
JMLR: Workshop and Conference Proceedings vol 23 (2012) 6.1–6.20 25th Annual Conference on Learning Theory

Online Optimization with Gradual Variations

Chao-Kai Chiang1,2 chaokai@iis.sinica.edu.tw

Tianbao Yang3 yangtia1@msu.edu

Chia-Jung Lee1 leecj@iis.sinica.edu.tw

Mehrdad Mahdavi3 mahdavim@cse.msu.edu

Chi-Jen Lu1 cjlu@iis.sinica.edu.tw

Rong Jin3 rongjin@cse.msu.edu

Shenghuo Zhu4 zsh@sv.nec-labs.com
1 Institute of Information Science,

Academia Sinica, Taipei, Taiwan.
2 Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan.
3 Department of Computer Science and Engineering

Michigan State University, East Lansing, MI, 48824, USA
4 NEC Laboratories America

Cupertino, CA, 95014, USA

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract

We study the online convex optimization problem, in which an online algorithm has to
make repeated decisions with convex loss functions and hopes to achieve a small regret.
We consider a natural restriction of this problem in which the loss functions have a small
deviation, measured by the sum of the distances between every two consecutive loss func-
tions, according to some distance metrics. We show that for the linear and general smooth
convex loss functions, an online algorithm modified from the gradient descend algorithm
can achieve a regret which only scales as the square root of the deviation. For the closely
related problem of prediction with expert advice, we show that an online algorithm mod-
ified from the multiplicative update algorithm can also achieve a similar regret bound for
a different measure of deviation. Finally, for loss functions which are strictly convex, we
show that an online algorithm modified from the online Newton step algorithm can achieve
a regret which is only logarithmic in terms of the deviation, and as an application, we can
also have such a logarithmic regret for the portfolio management problem.

Keywords: Online Learning, Regret, Convex Optimization, Deviation.

1. Introduction

We study the online convex optimization problem in which a player has to make decisions
iteratively for a number of rounds in the following way. In round t, the player has to
choose a point xt from some convex feasible set X ⊆ RN , and after that the player receives
a convex loss function ft and suffers the corresponding loss ft(xt) ∈ [0, 1]. The player
would like to have an online algorithm that can minimize its regret, which is the difference
between the total loss it suffers and that of the best fixed point in hindsight. It is known

© 2012 C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin & S. Zhu.

Chiang Yang Lee Mahdavi Lu Jin Zhu

that when playing for T rounds, a regret of O(
√
TN) can be achieved, using the gradient

descend algorithm (Zinkevich, 2003). When the loss functions are restricted to be linear,
it becomes the well-known online linear optimization problem. Another related problem is
the prediction with expert advice problem, in which the player in each round has to choose
one of N actions to play, possibly in a probabilistic way. This can be seen as a special case
of the online linear optimization problem, with the feasible set being the set of probability
distributions over the N actions, and a regret of O(

√
T lnN) can be achieved using the

multiplicative update algorithm (Littlestone and Warmuth, 1994; Freund and Schapire,
1997). There have been many wonderful results and applications for these problems, and
more information can be found in (Cesa-Bianchi and Lugosi, 2006). The regrets achieved
for these problems are in fact optimal since matching lower bounds are also known (see e.g.,
(Cesa-Bianchi and Lugosi, 2006; Abernethy et al., 2008)). On the other hand, when the
loss functions satisfy some nice property, a smaller regret becomes possible. Hazan et al.
(2007) showed that a regret of O(N lnT) can be achieved for loss functions satisfying some
strong convexity properties, which includes functions arising from the portfolio management
problem (Cover, 1991).

Most previous works, including those discussed above, considered the most general set-
ting in which the loss functions could be arbitrary and possibly chosen in an adversarial way.
However, the environments around us may not always be adversarial, and the loss functions
may have some patterns which can be exploited for achieving a smaller regret. One work
along this direction is that of Hazan and Kale (2008). For the online linear optimization
problem, in which each loss function is linear and can be seen as a vector, they considered
the case in which the loss functions have a small variation, defined as V =

∑T
t=1 ‖ft − µ‖22,

where µ =
∑T

t=1 ft/T is the average of the loss functions and ‖·‖p denotes the Lp-norm.

For this, they showed that a regret of O(
√
V) can be achieved, and they also have an anal-

ogous result for the prediction with expert advice problem. In another paper, Hazan and
Kale (2009) considered the portfolio management problem in which each loss function has
the form ft(x) = − ln 〈vt, x〉 with vt ∈ [δ, 1]N for some constant δ ∈ (0, 1), where 〈vt, x〉
denotes the inner product of the vectors vt and x, and they showed how to achieve a re-
gret of O(N logQ), with Q =

∑T
t=1 ‖vt − µ‖22 and µ =

∑T
t=1 vt/T . Note that according

to their definition, a small V means that most of the loss functions center around some
fixed loss function µ, and similarly for the case of small Q. This seems to model a sta-
tionary environment, in which all the loss functions are produced according to some fixed
distribution.

The variation introduced in (Hazan and Kale, 2008) is defined in terms of total difference
between individual linear cost vectors to their mean. In this paper we introduce a new
measure, which we call Lp-deviation, for the loss functions, defined as

Dp =

T∑
t=1

max
x∈X
‖∇ft(x)−∇ft−1(x)‖2p , (1)

which is defined in terms of sequential difference between individual loss function to its
previous one, where we use the convention that f0 is the all-0 function. The motivation of
defining gradual variation (i.e., Lp-deviation) stems from two observations: one is practical
and the other one is technical raised by the limitation of extending the results in (Hazan

6.2

Online Optimization with Gradual Variations

and Kale, 2008) to general convex functions. From practical point of view, we are interested
in a more general scenario, in which the environment may be evolving but in a somewhat
gradual way. For example, the weather condition or the stock price at one moment may
have some correlation with the next and their difference is usually small, while abrupt
changes only occur sporadically. Obviously, Lp-deviation easily models these situations. In
order to understand the limitation of extending the results in (Hazan and Kale, 2008), let
us apply the results in (Hazan and Kale, 2008) to general convex loss functions as follows.
Since the results in (Hazan and Kale, 2008) were developed for linear loss functions, a
straightforward approach is to use the first order approximation for convex loss functions,
i.e., ft(x) ' ft(xt) + 〈∇ft(xt), x − xt〉, and replace the linear loss vector with the gradient
of the loss function ft(x) at xt. Using the convexity of loss function ft(x), we have

T∑
t=1

ft(xt)−min
π∈X

T∑
t=1

ft(π) ≤
T∑
t=1

〈∇ft(xt), xt〉 −min
π∈X

T∑
t=1

〈∇ft(xt), π〉 . (2)

By assuming ‖∇ft(x)‖2 ≤ 1,∀t ∈ [T] and ∀x ∈ X , we can apply Hazan and Kale’s variation
based bound to bound the regret in (2) by the variation of the gradients as

V =

T∑
t=1

‖∇ft(xt)− µ‖22 =

T∑
t=1

∥∥∥∥∥∇ft(xt)− 1

T

T∑
τ=1

∇fτ (xτ)

∥∥∥∥∥
2

2

. (3)

To better understand V in (3), we rewrite it as

V =

T∑
t=1

∥∥∥∥∥∇ft(xt)− 1

T

T∑
τ=1

∇fτ (xτ)

∥∥∥∥∥
2

2

=
1

2T

T∑
t,τ=1

‖∇ft(xt)−∇fτ (xτ)‖22

≤ 1

T

T∑
t=1

T∑
τ=1

‖∇ft(xt)−∇ft(xτ)‖22 +
1

T

T∑
t=1

T∑
τ=1

‖∇ft(xτ)−∇fτ (xτ)‖22 = V1 + V2.

We see that the variation V is bounded by two parts: V1 essentially measures the
smoothness of the individual loss functions, while V2 measures the variation in the gradients
of loss functions. As a result, even when all the loss functions are identical, V2 vanishes,
while V1 still exists, and therefore the regret of the algorithm in (Hazan and Kale, 2008) for
online convex optimization may still be bounded by O(

√
T) regardless of the smoothness

of the cost function. To address above mentioned challenges, the bounds in this paper are
developed in terms of Lp-deviation. We note that for linear functions, Lp-deviation becomes

Dp =
∑T

t=1 ‖ft − ft−1‖
2
p. It can be shown that D2 ≤ O(V) while there are loss functions

with D2 ≤ O(1) and V = Ω(T). Thus, one can argue that our constraint of a small deviation
is strictly easier to satisfy than that of a small variation in (Hazan and Kale, 2008). For the
portfolio management problem, a natural measure of deviation is

∑T
t=1 ‖vt − vt−1‖22, and

one can show that D2 ≤ O(N) ·
∑T

t=1 ‖vt − vt−1‖22 ≤ O(NQ), so one can again argue that
our constraint is easier to satisfy than that of (Hazan and Kale, 2009).

In this paper, we consider loss functions with such deviation constraints and obtain
the following results. First, for the online linear optimization problem, we provide an
algorithm which, when given loss functions with L2-deviation D2, can achieve a regret

6.3

Chiang Yang Lee Mahdavi Lu Jin Zhu

of O(
√
D2). This is in fact optimal as a matching lower bound can be shown. Since

D2 ≤ O(TN), we immediately recover the result of Zinkevich (2003). Furthermore, as
discussed before, since one can upper-bound D2 in terms of V but not vice versa, our
result is arguably stronger than that of Hazan and Kale (2008); interestingly, our analysis
even looks simpler than theirs. A similar bound was given by Rakhlin et al. (2011) in a
game-theoretical setting, but they did not discuss any algorithm. Next, for the prediction
with expert advice problem, we provide an algorithm such that when given loss functions
with L∞-deviation D∞, it achieves a regret of O(

√
D∞ lnN), which is also optimal with

a matching lower bound. Note that since D∞ ≤ O(T), we also recover the O(
√
T lnN)

regret bound of Freund and Schapire (1997), but our result seems incomparable to that
of Hazan and Kale (2008). We then establish variation bound for general convex loss
functions aiming to take one step further along the work done in (Hazan and Kale, 2008).
Our results shows that for general smooth convex functions, the proposed algorithm attains
O(
√
D2) bound. We show that smoothness assumptions is unavoidable for general convex

loss functions. Finally, we provide an algorithm for the online convex optimization problem
studied by Hazan et al. (2007), in which the loss functions are strictly convex. Our algorithm
achieves a regret of O(N lnT) which matches that of an algorithm in (Hazan et al., 2007),
and when the loss functions have L2-deviation D2, for a large enough D2, and satisfy
some smoothness condition, our algorithm achieves a regret of O(N lnD2). This can be
applied to the portfolio management problem considered by Hazan and Kale (2009) as the
corresponding loss functions in fact satisfy our smoothness condition, and we can achieve a
regret of O(N lnD) when

∑T
t=1 ‖vt− vt−1‖22 ≤ D. As discussed before, one can again argue

that our result is stronger than that of Hazan and Kale (2009).
All of our algorithms are based on the following idea, which we illustrate using the

online linear optimization problem as an example. For general linear functions, the gradient
descent algorithm is known to achieve an optimal regret, which plays in round t the point
xt = ΠX (xt−1− ηft−1), the projection of xt−1− ηft−1 to the feasible set X . Now, if the loss
functions have a small deviation, ft−1 may be close to ft, so in round t, it may be a good
idea to play a point which moves further in the direction of −ft−1 as it may make its inner
product with ft (which is its loss with respect to ft) smaller. In fact, it can be shown that
if one could play the point xt+1 = ΠX (xt − ηft) in round t, a very small regret could be
achieved, but in reality one does not have ft available before round t to compute xt+1. On
the other hand, if ft−1 is a good estimate of ft, the point x̂t = ΠX (xt − ηft−1) should be a
good estimate of xt+1 too. The point x̂t can actually be computed before round t since ft−1
is available, so our algorithm plays x̂t in round t. Our algorithms for the prediction with
expert advice problem and the online convex optimization problem use the same idea. We
unify all our algorithms by a meta algorithm, which can be seen as a type of mirror descent
algorithm (Nemirovski and Yudin, 1978; Beck and Teboulle, 2003), using the notion of
Bregman divergence with respect to some function R. Then we derive different algorithms
for different settings simply by substantiating the meta algorithm with different choices for
the function R. For the linear and general smooth online convex optimization problems, the
prediction with expert advice problem, and the online strictly convex optimization problem,
respectively, the algorithms we derive can be seen as modified from the gradient descent
algorithm of (Zinkevich, 2003), the multiplicative algorithm of (Littlestone and Warmuth,
1994; Freund and Schapire, 1997), and the online Newton step of (Hazan et al., 2007), with

6.4

Online Optimization with Gradual Variations

the modification based on the idea of moving further in the direction of −ft−1 discussed
above.

2. Preliminaries

For a positive integer n, let [n] denote the set {1, 2, · · · , n}. Let R denote the set of real
numbers, RN the set of N -dimensional vectors over R, and RN×N the set of N×N matrices
over R. We will see a vector x as a column vector and see its transpose, denoted by x>, as
a row vector. For a vector x ∈ RN and an index i ∈ [N], let x(i) denote the i’th component

of x. For x, y ∈ RN , let 〈x, y〉 =
∑N

i=1 x(i)y(i) and let RE (x‖y) =
∑N

i=1 x(i) ln x(i)
y(i) . All the

matrices considered in this paper will be symmetric and we will assume this without stating
it later. For two matrices A and B, we write A � B if A−B is a positive semidefinite (PSD)
matrix. For x ∈ RN , let ‖x‖p denote the Lp-norm of x, and for a PSD matrix H ∈ RN×N ,

define the norm ‖x‖H by
√
x>Hx. Note that if H is the identity matrix, then ‖x‖H = ‖x‖2.

We will need the following simple fact, which will be proved in Appendix A.

Proposition 1 For any y, z ∈ RN and any PSD H ∈ RN×N , ‖y + z‖2H ≤ 2 ‖y‖2H +2 ‖z‖2H .

We will need the notion of Bregman divergence and the projection according to it.

Definition 2 Let R : RN → R be a differentiable function and X ⊆ RN a convex set.
Define the Bregman divergence of x, y ∈ RN with respect to R by BR(x, y) = R(x)−R(y)−
〈∇R(y), x− y〉 . Define the projection of y ∈ RN onto X according to BR by ΠX ,R(y) =
arg minx∈X BR(x, y).

We consider the online convex optimization problem, in which an online algorithm must
play in T rounds in the following way. In each round t ∈ [T], it plays a point xt ∈ X , for
some convex feasible set X ⊆ RN , and after that, it receives a loss function ft : X → R and
suffers a loss of ft(xt). The goal is to minimize its regret, defined as

T∑
t=1

ft(xt)− arg min
π∈X

T∑
t=1

ft(π),

which is the difference between its total loss and that of the best offline algorithm playing
a single point π ∈ X for all T rounds. We study four special cases of this problem. The
first is the online linear optimization problem, in which each loss function ft is linear. The
second case is the prediction with expert advice problem, which can be seen as a special case
of the online linear optimization problem with the set of probability distributions over N
actions as the feasible set X . The third case is when the loss functions are smooth which is
a generalizeiton of linear optimization setting. Finally, we consider the case when the loss
functions are strictly convex in the sense defined as follows.

Definition 3 For β > 0, we say that a function f : X → R is β-convex, if for all x, y ∈ X ,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ β 〈∇f(y), x− y〉2 .

6.5

Chiang Yang Lee Mahdavi Lu Jin Zhu

Algorithm 1 Meta algorithm

1: Initially, let x1 = x̂1 = (1/N, . . . , 1/N)>.
2: In round t ∈ [T]:
2(a): Play x̂t.
2(b): Receive ft and compute `t = ∇ft(x̂t).
2(c): Update

xt+1 = arg minx∈X
(
〈`t, x〉+ BRt (x, xt)

)
,

x̂t+1 = arg minx̂∈X
(
〈`t, x̂〉+ BRt+1 (x̂, xt+1)

)
.

As shown in (Hazan et al., 2007), all the convex functions considered there are in fact
β-convex, and thus our result also applies to those convex functions.

For simplicity of presentation, we will assume throughout the paper that the feasible
set X is a closed convex set contained in the unit ball {x ∈ Rn : ‖x‖2 ≤ 1}; the extension
to the general case is straightforward.

3. Meta Algorithm

All of our algorithms in the coming sections are based on the Meta algorithm, given in
Algorithm 1, which has the parameter Rt for t ∈ [T]. For different types of problems, we
will have different choices of Rt, which will be specified later in the respective sections.
Here we allow Rt to depend on t, although we do not need this freedom for linear functions
and general convex functions; we only need this for strictly convex functions. Note that we
define xt+1 using Rt instead of Rt+1 for some technical reason which will be discussed soon
and will become clear in the proof Lemma 6.

Our Meta algorithm is related to the mirror descent algorithm, as it can be shown to
have the following equivalent form, which will be proved in Appendix B.1.

Lemma 4 Suppose yt+1 and ŷt+1 satisfy the conditions ∇Rt(yt+1) = ∇Rt(xt) − `t and
∇Rt+1(ŷt+1) = ∇Rt+1(xt+1)− `t, respectively, for a strictly convex Rt. Then the update in
Step 2(c) of the Meta algorithm is identical to

xt+1 = ΠX ,Rt
(yt+1) = arg minx∈X BRt (x, yt+1) ,

x̂t+1 = ΠX ,Rt+1
(ŷt+1) = arg minx̂∈X BRt+1 (x̂, ŷt+1) .

Note that a typical mirror descent algorithm plays in round t a point roughly corre-
sponding to our xt, while we move one step further along the direction of −`t−1 and play
x̂t = arg minx̂∈X

(〈
`t−1, x̂

〉
+ BRt(x̂, xt)

)
instead. The intuition behind our algorithm is the

following. It can be shown that if one could play xt+1 = arg minx∈X
(
〈`t, x〉+ BRt(x, xt)

)
in

round t, then a small regret could be achieved, but in reality one does not have ft available
to compute xt+1 before round t. Nevertheless, if the loss vectors have a small deviation,
`t−1 is likely to be close to `t, and so is x̂t to xt+1, which is made possible by defining xt+1

and x̂t both using Rt. Based on this idea, we let our algorithm play x̂t in round t.
Now let us see how to bound the regret of the algorithm. Consider any π ∈ X taken by

the offline algorithm. Then for a β-convex function ft, we know from the definition that

ft (x̂t)− ft (π) ≤ 〈`t, x̂t − π〉 − β ‖x̂t − π‖
2
ht

, where ht = `t`
>
t , (4)

6.6

Online Optimization with Gradual Variations

while for a linear or a general convex ft, the above still holds with β = 0. Thus, the
key is to bound 〈`t, x̂t − π〉, which is given by the following lemma. We give the proof in
Appendix B.2.

Lemma 5 Let St =
〈
`t − `t−1, x̂t − xt+1

〉
, At = BRt(π, xt) − BRt(π, xt+1) and Bt =

BRt(xt+1, x̂t) + BRt(x̂t, xt). Then

〈`t, x̂t − π〉 ≤ St +At −Bt.

The following lemma provides an upper bound for St.

Lemma 6 Suppose ‖·‖ is a norm, with dual norm ‖·‖∗, such that 1
2 ‖x− x

′‖2 ≤ BRt(x, x′)
for any x, x′ ∈ X . Then,

St =
〈
`t − `t−1, x̂t − xt+1

〉
≤
∥∥`t − `t−1∥∥2∗ .

Proof By a generalized Cauchy-Schwartz inequality,

St =
〈
`t − `t−1, x̂t − xt+1

〉
≤
∥∥`t − `t−1∥∥∗ ‖x̂t − xt+1‖ .

Then we need the following, which will be proved in Appendix B.3.

Proposition 7 ‖x̂t − xt+1‖ ≤ ‖∇Rt(ŷt)−∇Rt(yt+1)‖∗.
From this proposition, we have

‖x̂t − xt+1‖ ≤
∥∥(∇Rt(xt)− `t−1)− (∇Rt(xt)− `t)

∥∥
∗ =

∥∥`t − `t−1∥∥∗ . (5)

This is why we define xt+1 and yt+1 using Rt instead of Rt+1. Finally, by combining these
bounds together, we have the lemma.

Taking the sum over t of the bounds in Lemma 5 and Lemma 6, we obtain a general
regret bound for the Meta algorithm. In the following sections, we will make different
choices of Rt and the norms for different types of loss functions, and we will derive the
corresponding regret bounds.

4. Linear Loss Functions

In this section, we consider the case that each loss function ft is linear, which can be seen
as an N -dimensional vector in RN with ft(x) = 〈ft, x〉 and ∇ft(x) = ft. We measure
the deviation of the loss functions by their Lp-deviation, defined in (1), which becomes∑T

t=1 ‖ft − ft−1‖
2
p for linear functions. To bound the regret suffered in each round, we can

use the bound in (4) with β = 0 and we drop the term Bt from the bound in Lemma 5. By
summing the bound over t, we have

T∑
t=1

ft (x̂t)− ft (π) ≤
T∑
t=1

St +

T∑
t=1

At, (6)

where St = 〈ft − ft−1, x̂t − xt+1〉 and At = BRt(π, xt)− BRt(π, xt+1). In the following two
subsections, we will consider the online linear optimization problem and the prediction with
expert advice problem, respectively, in which we will have different choices of Rt and use
different measures of deviation.

6.7

Chiang Yang Lee Mahdavi Lu Jin Zhu

4.1. Online Linear Optimization Problem

In this subsection, we consider the online linear optimization problem, and we consider loss
functions with L2-deviation D2. To instantiate the Meta algorithm for such loss functions,
we choose

• Rt(x) = 1
2η ‖x‖

2
2, for every t ∈ [T],

where η is the learning rate to be determined later; in fact, it can also be adjusted in the
algorithm using the standard doubling trick by keeping track of the deviation accumulated
so far. It is easy to show that with this choice of Rt,

• ∇Rt(x) = x
η , BRt(x, y) = 1

2η ‖x− y‖
2
2, and ΠX ,Rt

(y) = arg minx∈X ‖x− y‖22.

Then, according to Lemma 4, the update in Step 2(c) of Meta algorithm becomes:

• xt+1 = arg minx∈X ‖x− yt+1‖22 , with yt+1 = xt − ηft,
x̂t+1 = arg minx̂∈X ‖x̂− ŷt+1‖22 , with ŷt+1 = xt+1 − ηft.

The regret achieved by our algorithm is guaranteed by the following.

Theorem 8 When the L2-deviation of the loss functions is D2, the regret of our algorithm
is at most O(

√
D2).

Proof We start by bounding the first sum in (6). Note that we can apply Lemma 6 with
the norm ‖·‖ = 1√

η ‖·‖2, since 1
2 ‖x− x

′‖2 = 1
2η ‖x− x

′‖22 = BRt(x, x′) for any x, x′ ∈ X . As

the dual norm is ‖·‖∗ =
√
η ‖·‖2, Lemma 6 gives us

T∑
t=1

St ≤
T∑
t=1

‖ft − ft−1‖2∗ ≤
T∑
t=1

η ‖ft − ft−1‖22 ≤ ηD2.

Next, note that At = 1
2η ‖π − xt‖

2
2 −

1
2η ‖π − xt+1‖22, so the second sum in (6) is

T∑
t=1

At =
1

2η

(
‖π − x1‖22 − ‖π − xT+1‖22

)
≤ 2

η
,

by telescoping and then using the fact that ‖π − x1‖22 ≤ 4 and ‖π − xT+1‖22 ≥ 0. Finally,
by substituting these two bounds into (6), we have

T∑
t=1

(ft(x̂t)− ft(π)) ≤ ηD2 +
2

η
≤ O

(√
D2

)
,

by choosing η =
√

2/D2, which proves the theorem.

Let us make three remarks about Theorem 8. First, as mentioned in the introduction,
one can argue that our result is strictly stronger than that of (Hazan and Kale, 2008)
as our deviation bound is easier to satisfy. This is because by Proposition 1, we have

6.8

Online Optimization with Gradual Variations

‖ft − ft−1‖22 ≤ 2(‖ft − µ‖22 + ‖µ− ft−1‖22) and thus D2 ≤ 4V + O(1), while, for example,
with N = 1, ft = 0 for 1 ≤ t ≤ T/2 and ft = 1 for T/2 < t ≤ T , we have D2 ≤ O(1) and
V ≥ Ω(T). Next, we claim that the regret achieved by our algorithm is optimal. This is
because a matching lower bound can be shown by simply setting the loss functions of all but
the first r = D2 rounds to be the all-0 function, and then applying the known Ω(

√
r) regret

lower bound on the first r rounds. Finally, our algorithm can be seen as a modification of
the gradient descent (GD) algorithm of (Zinkevich, 2003), which plays xt, instead of our x̂t,
in round t. Then one may wonder if GD already performs as well as our algorithm does.
The following lemma, to be proved in Appendix C.1, provides a negative answer, which
means that our modification is in fact necessary.

Lemma 9 The regret of the GD algorithm is at least Ω(min{D2,
√
T}).

4.2. Prediction with Expert Advice

In this subsection, we consider the prediction with expert advice problem. Now, the feasible
set X is the set of probability distributions over N actions, which can also be represented as
N -dimensional vectors. Although this problem can be seen as a special case of that in Sub-
section 4.1 and Theorem 8 there also applies here, we would like to obtain a stronger result.
More precisely, now we consider L∞-deviation instead of L2-deviation, and we assume that
the loss functions have L∞-deviation D∞. Note that with D2 ≤ D∞N , Theorem 8 only
gives a regret bound of O(

√
D∞N). To obtain a smaller regret, we instantiate the Meta

algorithm with

• Rt(x) = 1
η

∑N
i=1 x(i) (lnx(i)− 1), for every t ∈ [T],

where η is the learning rate to be determined later and recall that x(i) denotes the i’th
component of the vector x. It is easy to show that with this choice,

• ∇Rt(x) = 1
η (lnx(1), . . . , lnx(N))>, BRt(x, y) = 1

ηRE (x‖y), and ΠX ,Rt
(y) = y/Z

with the normalization factor Z =
∑N

j=1 y(j).

Then, according to Lemma 4, the update in Step 2(c) of the Meta algorithm becomes:

• xt+1(i) = xt(i)e
−ηft(i)/Zt+1, for each i ∈ [N] , with Zt+1 =

∑N
j=1 xt(j)e

−ηft(j),

x̂t+1(i) = xt+1(i)e
−ηft(i)/Ẑt+1, for each i ∈ [N] , with Ẑt+1 =

∑N
j=1 xt+1(j)e

−ηft(j).

Note that our algorithm can be seen as a modification of the multiplicative updates algo-
rithm (Littlestone and Warmuth, 1994; Freund and Schapire, 1997) which plays xt, instead
of our x̂t, in round t. The regret achieved by our algorithm is guaranteed by the following,
which we will prove in Appendix C.2.

Theorem 10 When the L∞-deviation of the loss functions is D∞, the regret of our algo-
rithm is at most O(

√
D∞ lnN).

We remark that the regret achieved by our algorithm is also optimal. This is because a
matching lower bound can be shown by simply setting the loss functions of all but the first
r = D∞ rounds to be the all-0 function, and then applying the known Ω(

√
r lnN) regret

lower bound on the first r rounds.

6.9

Chiang Yang Lee Mahdavi Lu Jin Zhu

5. General Convex Loss Functions

In this section, we consider general convex loss functions. We measure the deviation of loss
functions by their L2-deviation defined in (1), which is

∑T
t=1 maxx∈X ‖∇ft(x)−∇ft−1(x)‖22 .

Our algorithm for such loss functions is the same algorithm for linear functions. To bound
its regret, now we need the help of the term Bt in Lemma 5, and we have

T∑
t=1

(ft (x̂t)− ft (π)) ≤
T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Bt. (7)

From the proof of Theorem 8, we know that
∑T

t=1At ≤
2
η and

∑T
t=1 St ≤

∑T
t=1 η

∥∥`t − `t−1∥∥22
which, unlike in Theorem 8, can not be immediately bounded by L2-deviation. This is
because

∥∥`t − `t−1∥∥22 = ‖∇ft(x̂t)−∇ft−1(x̂t−1)‖22, where the two gradients are taken at
different points. To handle this issue, we further assume that each gradient ∇ft satisfies
the following λ-smoothness condition:

‖∇ft(x)−∇ft(y)‖2 ≤ λ ‖x− y‖2 , for any x, y ∈ X . (8)

We emphasize that our assumption about the smoothness of loss functions is necessary
to achieve the desired variation bound. To see this, consider the special case of f1(x) =
· · · = fT (x) = f(x). If the variation bound O(

√
D2) holds for any sequence of convex

functions, then for the special case where all loss functions are identical, we will have

T∑
t=1

f(x̂t) ≤ min
π∈X

T∑
t=1

f(π) +O(1),

implying that (1/T)
∑T

t=1 x̂t approaches the optimal solution at the rate of O(1/T). This
contradicts the lower complexity bound (i.e. Ω(1/

√
T)) for any first order optimization

method (Nesterov, 2004, Theorem 3.2.1) and therefore smoothness assumption is necessary
to extend our results to general convex loss functions.

Our main result of this section is the following theorem which establishes the variation
bound for general smooth convex loss functions applying Meta algorithm.

Theorem 11 When the loss functions have L2-deviation D2 and the gradient of each loss
function is λ-smooth, with λ ≤ 1/

√
8D2, the regret of our algorithm is at most O(

√
D2).

The proof of Theorem 11 immediately results from the following two lemmas. First, we
need the following to bound

∑T
t=1 St in terms of D2.

Lemma 12
∑T

t=1

∥∥`t − `t−1∥∥22 ≤ 2D2 + 2λ2
∑T

t=1 ‖x̂t − x̂t−1‖
2
2 .

Proof
∥∥`t − `t−1∥∥22 = ‖∇ft(x̂t)−∇ft−1(x̂t−1)‖22, which by Proposition 1 is at most

2 ‖∇ft(x̂t)−∇ft−1(x̂t)‖22 + 2 ‖∇ft−1(x̂t)−∇ft−1(x̂t−1)‖22 ,

where the second term above is at most 2λ2 ‖x̂t − x̂t−1‖22 by the λ-smoothness condition.
By summing the bound over t, we have the lemma.

To eliminate the undesirable term 2λ2
∑T

t=1 ‖x̂t − x̂t−1‖
2
2 in the lemma, we use the help

from the sum
∑T

t=1Bt, which has the following bound.

6.10

Online Optimization with Gradual Variations

Lemma 13
∑T

t=1Bt ≥
1
4η

∑T
t=1 ‖x̂t − x̂t−1‖

2
2 −O(1).

Proof Recall that Bt = 1
2η ‖xt+1 − x̂t‖22 + 1

2η ‖x̂t − xt‖
2
2, so we can write

∑T
t=1Bt as

1

2η

T+1∑
t=2

‖xt − x̂t−1‖22 +
1

2η

T∑
t=1

‖x̂t − xt‖22 ≥ 1

2η

T∑
t=2

(
‖xt − x̂t−1‖22 + ‖x̂t − xt‖22

)
≥ 1

4η

T∑
t=2

‖x̂t − x̂t−1‖22 ,

by Proposition 1, with H being the identity matrix so that ‖x‖2H = ‖x‖22. Then the lemma
follows as ‖x̂2 − x̂1‖22 ≤ O(1).

According to the bounds obtained so far, the regret of our algorithm is at most

2ηD2+2ηλ2
T∑
t=1

‖x̂t − x̂t−1‖22−
1

4η

T∑
t=1

‖x̂t − x̂t−1‖22+O(1)+
2

η
≤ O

(
ηD2 +

1

η

)
≤ O

(√
D2

)
,

when λ ≤ 1/
√

8η2 and η = 1/
√
D2.

6. Strictly Convex Loss Functions

In this section, we consider convex functions which are strictly convex. More precisely,
suppose for some β > 0, each loss function is β-convex, so that

ft (x̂t)− ft (π) ≤ 〈`t, x̂t − π〉 − β ‖π − x̂t‖
2
ht
, where ht = `t`

>
t . (9)

Again, we measure the deviation of loss functions by their L2-deviation, defined in (1). To
instantiate the Meta algorithm for such loss functions, we choose

• Rt(x) = 1
2 ‖x‖

2
Ht

, with Ht = I + βγ2I + β
∑t−1

τ=1 `τ `
>
τ ,

where I is the N ×N identity matrix, and γ is an upper bound of ‖`t‖2, for every t, so that
γ2I � `t`>t . It is easy to show that with this choice,

• ∇Rt(x) = Htx, BRt(x, y) = 1
2 ‖x− y‖

2
Ht

, and ΠX ,Rt
(y) = arg minx∈X ‖x− y‖2Ht

.

Then, according to Lemma 4, the update in Step 2(c) of the Meta algorithm becomes:

• xt+1 = arg minx∈X ‖x− yt+1‖2Ht
, with yt+1 = xt −H−1t `t,

x̂t+1 = arg minx̂∈X ‖x̂ − ŷt+1‖2Ht+1
, with ŷt+1 = xt+1 −H−1t+1`t.

We remark that our algorithm is related to the online Newton step algorithm in (Hazan
et al., 2007), except that our matrix Ht is slightly different from theirs and we play x̂t in
round t while they play a point roughly corresponding to our xt. It is easy to verify that the
update of our algorithm can be computed at the end of round t, because we have `1, . . . , `t
available to compute Ht and Ht+1.

6.11

Chiang Yang Lee Mahdavi Lu Jin Zhu

To bound the regret of our algorithm, note that by substituting the bound of Lemma 5
into (9) and then taking the sum over t, we obtain

T∑
t=1

(ft (x̂t)− ft (π)) ≤
T∑
t=1

St +

T∑
t=1

At −
T∑
t=1

Bt −
T∑
t=1

Ct, (10)

with St =
〈
`t − `t−1, x̂t − xt+1

〉
, At = 1

2 ‖π − xt‖
2
Ht
−1

2 ‖π − xt+1‖2Ht
, Bt = 1

2 ‖xt+1 − x̂t‖2Ht
+

1
2 ‖x̂t − xt‖

2
Ht

, and Ct = β ‖π − x̂t‖2ht . Then our key lemma is the following, which will be
proved in Appendix D.1.

Lemma 14 Suppose the loss functions are β-convex for some β > 0. Then

T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Ct ≤ O(1 + βγ2) +
8N

β
ln

(
1 +

β

4

T∑
t=1

∥∥`t − `t−1∥∥22
)
.

Note that the lemma does not use the nonnegative sum
∑T

t=1Bt but it already provides a

regret bound matching that in (Hazan et al., 2007). To bound
∑T

t=1

∥∥`t − `t−1∥∥22 in terms of
L2-deviation, we again assume that each gradient ∇ft satisfies the λ-smoothness condition
defined in (8), and we will also use the help from the sum

∑T
t=1Bt. To get a cleaner regret

bound, let us assume without loss of generality that λ ≥ 1 and β ≤ 1, because otherwise
we can set λ = 1 and β = 1 and the inequalities in (8) and (9) still hold. Our main result
of this section is the following, which we will prove in Appendix D.3.

Theorem 15 Suppose the loss functions are β-convex and their L2-deviation is D2, with
β ≤ 1 and D2 ≥ 1. Furthermore, suppose the gradient of each loss function is λ-smooth,
with λ ≥ 1, and has L2-norm at most γ. Then the regret of our algorithm is at most
O(βγ2 + (N/β) ln(λND2)), which becomes O((N/β) lnD2) for a large enough D2.

An immediate application of Theorem 15 is to the portfolio management problem con-
sidered in (Hazan and Kale, 2009). In the problem, the feasible set X is the N -dimensional
probability simplex and each loss function has the form ft(x) = − ln 〈vt, x〉, with vt ∈ [δ, 1]N

for some δ ∈ (0, 1). A natural measure of deviation, extending that of (Hazan and Kale,
2009), for such loss functions is D =

∑T
t=1 ‖vt − vt−1‖

2
2. By applying Theorem 15 to this

problem, we have the following, which will be proved in Appendix D.4.

Corollary 16 For the portfolio management problem described above, there is an online
algorithm which achieves a regret of O((N/δ2) ln((N/δ)D)).

Acknowledgments

The authors T. Yang, M. Mahdavi, and R. Jin acknowledge support from the National
Science Foundation (IIS-0643494) and Office of Navy Research (for ONR award N00014-
09-1-0663 and N00014-12-1-0431). The authors C.-K. Chiang, C.-J. Lee, and C.-J. Lu
acknowledge support from Academia Sinica and National Science Council (NSC 100-2221-
E-001-008-MY3) of Taiwan.

6.12

Online Optimization with Gradual Variations

References

Jacob Abernethy, Peter L. Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strate-
gies and minimax lower bounds for online convex games. In COLT, pages 415–424, 2008.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004. ISBN 0521833787.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge
Univerity Press, New York, 2006.

Thomas Cover. Universal portfolios. Mathematical Finance, 1:1–19, 1991.

Yoav Freund and Robert E. Schapire. A decision theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: regret bounded by
variation in costs. In COLT, pages 57–68, 2008.

Elad Hazan and Satyen Kale. On stochastic and worst-case models for investing. In NIPS,
pages 709–717, 2009.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization. Journal of Computer and System Sciences, 69(2-3):169–192, 2007.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, 1994.

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimization.
Nauka Publishers, Moscow, 1978.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course (Applied
Optimization). Springer Netherlands, 1 edition, 2004.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: stochastic,
constrained, and smoothed adversaries. In NIPS, pages 1764–1772, 2011.

Nati Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror
descent. In NIPS, pages 2645–2653, 2011.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In ICML, pages 928–936, 2003.

6.13

Chiang Yang Lee Mahdavi Lu Jin Zhu

Appendix A. Proof of Proposition 1 in Section 2

By definition,

2 ‖y‖2H + 2 ‖z‖2H − ‖y + z‖2H = ‖y‖2H + ‖z‖2H − 2y>Hz = ‖y − z‖2H ≥ 0,

which implies that 2 ‖y‖2H + 2 ‖z‖2H ≥ ‖y + z‖2H .

Appendix B. Proofs in Section 3

B.1. Proof of Lemma 4

The lemma follows immediately from the following known fact (see e.g. (Beck and Teboulle,
2003; Srebro et al., 2011)); we give the proof for completeness.

Proposition 17 Suppose R is strictly convex and differentiable, and y satisfies the condi-
tion ∇R(y) = ∇R(u)− `. Then

arg min
x∈X

(
〈`, x〉+ BR(x, u)

)
= arg min

x∈X
BR(x, y).

Proof Since R is strictly convex, the minimum on each side is achieved by a unique point.
Next, note that BR(x, y) = R(x)−R(y)−〈∇R(y), x− y〉 = R(x)−〈∇R(y), x〉+ c, where
c = −R(y) + 〈∇R(y), y〉 does not depend on the variable x. Thus, using the condition that
∇R(y) = ∇R(u)− `, we have

arg min
x∈X
BR(x, y) = arg min

x∈X
(R(x)− 〈∇R(u)− `, x〉)

= arg min
x∈X

(〈`, x〉+R(x)− 〈∇R(u), x〉) .

On the other hand, BR(x, u) = R(x)−R(u)− 〈∇R(u), x− u〉 = R(x)− 〈∇R(u), x〉+ c′,
where c′ = −R(u) + 〈∇R(u), u〉 does not depend on the variable x. Thus, we have

arg min
x∈X

(
〈`, x〉+ BR(x, u)

)
= arg min

x∈X
(〈`, x〉+R(x)− 〈∇R(u), x〉) = arg min

x∈X
BR(x, y).

B.2. Proof of Lemma 5

Let us write 〈`t, x̂t − π〉 = 〈`t, x̂t − xt+1〉+ 〈`t, xt+1 − π〉 which in turn equals〈
`t − `t−1, x̂t − xt+1

〉
+
〈
`t−1, x̂t − xt+1

〉
+ 〈`t, xt+1 − π〉 . (11)

To bound the second and third terms in (11), we rely on the following.

Proposition 18 Suppose ` ∈ Rn, v = arg minx∈X
(
〈`, x〉+ BR(x, u)

)
, and w ∈ X . Then

〈`, v − w〉 ≤ BR(w, u)− BR(w, v)− BR(v, u).

6.14

Online Optimization with Gradual Variations

Proof We need the following well-known fact; for a proof, see e.g. pages 139–140 of (Boyd
and Vandenberghe, 2004).

Fact 1 Let X ⊆ Rn be a convex set and x = arg minz∈X φ(z) for some continuous and
differentiable function φ : X → R. Then for any w ∈ X , 〈∇φ(x), w − x〉 ≥ 0.

Let φ be the function defined by φ(x) = 〈`, x〉+BR(x, u). Since X is a convex set and v
is the minimizer of φ(x) over x ∈ X , it follows from Fact 1 that 〈∇φ(v), w − v〉 ≥ 0. Since
∇φ(v) = ` + ∇R(v) − ∇R(u), we have 〈`, v − w〉 ≤ 〈∇R(v)−∇R(u), w − v〉 . Then, by
the definition of Bregman divergence, we obtain

BR(w, u)− BR(w, v)− BR(v, u) = −〈∇R(u), w − v〉+ 〈∇R(v), w − v〉
= 〈∇R(v)−∇R(u), w − v〉 .

As a result, we have

〈`, v − w〉 ≤ 〈∇R(v)−∇R(u), w − v〉 = BR(w, u)− BR(w, v)− BR(v, u).

From Proposition 18 and the definitions of x̂t and xt+1, we have〈
`t−1, x̂t − xt+1

〉
≤ BRt(xt+1, xt)− BRt(xt+1, x̂t)− BRt(x̂t, xt), and (12)

〈`t, xt+1 − π〉 ≤ BRt(π, xt)− BRt(π, xt+1)− BRt(xt+1, xt). (13)

Combining the bounds in (11), (12), (13) together, we have the lemma.

B.3. Proof of Proposition 7

To simplify the notation, let R = Rt, x = x̂t, x
′ = xt+1, y = ŷt, and y′ = yt+1. Then, from

the property of the norm, we know that

1

2

∥∥x− x′∥∥2 ≤ R(x)−R(x′)−
〈
∇R(x′), x− x′

〉
,

and also
1

2

∥∥x′ − x∥∥2 ≤ R(x′)−R(x)−
〈
∇R(x), x′ − x

〉
.

Adding these two bounds, we obtain∥∥x− x′∥∥2 ≤ 〈∇R(x)−∇R(x′), x− x′
〉
. (14)

Next, we show that〈
∇R(x)−∇R(x′), x− x′

〉
≤
〈
∇R(y)−∇R(y′), x− x′

〉
. (15)

For this, we need Fact 1 in Appendix B.2. By letting φ(z) = BR(z, y), we have x =
arg minz∈X φ(z), ∇φ(x) = ∇R(x)−∇R(y), and〈

∇R(x)−∇R(y), x′ − x
〉
≥ 0.

6.15

Chiang Yang Lee Mahdavi Lu Jin Zhu

On the other hand, by letting φ(z) = BR(z, y′), we have x′ = arg minz∈X φ(z), ∇φ(x′) =
∇R(x′)−∇R(y′), and 〈

∇R(x′)−∇R(y′), x− x′
〉
≥ 0.

Combining these two bounds, we have〈(
∇R(y)−∇R(y′)

)
−
(
∇R(x)−∇R(x′)

)
, x− x′

〉
≥ 0,

which implies the inequality in (15).
Finally, by combining (14) and (15), we obtain∥∥x− x′∥∥2 ≤ 〈∇R(y)−∇R(y′), x− x′

〉
≤
∥∥∇R(y)−∇R(y′)

∥∥
∗
∥∥x− x′∥∥ ,

by a generalized Cauchy-Schwartz inequality. Dividing both sides by ‖x− x′‖, we have the
proposition.

Appendix C. Proofs in Section 4

C.1. Proof of Lemma 9 in Section 4

One may wonder if the GD algorithm can also achieve the same regret as our algorithm’s
by choosing the learning rate η properly. We show that no matter what the learning rate η
the GD algorithm chooses, there exists a sequence of loss vectors which can cause a large
regret. Let f be any unit vector passing through x1. Let s = b1/ηc, so that if we use ft = f
for every t ≤ s, each such yt+1 = x1 − tηf still remains in X and thus xt+1 = yt+1. Next,
we analyze the regret by considering the following three cases depending on the range of s.

First, when s ≥
√
T , we choose ft = f for t from 1 to bs/2c and ft = 0 for the remaining

t. Clearly, the best strategy of the offline algorithm is to play π = −f . On the other
hand, since the learning rate η is too small, the strategy xt played by GD, for t ≤ bs/2c,
is far away from π, so that 〈ft, xt − π〉 ≥ 1 − tη ≥ 1/2. Therefore, the regret is at least
bs/2c (1/2) = Ω(

√
T).

Second, when 0 < s <
√
T , the learning rate is high enough so that GD may overreact

to each loss vector, and we make it pay by flipping the direction of loss vectors frequently.
More precisely, we use the vector f for the first s rounds so that xt+1 = x1 − tηf for any
t ≤ s, but just as xs+1 moves far enough in the direction of −f , we make it pay by switching
the loss vector to −f , which we continue to use for s rounds. Note that xs+1+r = xs+1−r
but fs+1+r = −fs+1−r for any r ≤ s, so

∑2s
t=1 〈ft, xt − x1〉 = 〈fs+1, xs+1 − x1〉 ≥ Ω(1). As

x2s+1 returns back to x1, we can see the first 2s rounds as a period, which only contributes
‖2f‖22 = 4 to the deviation. Then we repeat the period for τ times, where τ = bD2/4c
if there are enough rounds, with bT/(2s)c ≥ bD2/4c, to use up the deviation D2, and
τ = bT/(2s)c otherwise. For any remaining round t, we simply choose ft = 0. As a result,
the total regret is at least Ω(1) · τ = Ω(min{D2/4, T/(2s)}) = Ω(min{D2,

√
T}).

Finally, when s = 0, the learning rate is so high that we can easily make GD pay by
flipping the direction of the loss vector in each round. More precisely, by starting with
f1 = −f , we can have x2 on the boundary of X , which means that if we then alternate
between f and −f , the strategies GD plays will alternate between x3 and x2 which have a
constant distance from each other. Then following the analysis in the second case, one can
show that the total regret is at least Ω(min{D2, T}).

6.16

Online Optimization with Gradual Variations

C.2. Proof of Theorem 10

We start by bounding the first sum in (6). Note that we can apply Lemma 6 with the
norm ‖·‖ = 1√

η ‖·‖1, since for any x, x′ ∈ X , 1
2 ‖x− x

′‖2 = 1
2η ‖x− x

′‖21 ≤
1
ηRE (x‖x′) =

BRt(x, x′), by Pinsker’s inequality. As the dual norm is ‖·‖∗ =
√
η ‖·‖∞, Lemma 6 gives us

T∑
t=1

St ≤
T∑
t=1

‖ft − ft−1‖2∗ ≤
T∑
t=1

η ‖ft − ft−1‖2∞ ≤ ηD∞.

Next, note that At = 1
ηRE (π‖xt)− 1

ηRE (π‖xt+1), so the second sum in (6) is

T∑
t=1

At =
1

η
(RE (π‖x1)− RE (π‖xT+1)) ≤

1

η
lnN,

by telescoping and then using the fact that RE (π‖x1) ≤ lnN and RE (π‖xT+1) ≥ 0. Finally,
by substituting these two bounds into (6), we have

T∑
t=1

(ft(x̂t)− ft(π)) ≤ ηD∞ +
1

η
lnN ≤ O

(√
D∞ lnN

)
,

by choosing η =
√

(lnN)/D∞, which proves the theorem.

Appendix D. Proofs in Section 6

D.1. Proof of Lemma 14

We start by bounding the first sum in (10). Note that we can apply Lemma 6 with the
norm ‖·‖ = ‖·‖Ht

, since 1
2 ‖x− x

′‖2 = 1
2 ‖x− x

′‖2Ht
= BRt(x, x′) for any x, x′ ∈ X . As the

dual norm is ‖·‖∗ = ‖·‖
H−1

t
, Lemma 6 gives us

T∑
t=1

St ≤
T∑
t=1

∥∥`t − `t−1∥∥2∗ ≤ T∑
t=1

∥∥`t − `t−1∥∥2H−1
t
.

Next, we bound the second sum
∑T

t=1At in (10), which can be written as

1

2
‖π − x1‖2H1

− 1

2
‖π − xT+1‖2HT+1

+
1

2

T∑
t=1

(
‖π − xt+1‖2Ht+1

− ‖π − xt+1‖2Ht

)
.

Since ‖π − x1‖2H1
= O

(
1 + βγ2

)
, ‖π − xT+1‖2HT+1

≥ 0, and Ht+1 −Ht = βht, we have

T∑
t=1

At ≤ O
(
1 + βγ2

)
+
β

2

T∑
t=1

‖π − xt+1‖2ht .

6.17

Chiang Yang Lee Mahdavi Lu Jin Zhu

Note that unlike in the case of linear functions, here the sum does not telescope and hence
we do not have a small bound for it. The last sum

∑T
t=1Ct in (10) now comes to help.

Recall that Ct = β ‖π − x̂t‖2ht , so by Proposition 1,

β

2
‖π − xt+1‖2ht − Ct ≤ β ‖π − x̂t‖

2
ht

+ β ‖x̂t − xt+1‖2ht − Ct = β ‖x̂t − xt+1‖2ht ,

which, by the fact that Ht � βγ2I � βht and the bound in (5), is at most

‖x̂t − xt+1‖2Ht
≤
∥∥`t − `t−1∥∥2H−1

t
.

Combining the bounds derived so far, we obtain

T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Ct ≤ O(1 + βγ2) + 2
T∑
t=1

∥∥`t − `t−1∥∥2H−1
t
. (16)

Finally, to complete our proof of Lemma 14, we rely on the following, which provides a
bound for the last term in (16) and will be proved in Appendix D.2.

Lemma 19
∑T

t=1

∥∥`t − `t−1∥∥2H−1
t
≤ 4N

β ln
(

1 + β
4

∑T
t=1

∥∥`t − `t−1∥∥22).

D.2. Proof of Lemma 19

We need the following lemma from (Hazan et al., 2007):

Lemma 20 Let ut ∈ RN , for t ∈ [T], be a sequence of vectors. Define Vt = I+
∑t

τ=1 uτu
>
τ .

Then,
T∑
t=1

u>t V
−1
t ut ≤ N ln

(
1 +

T∑
t=1

‖ut‖22

)
.

To prove our Lemma 19, first note that for any t ∈ [T],

Ht = I + βγ2I + β
t−1∑
τ=1

`τ `
>
τ � I + β

t∑
τ=1

`τ `
>
τ � I +

β

2

t∑
τ=1

(
`τ `
>
τ + `τ−1`

>
τ−1

)
,

since γ2I � `t`>t and `0 is the the all-0 vector. Next, we claim that

`τ `
>
τ + `τ−1`

>
τ−1 �

1

2

(
`τ − `τ−1

) (
`τ − `τ−1

)>
.

This is because by subtracting the right-hand side from the left-hand side, we have

1

2
`τ `
>
τ +

1

2
`τ `
>
τ−1 +

1

2
`τ−1`

>
τ +

1

2
`τ−1`

>
τ−1 =

1

2

(
`τ + `τ−1

) (
`τ + `τ−1

)> � 0.

Thus, with Kt = I + β
4

∑t
τ=1

(
`τ − `τ−1

) (
`τ − `τ−1

)>
, we have Ht � Kt and K−1t � H−1t .

This implies that

T∑
t=1

∥∥`t − `t−1∥∥2H−1
t
≤

T∑
t=1

∥∥`t − `t−1∥∥2K−1
t

=
4

β

T∑
t=1

∥∥∥∥∥
√
β

4

(
`t − `t−1

)∥∥∥∥∥
2

K−1
t

,

which by Lemma 20 is at most 4N
β ln

(
1 + β

4

∑T
t=1

∥∥`t − `t−1∥∥22) .
6.18

Online Optimization with Gradual Variations

D.3. Proof of Theorem 15

To bound the last term in the bound of Lemma 14 in terms of our deviation bound
D2, we use Lemma 12 in Section 5. Combining this with (10), we can upper-bound∑T

t=1 (ft(x̂t)− ft(π)) by

O(1 + βγ2) +
8N

β
ln

(
1 +

β

2
D2 +

βλ2

2

T∑
t=1

‖x̂t − x̂t−1‖22

)
−

T∑
t=1

Bt. (17)

To eliminate the undesirable last term inside the parenthesis above, we need the help from
the sum

∑T
t=1Bt, which has the following bound.

Lemma 21
∑T

t=1Bt ≥
1
4

∑T
t=1 ‖x̂t − x̂t−1‖

2
2 −O(1).

Proof Recall that Bt = 1
2 ‖xt+1 − x̂t‖2Ht

+ 1
2 ‖x̂t − xt‖

2
Ht

, so we can write
∑T

t=1Bt as

1

2

T+1∑
t=2

‖xt − x̂t−1‖2Ht−1
+

1

2

T∑
t=1

‖x̂t − xt‖2Ht
≥ 1

2

T∑
t=2

‖xt − x̂t−1‖2Ht−1
+

1

2

T∑
t=2

‖x̂t − xt‖2Ht−1

since Ht � Ht−1 and ‖xT+1 − x̂T ‖2HT
, ‖x̂1 − x1‖2H1

≥ 0. By Proposition 1, this is at least

1

4

T∑
t=2

‖x̂t − x̂t−1‖2Ht−1
≥ 1

4

T∑
t=2

‖x̂t − x̂t−1‖2I =
1

4

T∑
t=2

‖x̂t − x̂t−1‖22

as Ht−1 � I and I is the identity matrix. Then the lemma follows as ‖x̂2 − x̂1‖22 ≤ O(1).

Applying this lemma to (17), we obtain a regret bound of the form

O(1 + βγ2) +
8N

β
ln

(
1 +

β

2
D2 +

βλ2

2
W

)
− 1

4
W

where W =
∑T

t=1 ‖x̂t − x̂t−1‖
2
2. Observe that the combination of the last two terms above

become negative when W ≥ (λND2)
c/β for some large enough constant c, as we assume

β ≤ 1 and λ,D2 ≥ 1. Thus, the regret bound is at most O(βγ2 + (N/β) ln(λND2)), which
completes the proof of Theorem 15.

D.4. Proof of Corollary 16

Recall that each loss function has the form ft(x) = − ln 〈vt, x〉 for some vt ∈ [δ, 1]N with
δ ∈ (0, 1), and note that ∇ft(x) = −vt/ 〈vt, x〉. To apply Theorem 15, we need to determine
the parameters β, γ, λ,D2.

First, by a Taylor expansion, we know that for any x, y ∈ X , there is some ξt on the line
between x and y such that

ft(x) = ft(y) + 〈∇ft(y), x− y〉+
1

2 〈vt, ξt〉2
(x− y)>vtv

>
t (x− y),

6.19

Chiang Yang Lee Mahdavi Lu Jin Zhu

where the last term above equals

1

2 〈vt, ξt〉2
〈vt, x− y〉2 =

〈vt, y〉2

2 〈vt, ξt〉2
〈∇ft(y), x− y〉2 ≥ δ2

2
〈∇ft(y), x− y〉2 .

Thus, we can choose β = δ2/2. Next, since ‖∇ft(x)‖2 = ‖vt‖2 / 〈vt, x〉 ≤
√
N/δ, we can

choose γ =
√
N/δ. Third, note that

‖∇ft(x)−∇ft(y)‖2 =

∥∥∥∥ vt
〈vt, x〉

− vt
〈vt, y〉

∥∥∥∥
2

=
‖vt‖2 |〈vt, x− y〉|
〈vt, x〉 〈vt, y〉

,

which by a Cauchy-Schwarz inequality is at most

‖vt‖22
〈vt, x〉 〈vt, y〉

‖x− y‖2 ≤
N

δ2
‖x− y‖2 .

Thus, we can choose λ = N/δ2. Finally, note that for any x ∈ X ,

‖∇ft(x)−∇ft−1(x)‖2 =

∥∥∥∥ vt
〈vt, x〉

− vt−1
〈vt−1, x〉

∥∥∥∥
2

=

∥∥∥∥vt − vt−1〈vt, x〉
+
vt−1 (〈vt−1, x〉 − 〈vt, x〉)
〈vt, x〉 〈vt−1, x〉

∥∥∥∥
2

,

which by a triangle inequality and then a Cauchy-Schwarz inequality is at most

‖vt − vt−1‖2
〈vt, x〉

+
‖vt−1‖2 | 〈vt−1 − vt, x〉 |
〈vt, x〉 〈vt−1, x〉

≤
‖vt − vt−1‖2
〈vt, x〉

+
‖vt−1‖2 ‖x‖2 ‖vt − vt−1‖2

〈vt, x〉 〈vt−1, x〉
,

which in turn is at most
(
1
δ +

√
N
δ2

)
‖vt − vt−1‖2 ≤

2
√
N

δ2
‖vt − vt−1‖2. This implies

T∑
t=1

max
x∈X
‖∇ft(x)−∇ft−1(x)‖22 ≤

T∑
t=1

(
2
√
N

δ2

)2

‖vt − vt−1‖22 ≤
(

4N

δ4

)
D.

Thus, we can choose D2 = (4N/δ4)D. Using these bounds in Theorem 15, we have the
corollary.

6.20

	Introduction
	Preliminaries
	Meta Algorithm
	Linear Loss Functions
	Online Linear Optimization Problem
	Prediction with Expert Advice

	General Convex Loss Functions
	Strictly Convex Loss Functions
	Proof of Proposition 1 in Section 2
	Proofs in Section 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Proposition 7

	Proofs in Section 4
	Proof of Lemma 9 in Section 4
	Proof of Theorem 10

	Proofs in Section 6
	Proof of Lemma 14
	Proof of Lemma 19
	Proof of Theorem 15
	Proof of Corollary 16

