular subspace of the degree-corrected random-walk
Laplacian computed based on P , and partitioned in this subspace; the nodes in P are partitioned
analogously. This procedure preserves independence between the subspace-computation and the
graph-partitioning steps, thus making the analysis easier.

Observe that Algorithm 1 outputs separate clusterings for P and Q, instead of computing a
clustering of the entire graph. Theorem 3 shows that provided certain conditions hold, with high
probability, these are correct clusterings of P and Q respectively. In practice however, we may
require a clustering of the entire graph; in this case, we can merge the output clusterings into a
combined one by merging pairs of clusters Ci of P and C ′j of Q if Ci and C ′j have the closest
centers. A second observation is that Algorithm 1 may output some r clusters, where r is not
necessarily equal to k; however, if the conditions in Theorem 3 hold, then with probability 1 − δ,
r = k, and the clusters will be the correct clusterings of P and Q.

One can also consider a variant of Algorithm 1 that uses the degree-corrected normalized Lapla-
cian I − Ŝ−1/2ÂŜ−1/2; however, our calculations show that we can get tighter bounds on the
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separation requirement between the clusters by using the degree-corrected random-walk Laplacian
instead.

Input: Graph G = (V,E), an integer k.
Output: A partition of V .

1. Split V randomly into two sets P and Q, each of size n/2.

2. Compute the degree-corrected random-walk Laplacian on P

∆̂′P = I − Ŝ−1P ÂP ,

where for u ∈ P , ŜP = (T̂P + τI), for some τ to be determined later.

3. Compute a singular value decomposition of ∆̂′P . Compute ÛP , the subspace spanned by
the bottom k right singular vectors of ∆̂′P .

4. For each node u in Q, let Xu be the row of the adjacency matrix corresponding to u
restricted to the nodes in P . Let Yu = PÛ ( Xu

degP (u)), and define:

λu =
9
√
k ln(6kn/δ)

√
2(degP (u)− 8

√
degP (u) ln(6n/δ))

Initially, all u in Q are unlabelled.

5. While there exists an unlabelled node in Q:

(a) Let u be an unlabelled node in Q that maximizes degP (u). Create a new label l, and
assign label l to node u.

(b) For each unlabelled node v in Q, if ‖Yu − Yv‖ ≤ λu + λv, assign v the label l.

6. Let Cl be the set of nodes in Q that are labelled l. Output clusters C1, C2, . . . , Cr.

7. Repeat Steps (2)-(6) to cluster the nodes in P .

Algorithm 1: Extended Planted Partition Algorithm

Observe that one difference between Algorithm 1 and McSherry (2001) is that we use the
degree-corrected random-walk Laplacian in Step 2; the degree-correction acts as a regularization
step for the random-walk Laplacian matrix.

A second difference is that we project the vectors Xu
degP (u) instead of Xu onto the bottom k right

subspace of the degree-corrected random walk Laplacian computed based on P . Unlike the planted
partition model, in EPP, if u and v are drawn from the same partition Vi, then the vectors E[Xu]

and E[Xv] are no longer equal; instead we have E[Xu]
E[deg(u)] = E[Xv ]

E[deg(v)] . Thus, to ensure that nodes
from the same partition are close together after projection, it is necessary to normalize by the degree
before projection.
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4. Analysis

We now provide performance guarantees for Algorithm 1. We begin with some basic notation. For
a cluster Vi, we define the quantity Zi as: Zi = nqd̄ + nwi(p − q)d̄i. Observe that for a node u in
Q and cluster Vi: E[deg(u)] =

∑
v∈Vi dupdv +

∑
v/∈Vi duqdv = duZi. We define the vector µi as:

µi = qD1 + (p− q)D1j .
We use an additional subscript P for these quantities restricted to a subset P of nodes. The

notation d̄P represents the average du for nodes u ∈ P , and d̄i,P is the average du for nodes
u ∈ P ∩ Vi. We also use the notation Zi,P and µi,P accordingly: Zi,P = nqd̄P + nwi,P (p −
q)d̄i,P , µi,P = qDP1 + (p− q)DP1j .

We first analyze clustering the nodes inQ using a projection onto the Laplacian computed based
on the nodes in P . The analysis for the other case is analogous.

Theorem 1 LetG = (V,E) be a random graph drawn from an EPP model. Suppose V can be split
into two parts P and Q such that for all u, E[degP (u)] ≥ 32

9 ln(6n/δ). If u and v are two vertices
in Q, and if there exists a τ such that for all pairs of clusters i and j,

∥∥∥∥µi,PZi,P
−
µj,P
Zj,P

∥∥∥∥ >
6
√

ln(2n/δ)

Zi,P
√
τ + minu∈P E[degP (u)]

·

 ∑
u∈Vi∩P

d2u
(E[degP (u)] + τ)2

−1/2

+
6
√

ln(2n/δ)

Zj,P
√
τ + minu∈P E[degP (u)]

·

 ∑
u∈Vj∩P

d2u
(E[degP (u)] + τ)2

−1/2

+2 ·
(

min
u∈Vi∩Q

λu + min
v∈Vj∩Q

λv

)
then, with probability 1− 2δ, the following statements hold:

1. If u and v belong to the same cluster in the EPP model, then Step 5(b) of Algorithm 1 run
with parameter τ assigns them the same label.

2. If u and v belong to different clusters in the EPP model, then Step 5(b) of Algorithm 1 run
with parameter τ assigns them different labels.

Statements 1 and 2 of Theorem 1 imply that the clustering output by Algorithm 1 is a correct

clustering of Q. The theorem involves a parameter τ ; the term 6
√

ln(2n/δ)

Zi,P

√
τ+minu∈P E[degP (u)]

decreases

with increasing τ , while
(∑

u∈Vi∩P
d2u

(E[degP (u)]+τ)2

)−1/2
increases as τ increases. The right hand

side of the condition in Theorem 1 is thus optimized when both terms are balanced. The optimal τ
has a complex dependence on the degree distribution of the graph; however, for many graphs, we
may expect τ to be close to the average degree of G.

Suppose V contains a number of low degree nodes L with large values of λu such that the
separation conditions in Theorem 1 are satisfied for V \ L but not for L. Observe that we can still
apply Step 5 of Algorithm 1 on P \ L and Q \ L to cluster them; the proof of Theorem 1 can be
easily extended to show that this will yield the correct clustering. Furthermore, we can still use the
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nodes in L∩P to compute the subspace Û onto which nodes from Q \L can be projected and vice
versa, even if we cannot actually cluster the nodes in L reliably.

Theorem 1, combined with Lemma 4 leads to our main theorems. Suppose that the du’s are all
equal; then we have the following result.

Theorem 2 (Main Theorem, uniform d) Let G = (V,E) be a random graph drawn from an ex-
tended planted partition model with all du’s equal to d. Suppose G satisfies the conditions of
Lemma 4, q is a constant, and 1− wi − wj is at least a constant for all pairs of vertices i and j. If
τ = 0, and if:

(p− q) ≥ c ·

(√
q ln(2n/δ)

dwmin
√
n

+

√
k ln(6kn/δ)

d2
√
nwmin

)
where c is a fixed constant, then, w.p. ≥ 1 − 6δ, Algorithm 1 outputs correct clusterings of P and
Q.

The lower bound on p − q in Theorem 2 has two terms, the first term corresponding to recovering
the correct subspace, and the second term corresponding to distance concentration. Our bound is
better than the bound of Dasgupta et al. (2004) by a factor of

√
k; we believe that this is an artifact

of our analysis. Observe from Theorem 9 that this bound is worse than the statistical lower bound
by a factor of 1√

wmin
.

Theorem 2 is a direct consequence of the following more general result:

Theorem 3 (Main Theorem, general case) Let G = (V,E) be a random graph drawn from an
extended planted partition model which satisfies the conditions in Lemma 4. Then, there exists a
constant C such that the following holds. If, for all u, E[deg(u)] ≥ 128

9 ln(6n/δ), and if for all
pairs of clusters Vi and Vj ,(

p

Zi
− q

Zj

)2 ∑
u∈Vi

d2u +

(
p

Zj
− q

Zi

)2 ∑
u∈Vj

d2u ≥

64

(
384
√

ln(2n/δ)

Zi
√
τ + minu∈Vi E[deg(u)]

∑
u∈Vi

d2u
(E[deg(u)] + τ)2

−1/2

+
384
√

ln(2n/δ)

Zj
√
τ + minu∈Vj E[deg(u)]

∑
u∈Vj

d2u
(E[deg(u)] + τ)2

−1/2 + min
u∈Vi,v∈Vj

2(λu + λv)

)2

then, w.p. ≥ 1− 6δ, Algorithm 1 outputs a correct clustering.

4.1. Main Lemmas

The main ingredients in the proofs of our main theorems are the following key lemmas.

Lemma 4 Let G = (V,E) be a random graph drawn from an extended planted partition model
with parameters (V,d, p, q) such that for any cluster Vi,

1. wi ≥ 8 ln(4k/δ)
n .
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2.
∑

u∈Vi du ≥
8
3

√
ln(4k/δ)

√∑
u∈Vi d

2
u.

3.
∑

u∈Vi d
2
u ≥ 8

3

√
ln(4k/δ)

√∑
u∈Vi d

4
u.

4. For any τ ,
∑

u∈Vi
d2u

(E[deg(u)]+τ)2 ≥
8
3

√
ln(4k/δ)

√∑
u∈Vi

d4u
(E[deg(u)]+τ)4 .

Then, with probability ≥ 1− δ over the splitting of the nodes in V into P and Q, for all clusters Vi,

1. wi,P ≥ 2 ln(4k/δ)
n .

2.
∑

u∈Vi∩P du ≥
1
8

∑
u∈Vi du.

3.
∑

u∈Vi∩P d
2
u ≥ 1

8

∑
u∈Vi d

2
u.

4. For any τ ,
∑

u∈Vi∩P
d2u

(E[degP (u)]+τ)2
≥ 1

8

∑
u∈Vi

d2u
(E[deg(u)]+τ)2 .

A similar statement also holds for Q.

Lemma 5 Let G = (V,E) be a random graph drawn from an EPP model. Suppose V can be split
into two parts P and Q such that for all u, E[degP (u)] ≥ 32

9 ln(6n/δ). If u and v are two vertices
in Q, and if for all pairs of clusters i and j,

∥∥∥∥µi,PZi,P
−
µj,P
Zj,P

∥∥∥∥ >
6
√

ln(2n/δ)

Zi,P
√
τ + minu∈P E[degP (u)]

·

 ∑
u∈Vi∩P

d2u
(E[degP (u)] + τ)2

−1/2

+
6
√

ln(2n/δ)

Zj,P
√
τ + minu∈P E[degP (u)]

·

 ∑
u∈Vj∩P

d2u
(E[degP (u)] + τ)2

−1/2

+2 ·
(

min
u∈Vi∩Q

λu + min
v∈Vj∩Q

λv

)
then, with probability 1− 2δ, the following statements hold:

1. If u and v belong to the same cluster in the EPP model, then ‖Yu − Yv‖ ≤ λu + λv.

2. If u and v belong to different clusters in the EPP model, then ‖Yu − Yv‖ > λu + λv.

The proof of Lemma 5 is in turn based on the following three lemmas.

Lemma 6 (Concentration of
∥∥∥∆̂′P −∆′P

∥∥∥) Let G be a graph on n vertices drawn from the ex-
tended planted partition model with parameters (V,d, p, q). Suppose δ ∈ (0, 1) and for each vertex
u, E[degP (u)] ≥ 6 ln(2n/δ). Then, with probability ≥ 1− δ,∥∥∥∆̂′P −∆′P

∥∥∥ ≤ 6
√

ln(2n/δ)√
τ + minu∈P E[deg(u)]

.
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Lemma 7 (Distance Concentration) Let u be a node in Q, and let Xu be the subset of the row
of the adjacency matrix Â corresponding to node u restricted to the nodes in P . If E[degP (u)] ≥
32
9 ln(6n/δ), and if U is any fixed k-dimensional subspace, then, with probability≥ 1− δ, for all u,∥∥∥∥PU

(
Xu

degP (u)

)
−PU

(
E[Xu]

E[degP (u)]

)∥∥∥∥ < 9
√
k ln(6kn/δ)√

2E[degP (u)]
.

Lemma 8 (Subspace Concentration) For all clusters i,

∥∥∥PŜ−1
P ÂP

(µi)− µi
∥∥∥ ≤ 2

∥∥∥∆′P − ∆̂′P

∥∥∥
 ∑
u∈P∩Vi

d2u
(duZi + τ)2

−1/2

4.2. Proofs of the Main Theorems

Proof (Of Theorem 3) For a set P of vertices, let EP denote the event that the consequences of
Lemma 4 hold true for P . Under the assumption that the conditions Lemma 4 hold, EP occurs
with probability at least 1 − δ. For the rest of the proof, it is assumed that EP occurs. We define
σu,v = λu + λv. Recall that∥∥∥∥µi,PZi,P

−
µj,P
Zj,P

∥∥∥∥2 ≥
∑

v∈Vi∩P
d2v

(
p

Zi,P
− q

Zj,P

)2

+
∑

v∈Vj∩P
d2v

(
p

Zj,P
− q

Zi,P

)2

=
∑

v∈Vi∩P
d2v

(
pZj,P − qZi,P
Zi,PZj,P

)2

+
∑

v∈Vj∩P
d2v

(
pZi,P − qZj,P
Zi,PZj,P

)2

Recall, Zi,P ≤ Zi and Zj,P ≤ Zj . Conditioned on EP , from Lemma 4, part 2:

pZj,P − qZi,P =
∑

u∈Vj∩P
du(p2 − q2) +

∑
u/∈Vi∪Vj ,u∈P

duq(p− q) ≥
1

8
(pZj − qZi)

Again conditioning on EP , combining the two above inequalities with Lemma 4, part 3, we can
write: ∥∥∥∥µi,PZi,P

−
µj,P
Zj,P

∥∥∥∥2 ≥ 1

64

( p

Zi
− q

Zj

)2 ∑
u∈Vi

d2u +

(
p

Zj
− q

Zi

)2 ∑
u∈Vj

d2u
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If the conditions of the theorem hold, then,

∥∥∥∥µi,PZi,P
−
µj,P
Zj,P

∥∥∥∥ ≥
384
√

ln(2n/δ)

Zi ·
√
τ + minu∈V E[deg(u)]

·

∑
u∈Vi

d2u
(E[deg(u)] + τ)2

−1/2

+
384
√

ln(2n/δ)

Zj ·
√
τ + minu∈V E[deg(u)]

·

∑
u∈Vj

d2u
(E[deg(u)] + τ)2

−1/2 + 2σu,v

≥
6
√

ln(2n/δ)

Zi,P ·
√
τ + minu∈P E[degP (u)]

·

 ∑
u∈Vi∩P

d2u
(E[degP (u)] + τ)2

−1/2

+
6
√

ln(2n/δ)

Zj,P ·
√
τ + minu∈P E[degP (u)]

·

 ∑
u∈Vj∩P

d2u
(E[degP (u)] + τ)2

−1/2 + 2σu,v.

Here, the second inequality assumes that EP occurs, following from Lemma 4, part 4.
Again conditioning on EP , Lemma 4, part 1, implies that if E[deg(u)] ≥ 128

9 ln(2n/δ), then,
E[degP (u)] ≥ 32

9 ln(2n/δ). Hence, the preconditions of Theorem 1 are satisfied. Let CQ be the
event that Algorithm 1 outputs a correct clustering of Q; conditioned on EP , Theorem 1 implies
that CQ occurs with probability at least 1− 2δ.

We can define the analogous eventsEQ andCP ; note thatEP andEQ are independent. Lemma 4
implies that EQ occurs with probability at least 1 − δ, and conditioned on EQ, Theorem 1 occurs
with probability at least 1 − 2δ. CP and CQ are independent, and Algorithm 1 correctly clusters
both P and Q if both events occur. The theorem follows.

Proof (Of Theorem 1) For any pair of nodes u and v in Q, we define σu,v = λu + λv. Let E be the
event that (a) for all pairs u and v that lie in the same cluster Vi, ‖Yu − Yv‖ ≤ σu,v and (b) for all
pairs u and v that lie in different clusters, ‖Yu − Yv‖ > σu,v. Lemma 5 shows that if the conditions
of the theorem hold, then, E happens with probability≥ 1−2δ. We assume for the rest of the proof
that E happens.

We now show the theorem by induction over the iterations of the while loop in Step 5 of Al-
gorithm 1. The induction hypothesis we maintain is that iteration t of Step 5 correctly identifies a
partition Vt, and assigns all nodes in Vt∩Q (and no other nodes) the same label t. The base case is at
the beginning when there are no labelled nodes, and hence the induction hypothesis holds trivially.

Suppose the induction hypothesis holds after iteration t of Step 5. This means that t clusters in
the graph, say clusters V1, . . . , Vt have been correctly identified. Suppose u∗ is the node selected
in Step 5(a) of the next iteration of Step 5; then u∗ cannot belong to V1 ∪ . . . ∪ Vt. Without loss
of generality, let u∗ ∈ Vt+1. Conditioned on E, if any unlabelled node v belongs to Vt+1, then v
is assigned label t + 1; if v /∈ Vt+1, then v is left unlabelled. Therefore, the cluster Vt+1 is also
recovered correctly. The theorem follows.
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5. Lower Bounds

In this section, we show a lower bound required on the separation between clusters in the extended
planted partition model for any algorithm to be able to correctly discover the clusters. This is a
statistical lower bound, in the sense that it depends on statistical properties of the model, regardless
of computational considerations.

Theorem 9 Let G = (V,E) be a graph generated by the EPP model with k = 3 and parameters
(V,d, p, q). If nwmin is the minimum size of any cluster in G, then, in order to correctly determine
the cluster assignments of all vertices in G w.p. ≥ 3/4, we need:

(p− q) ≥
√

ln 2

2d2
√

3nwmin

6. Related Work

Spectral clustering has been widely successful as an empirical tool for exploratory data analysis,
but despite some prior theoretical work (Ng et al., 2002; von Luxburg, 2007; Balakrishnan et al.,
2011), many theoretical aspects remain ill-understood. In this paper, we provide a theoretical anal-
ysis of spectral clustering on graphs drawn from a random-graph model, where the nodes are not
constrained to have similar degrees. The random graph model we use is called the extended planted
partition model, and is a variant of the popular planted partition model.

The planted partition model has long been used as a benchmark for evaluating graph-partitioning
algorithms; early work on partitioning random graphs generated by this model include Condon and
Karp (2001), Boppana (1987) and Jerrum and Sorkin (1993). The state-of-the-art on the planted
partition problem is due to McSherry (2001); he provides a spectral algorithm to recover the planted
partitions by using a projection of the nodes onto the top k eigenspace of the adjacency matrix.
However, McSherry’s work (McSherry, 2001) and those of his predecessors only address the case
when all vertices in the same cluster have the same expected degree, and this method fails to recover
the correct partition in graphs generated by the extended planted partition model when the degree
distribution is too skewed (Mihail and Papadimitriou, 2002).

The extended planted partition model allows for a different expected degree for each node, and
as such can be viewed an extension of G(w), the random graph model with given expected de-
grees (Chung and Lu, 2006), to the planted partition setting. This extended model was introduced
by Dasgupta et al. (2004), who provided a spectral algorithm for partitioning graphs that it gener-
ates, under the assumption that the parameter vector d that generates the graph is known by the
algorithm. This assumption is critical to the algorithm, as its analysis depends on the concentra-
tion of the normalized adjacency matrix D−1/2ÂD−1/2. When D = diag(d) is unknown, one
must normalize Â by the actual degrees; however, the concentration of this matrix degrades with
the minimum degree of any node in the graph. In this paper, we do not assume access to d, and
we address the concentration problem by using a degree-corrected version of the Laplacian. Our
bounds in general can be worse than those of Dasgupta et al. (2004). However, our work improves
on Dasgupta et al. (2004) by using the random-walk version of the Laplacian instead of the normal-
ized adjacency matrix; our calculations show that this yields slightly better bounds for partitioning
graphs generated by the extended planted partition model.
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Coja-Oghlan and Lanka (2009) provide a spectral algorithm for solving the extended planted
partition problem which does not require access to d, using the top k eigenspace of T̂−1ÂT̂−1,
where T̂ is the diagonal matrix of degrees; however, it only recovers the correct partition under
certain conditions – when the maximum expected degree is of lower order than n, the cluster sizes
are well-balanced, and the degree of each vertex is at least a constant fraction of the average degree.
In contrast, our algorithm succeeds with more imbalance, and does not require these constraints.
Moreover, even if there are many low-degree nodes, we can still use them in the degree-corrected
Laplacian to find the correct subspace and help cluster the high-degree nodes, even if they cannot
be clustered themselves.

Rohe et al. (2011) consider the problem of partitioning graphs generated by the stochastic block
model, which is the same as the planted partition model; they show that for graphs drawn from
this model, the top k eigenvectors of the normalized Laplacian are consistent, in the sense that
they converge to a “population” limit as the number of nodes n grows to infinity. They also provide
guarantees on the performance of a spectral clustering algorithm based on the normalized Laplacian.
Unlike our work, they only consider graphs where the expected degrees of nodes in the same cluster
are equal. Choi et al. (2011) studies the consistency properties of the maximum-likelihood solution
in this model.

Bshouty and Long (2010) provide a nearly linear-time algorithm for partitioning graphs gener-
ated by the planted partition model. Their algorithm has faster running time but requires a larger
separation conditions. Karrer and Newman (2011) use a variant of the extended planted partition
model to probabilistically model graphs, and provide a local heuristic algorithm for estimating the
parameters of this model. Theoretical properties of their algorithm are not studied rigorously.

Spectral clustering of data drawn from a mixture model is well-understood theoretically; see,
for example, Achiloptas and McSherry (2005); Kannan et al. (2005); Kumar and Kannan (2010).
This work specifically deals with spectral clustering in similarity graphs. Some of the mathematical
techniques used in our analysis are related to the work on learning mixture models; examples in-
clude Arora and Kannan (2001); Kannan et al. (2005); Achiloptas and McSherry (2005); Chaudhuri
and Rao (2008); Kumar and Kannan (2010); however, the techniques for dealing with the effects
of varying degrees are specific to this problem. Finally, spectral clustering of random graphs where
nodes are data points drawn from a density has been studied by von Luxburg et al. (2008), who
provide results on the consistency the graph Laplacian in this setting.
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Appendix A. Appendix

Lemma 10 Let X1, . . . , Xn be independent 0/1 random variables, and X =
∑n

i=1 αiXi, with all
αi ∈ (0, 1). Let ‖α‖2 =

∑n
i=1 α

2
i . With probability at least 1− 2δ,

|X − E[X]| ≤

√
‖α‖2 ln(1/δ)

2
.
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Proof The proof follows from the standard Hoeffding bound (see Hoeffding (1963)) for indepen-
dent random variables Yi, with each Yi ∈ [ai, bi] and Y = 1

n

∑n
i=1 Yi:

Pr[|Y − E[Y ]| ≥ λ] ≤ 2 exp

(
−2λ2n2∑n
i=1(bi − ai)2

)
.

Note that if the Xi’s are independent, then Yi = αiXi are as well, and based on this change of
variable, Yi ∈ [0, αi] and Y = 1

nX . Thus, we can write

Pr[|X − E[X]| ≥ λ] ≤ 2 exp

(
−2λ2∑n
i=1 α

2
i

)
.

The lemma follows by solving for a λ that makes this probability ≤ δ.

Lemma 11 Let X1, . . . , Xn be independent 0/1 random variables, and X =
∑n

i=1 αiXi, with all
αi ∈ (0, 1). Let ν =

∑n
i=1 α

2
iE[Xi]. If ν ≥ 1

18 ln(1/δ), then with probability at least 1− 2δ,

|X − E[X]| ≤ 1

3
ln(1/δ) + 2

√
ν ln(1/δ).

Proof Using standard Chernoff bounds appearing in Chung and Lu (2006), we have the following:

Pr[X ≤ E[X]− λ] ≤ exp

(
−λ2

2ν

)
, (1)

Pr[X ≥ E[X] + λ] ≤ exp

(
−λ2

2(ν + λ/3)

)
. (2)

Setting (1) ≤ δ requires λ ≥
√

2ν ln(1/δ). For the upper tail (2), we need:

λ ≥ 1

3
ln(1/δ) +

√
1

9
(ln(1/δ))2 + 2ν ln(1/δ).

As long as ν ≥ 1
18 ln(1/δ), choosing λ ≥ 1

3 ln(1/δ) + 2
√
ν ln(1/δ) gives lower bounds of δ for

each tail; the lemma follows. Note that if all αi = 1, then this is a special case and ν = E[X].

Lemma 12 Let X1, . . . , Xn be independent 0/1 random variables, and X =
∑n

i=1 αiXi, with all
αi > 0. Let ν =

∑n
i=1 α

2
iE[Xi]. If (E[X])2 ≥ 32ν

9 ln(1/δ), then with probability at least 1− δ,

X ≥ 1

4
E[X].

Proof Follows directly from the standard Chernoff bound (1) appearing in Chung and Lu (2006).
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A.1. Proof of Theorem 2

Proof (Of Theorem 2) Note that when all the du’s are equal to d, q is a constant, and 1− wi − wj
is at least a constant, Zi = Θ(ndq) and E[degP (u)] = Θ(nd2q). With τ = 0,(

p

Zi
− q

Zj

)2 ∑
u∈Vi

d2u = Θ

(
(p− q)2wi

nq2

)
,

384
√

ln(2n/δ)

Zi
√
τ + minu∈Vi E[deg(u)]

∑
u∈Vi

d2u
(E[deg(u)] + τ)2

−1/2 = Θ

(√
ln(2n/δ)

nd
√
qwi

)
,

λu = Θ

(√
k ln(6kn/δ)

nd2q

)
.

These asymptotic bounds are symmetric for the terms involving Vj . The theorem follows by apply-
ing Theorem 3.

A.2. Proofs of the main lemmas

Proof (Of Lemma 6) Our proof uses matrix concentration tools from (Chung and Radcliffe, 2011),
(Tropp, 2011) and (Oliviera, 2010).

In particular, following Chung and Radcliffe (2011), we can bound
∥∥∥∆̂′P −∆′P

∥∥∥ as:∥∥∥∆̂′P −∆′P

∥∥∥ ≤ ∥∥∥S−1P (ÂP −AP )
∥∥∥+

∥∥∥S−1P ÂP − Ŝ−1P ÂP

∥∥∥ (3)

To bound the first term in Equation (3), we observe:

S−1P (ÂP −AP ) = S
−1/2
P · S−1/2P (ÂP −AP )S

−1/2
P · S1/2

P

We can now apply Lemma 15 to conclude:∥∥∥S−1P (ÂP −AP )
∥∥∥ ≤ ∥∥∥S−1/2P (ÂP −AP )S

−1/2
P

∥∥∥
which from Lemma 18 is at most

√
3 ln(2n/δ)

τ+minu∈P E[degP (u)] with probability ≥ 1− δ/2.

Let L̂′P = I − Ŝ−1/2P ÂP Ŝ
−1/2
P . Then, ÂP = Ŝ

1/2
P (I − L̂′P )Ŝ

1/2
P . To bound the second term in

Equation (3), we observe:

Ŝ−1P ÂP − S−1P ÂP = Ŝ
−1/2
P (I − L̂′P )Ŝ

1/2
P − S−1P Ŝ

1/2
P (I − L̂′P )Ŝ

1/2
P

= (Ŝ
−1/2
P − S−1P Ŝ

1/2
P ) · (I − L̂′P ) · Ŝ1/2

P

= Ŝ
−1/2
P · (I − Ŝ1/2

P S−1P Ŝ
1/2
P ) · (I − L̂′P ) · Ŝ1/2

P

Now we can again apply Lemma 15 to conclude that:∥∥∥Ŝ−1P ÂP − S−1P ÂP

∥∥∥ ≤ ∥∥∥I − Ŝ1/2
P S−1P Ŝ

1/2
P

∥∥∥ · ∥∥∥I − L̂′P∥∥∥
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Recall that from Lemma 17,
∥∥∥I − L̂′P∥∥∥ ≤ 1. The theorem follows by combining this fact with

Lemma 16 with error bound δ/2, noting that |P | = n/2.

Proof (Of Lemma 7) We can write:∥∥∥∥PU

(
Xu

degP (u)

)
−PU

(
E[Xu]

E[degP (u)]

)∥∥∥∥ ≤
∥∥∥∥PU

(
Xu − E[Xu]

E[degP (u)]

)∥∥∥∥+

∥∥∥∥PU

(
Xu

degP (u)
− Xu

E[degP (u)]

)∥∥∥∥
To bound the first term, we can use Lemma 13 with Xu = X and δ′ = δ/6n. This implies that

w.p. ≥ 1− δ/3, ∥∥∥∥PU

(
Xu − E[Xu]

E[degP (u)]

)∥∥∥∥ ≤ 1

E[degP (u)]

√
k ln(6kn/δ)

2
.

To bound the second term, we note that:∥∥∥∥PU

(
Xu

degP (u)
− Xu

E[degP (u)]

)∥∥∥∥ ≤
∥∥∥∥ Xu

degP (u)
− Xu

E[degP (u)]

∥∥∥∥
≤ ‖Xu‖ ·

(
|E[degP (u)]− degP (u)|

degP (u)E[degP (u)]

)
≤

√
degP (u) ·

(
|E[degP (u)]− degP (u)|

degP (u)E[degP (u)]

)
(4)

where the last step follows because as Xu is a 0/1 vector, ‖Xu‖ =
√

degP (u). Now we can use
the Chernoff bound (Lemma 11) with δ′ = δ/6n to conclude that w.p. ≥ 1− δ/3,

|degP (u)− E[degP (u)]| ≤ 1

3
ln(6n/δ) + 2

√
E[degP (u)] ln(6n/δ)

≤ 4
√
E[degP (u)] ln(6n/δ) (5)

Combining with equation (4) and some algebra gives:∥∥∥∥PU

(
Xu

degP (u)
− Xu

E[degP (u)]

)∥∥∥∥ ≤ 4
√

ln(6n/δ)

E[degP (u)]
√

degP (u)
.

Finally, we note that using the Chernoff bound in Lemma 12, with probability at least 1 − δ/3, for
all u, degP (u) ≥ 1

4E[degP (u)] as long as E[degP (u)] ≥ 32
9 ln(6n/δ). The lemma follows after

more algebra and recognizing that k ≥ 2, and it all happens with probability 1− δ.

Proof (Of Lemma 8) Recall that row u of the matrix I − LP = S−1P AP is:

1

E[degP (u)] + τ
duµi,P =

du
duZi + τ

µi,P .

From Lemma 14 applied to (S−1P AP )>, there exists a vector β such that: (S−1P AP )>β = µi,P .
Moreover,

‖β‖ =

 ∑
u∈P∩Ci

d2u
(duZi + τ)2

−1/2 (6)
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Let PŜ−1
P ÂP

be the operator that projects a column vector onto the row-space of Ŝ−1P ÂP . We
can write:∥∥∥PŜ−1

P ÂP
(µi,P )− µi,P

∥∥∥ =
∥∥∥(I −PŜ−1

P ÂP
)(S−1P AP )>β

∥∥∥ ≤ ∥∥∥(I −PŜ−1
P ÂP

)(S−1P AP )>
∥∥∥ · ‖β‖

Equation (6) provides a bound on ‖β‖. To bound the other term, we can write:∥∥∥(I −PŜ−1
P ÂP

)(S−1P AP )>
∥∥∥ ≤

∥∥∥(I −PŜ−1
P ÂP

)(Ŝ−1P ÂP )>
∥∥∥

+
∥∥∥(I −PŜ−1

P ÂP
)((S−1P AP )> − (Ŝ−1P ÂP )>)

∥∥∥ (7)

The second term in Equation (7) is at most
∥∥∥S−1P AP − Ŝ−1P ÂP

∥∥∥; this is because the transforma-

tion I −PŜ−1
P ÂP

cannot increase norms. To bound the first term, observe that PŜ−1
P ÂP

(Ŝ−1P ÂP )>

is the best rank k approximation to Ŝ−1P ÂP . As S−1P AP is rank k,∥∥∥(Ŝ−1P ÂP )> −PŜ−1
P ÂP

(Ŝ−1P ÂP )>
∥∥∥ ≤ ∥∥∥Ŝ−1P ÂP − S−1P AP

∥∥∥
The lemma now follows by simple algebra, recognizing that

∥∥∥∆′P − ∆̂′P

∥∥∥ =
∥∥∥Ŝ−1P ÂP − S−1P AP

∥∥∥.

Proof (Of Lemma 4) The cluster weight wi,P can be written as a sum independent 0/1 random
variables: wi,P = 2

n

∑
v∈V Xv, where Xv = 1 with probability wi/2. Applying the Chernoff

bound in Lemma 12 with δ = δ′/4k and taking the union bound over all Vi gives the result for wi,P
with probability ≥ 1− δ/4.

For
∑

u∈Vi∩P du, note that it can be written as
∑

u∈Vi duXu, where Xu = 1 with probability
1/2. We again use the Chernoff bound in Lemma 12 and the union bound with δ = δ′/4k to get the
result in part 2 with probability ≥ 1− δ/4. Part 3 follows from the same argument, replacing du by
d2u. Part 4 follows from the same argument, replacing du by d2u

(E[deg(u)+τ ])2 , and the observation that
E[degP (u)] ≤ E[deg(u)]. Finally, the lemma follows from an union bound over the four parts.

Proof (Of Lemma 5) For any pair of nodes u and v in Q, we define σu,v = λu + λv. Suppose u
and v are two vertices in the same cluster Vi of the graph, and suppose that u and v lie in Q. Then,
recall that E[Xu]

E[degP (u)] = E[Xv ]
E[degP (v)] =

µi,P
Zi,P

, and therefore:

‖Yu − Yv‖ ≤
∥∥∥∥Yu −PŜ−1

P ÂP

(
E[Xu]

E[degP (u)]

)∥∥∥∥+

∥∥∥∥Yv −PŜ−1
P ÂP

(
E[Xv]

E[degP (v)]

)∥∥∥∥
Since the projection PŜ−1

P ÂP
is computed independently of the edges adjacent to u and v, we can

apply Lemma 7 and (5) to conclude that ‖Yu − Yv‖ is at most σu,v for all u and v with probability
≥ 1− δ.

Now suppose u lies in cluster Vi and v lies in cluster Vj , and both u and v lie in Q. Then,

‖Yu − Yv‖ ≥
∥∥∥∥µi,PZi,P

−
µj,P
Zj,P

∥∥∥∥− ∥∥∥∥µi,PZi,P
−PŜ−1

P ÂP

(
µi,P
Zi,P

)∥∥∥∥− ∥∥∥∥µj,PZj,P
−PŜ−1

P ÂP

(
µj,P
Zj,P

)∥∥∥∥
−
∥∥∥∥Yu −PŜ−1

P ÂP

(
E[Xu]

E[degP (u)]

)∥∥∥∥− ∥∥∥∥Yv −PŜ−1
P ÂP

(
E[Xv]

E[degP (v)]

)∥∥∥∥
35.18



SPECTRAL CLUSTERING OF GRAPHS WITH GENERAL DEGREES IN THE EXTENDED PLANTED PARTITION MODEL

Again using Lemma 7 and (5),

‖Yu − Yv‖ ≥
∥∥∥∥µi,PZi,P

−
µj,P
Zj,P

∥∥∥∥− 1

Zi,P

∥∥∥µi,P −PŜ−1
P ÂP

(µi,P )
∥∥∥− 1

Zj,P

∥∥∥µj,P −PŜ−1
P ÂP

(µj,P )
∥∥∥−σu,v.

Recall that from Lemmas 6 and 8,

∥∥∥µi,P −PŜ−1
P ÂP

(µi,P )
∥∥∥ ≤ 6

√
ln(2n/δ)√

τ + minu∈P E[degP (u)]
·

 ∑
u∈Vi∩P

d2u
(E[degP (u)] + τ)2

−1/2

for all i with probability 1 − δ; a similar statement is therefore true for
∥∥∥µj,P −PŜ−1

P ÂP
(µj,P )

∥∥∥.
Thus, if the conditions of the theorem hold, then,

‖Yu − Yv‖ > σu,v

The lemma follows.

A.3. Other lemmas

Lemma 13 Let U be a k-dimensional subspace and X a 0/1 random vector. Then, w.p. ≥ 1− 2δ′,

‖PU (X − E[X])‖ ≤
√
k ln(k/δ′)

2
.

Proof The projection onto U can be written as:

PU (X − E[X]) =
k∑
i=1

(〈X, vi〉 − 〈E[X], vi〉) vi.

Applying the Hoeffding bound (Lemma 10) to 〈X, vi〉 with δ′ = δ/k and taking the union over
all i gives that for all i, with probability at least 1− δ′:

|〈X, vi〉 − 〈E[X], vi〉| ≤
√

ln(k/δ′)

2
,

noting that ‖α‖2 = 1 because vi is a unit vector. Using the triangle inequality,

‖PU (X − E[X])‖ ≤

√√√√ k∑
i=1

|〈X, vi〉 − 〈E[X], vi〉|2,

from which the lemma follows.
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Lemma 14 Let x ∈ Rn, α ∈ Rk be column vectors, and let M be an n × k matrix such that the
ith column of M is αix. Then, there exists a column vector β ∈ Rk such that: Mβ = x, and
‖β‖ = 1

‖α‖ .

Proof Let β be the following vector: βi = 1
‖α‖2αi, for i ∈ {1, . . . , k}. Then, ‖β‖ = 1

‖α‖ . Moreover,

Mβ = (
∑
i

αiβi)x =
∑
i

α2
i

‖α‖2
x = x

The lemma follows.

Lemma 15 LetM be a symmetric matrix, letH be a diagonal matrix, and letM ′ = H−1/2MH1/2.
If x is an eigenvector of M with eigenvalue λ, then:

1. H−1/2x is a right eigenvector of M ′ with eigenvalue λ.

2.
∥∥M ′>M ′∥∥ = ‖M‖2.

Proof Let y = H−1/2x.

M ′y = H−1/2MH1/2y = H−1/2Mx = λH−1/2x = λy

The first part of the lemma follows. To prove the second part, we observe that y is also an eigenvec-
tor of M ′>M ′ with eigenvalue λ2.

Lemma 16 Let G = (V,E) be a random graph drawn from an EPP model, let Ŝ = (deg(u) + τ)
for τ > 0, and let S = E[Ŝ]. If for some δ′ ∈ (0, 1) and all u ∈ V , E[deg(u)] ≥ 1

18 ln(2n/δ′),
then, w.p. ≥ 1− δ′, ∥∥∥I − Ŝ1/2S−1Ŝ1/2

∥∥∥ ≤ 4
√

ln(2n/δ′)√
minu E[deg(u)] + τ

Proof We use a Chernoff bound (Lemma 11) on deg(u) with δ = δ′/2n and use the union bound
over V ; for all u, with probability ≥ 1− δ′,

|deg(u)− E[deg(u)]| ≤ 1

3
ln(2n/δ′) + 2

√
E[deg(u)] ln(2n/δ′)

Therefore,
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∥∥∥I − Ŝ1/2S−1Ŝ1/2
∥∥∥ = max

u

∣∣∣∣1− deg(u) + τ

E[deg(u)] + τ

∣∣∣∣
= max

u

∣∣∣∣E[deg(u)]− deg(u)

E[deg(u)] + τ

∣∣∣∣
≤ max

u

1
3 ln(2n/δ′) + 2

√
E[deg(u)] ln(2n/δ′)

E[deg(u)] + τ

≤ max
u

4
√
E[deg(u)] ln(2n/δ′)

E[deg(u)] + τ

≤ max
u

4
√

ln(2n/δ′)√
E[deg(u)] + τ

,

from which the lemma follows.

Lemma 17 Let L̂′P be the degree-corrected normalized Laplacian; then,∥∥∥I − L̂′P∥∥∥ ≤ 1

Proof Recall that:

I − L̂′P = Ŝ
−1/2
P ÂP Ŝ

−1/2
P = Ŝ

−1/2
P T̂

1/2
P · T̂−1/2P ÂP T̂

−1/2
P · T̂ 1/2

P Ŝ
−1/2
P

Therefore, ∥∥∥I − L̂′P∥∥∥ ≤ ∥∥∥Ŝ−1/2P T̂
1/2
P

∥∥∥ · ∥∥∥T̂−1/2P ÂP T̂
−1/2
P

∥∥∥ · ∥∥∥Ŝ−1/2P T̂
1/2
P

∥∥∥
As I− T̂−1/2P ÂP T̂

−1/2
P is the actual normalized Laplacian ofG, its eigenvalues are in [0, 2] (as seen

in Chung (1997)), so T̂−1/2P ÂP T̂
−1/2
P has eigenvalues in [−1, 1] and spectral norm ≤ 1. Moreover,

each entry of the diagonal matrix Ŝ−1/2P T̂
1/2
P is at most 1 and therefore its spectral norm is also≤ 1.

The lemma thus follows.

Lemma 18 If a random graph G is drawn from the EPP model, then, with probability ≥ 1− δ,

∥∥∥S−1/2(Â−A)S−1/2
∥∥∥ ≤√ 3 ln(2n/δ)

τ + minu E[deg(u)]
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Proof We heavily use tools from Chung and Radcliffe (2011). Following Theorem 2 of Chung and
Radcliffe (2011), we define Euv to be a matrix in which the (u, v)-th entry and the (v, u)-th entry
is 1, and the rest of the entries are 0. Let puv be the probability that the edge (u, v) exists in the
graph, and let Zuv be a 0/1 random variable which is 1 with probability puv and 0 with probability
1− puv. Then, Â =

∑
u,v puvZuv.

Let
Huv = S−1/2((Zuv − puv)Auv)S−1/2 =

Zuv − puv√
SuuSvv

Auv

We observe that for any u and v, ‖Huv‖ ≤ 1√
SuuSvv

. Furthermore, for any u 6= v, E(H2
uv) =

1
SuuSvv

(puv − p2uv)(Auu +Avv), and E(H2
uu) = 0. Therefore,

ν2 =

∥∥∥∥∥∑
u,v

E(H2
uv)

∥∥∥∥∥ =

∥∥∥∥∥∑
u

∑
v

puv − p2uv
SuuSvv

Auu

∥∥∥∥∥ = max
u

(∑
v

puv − p2uv
SuuSvv

)

≤ max
u

∑
v

puv
SuuSvv

≤ 1

minv Svv

∑
v

puv
Suu
≤ 1

minv Svv

Here the second to last step follows because
∑

v puv = E[deg(u)] ≤ Suu. Similar to the proof of
the first part of Theorem 2 of Chung and Radcliffe (2011), the lemma now follows by an application
of Theorem 5 of Chung and Radcliffe (2011), with M = 1, ν2 = 1

minv Svv
= 1

τ+minu E[deg(u)] , and

a =
√

3 ln(2n/δ)
τ+minu E[deg(u)] .

A.4. Proofs from Section 5

Proof (Of Theorem 9) Fix constants d > 0, 0 < δ < 1
6d2

, wmin > 0, and let p = 1
2d2

+ δ,
q = 1

2d2
− δ, d = d1. Without loss of generality, let n = |V| and wmin be such that nwmin and

n(1−2wmin) are integers, and let A be a fixed subset of n(1−2wmin) nodes. For a subset of nodes
S ⊂ V \ A of size nwmin, let S̄ = V \ (A ∪ S). Thus, {S, S̄, A} is a partition of V , and since A
is fixed, the partition is determined by the selection of S. We denote by GS the EPP with partitions
given by a specific S, and let F be the family of all such GS .

Suppose we are given G generated from some GS ∈ F , and we have an arbitrary algorithm or
estimator ψ(G) for a specific member i ∈ F . Then Fano’s inequality Cover and Thomas (2006)
gives:

sup
i∈F

Pr
i

[ψ 6= i] ≥ 1− β + ln 2

ln r
, (8)

where KL(GS , GS′) ≤ β for all GS , GS′ ∈ F , and r = |F | − 1.
For a specific EPP GS ∈ F , the probability Pr[G] of generating G is a product of independent

Bernoulli distributions over the edges. Suppose that for a possible edge e, the edge probability in
GS is ρ(e) and in GS′ 6= GS is ρ′(e). From Cover and Thomas (2006), we write

KL(GS , GS′) =
∑
e

KL(ρ, ρ′).
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For each possible edge e, the KL-divergence is zero if ρ = ρ′, and otherwise:

KL(ρ, ρ′) ≤ d2p ln
d2p

d2q
+ (1− d2p) ln

1− d2p
1− d2q

= (1/2 + d2δ) ln
1/2 + d2δ

1/2− d2δ
+ (1/2− d2δ) ln

1/2− d2δ
1/2 + d2δ

= 2d2δ ln
1/2 + d2δ

1/2− d2δ

= 2d2δ ln

(
1 +

2d2δ

1/2− d2δ

)
≤ 2d2δ

2d2δ

1/2− d2δ

≤ 2d2δ
2d2δ

1/3
≤ 6(d2δ)2 =

3

2
(d2(p− q))2.

Let Ne be the number of edges e for which ρ(e) 6= ρ′(e). Because A is fixed, we only need to
consider edges within S ∪ S̄:

KL(GS , GS′) ≤
3

2
Ne(d

2(p− q))2 ≤ 3

2

(
2nwmin

2

)
(d2(p− q))2 ≤ 3n2w2

min(d2(p− q))2.

To bound |F |, we consider the number of ways to split V \ A into S and S̄. For clarity, let
x = nwmin. Then

|F | =
1

2

(
2x

x

)
≥ 22x−2√

x
,

using Stirling’s approximation. Therefore,

log(|F | − 1) ≥ (2x− 3) ln 2− 1

2
lnx ≥ ln 2

2
x =

ln 2

2
nwmin.

Substituting into (8),

sup
i∈F

Pr
i

[ψ 6= i] ≥ 1− 3n2w2
min(d2(p− q))2

ln(2)nwmin
,

which means that w.p. ≥ 3/4, there is no algorithm that can discern between GS and G′S if:

p− q ≥
√

ln 2

2d2
√

3nwmin
.
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