
JMLR: Workshop and Conference Proceedings vol 23 (2012) 28.1–28.20 25th Annual Conference on Learning Theory

Divergences and Risks for Multiclass Experiments

Darı́o Garcı́a-Garcı́a DARIO.GARCIA@ANU.EDU.AU
Australian National University and NICTA, Canberra ACT 0200, Australia

Robert C. Williamson BOB.WILLIAMSON@ANU.EDU.AU

Australian National University and NICTA, Canberra ACT 0200, Australia

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract
Csiszár’s f -divergence is a way to measure the similarity of two probability distributions. We study
the extension of f -divergence to more than two distributions to measure their joint similarity. By
exploiting classical results from the comparison of experiments literature we prove the resulting
divergence satisfies all the same properties as the traditional binary one. Considering the multidis-
tribution case actually makes the proofs simpler. The key to these results is a formal bridge between
these multidistribution f -divergences and Bayes risks for multiclass classification problems.
Keywords: f -divergence, Bayes risk, comparison of experiments, multiclass losses, affinity, infor-
mation distance, similarity.

1. Introduction

Machine learning variously analyses single objects, compares two objects, or sometimes compares
multiple objects simultaneously. Depending whether one wishes to work with finite objects directly
or to assume a probabilistic framework, one can describe how complex a single object is either
in terms of its Kolmogorov complexity (Kolmogorov, 1965) or Shannon entropy (Shannon, 1948),
where one represents objects using probability distributions. Two objects can be compared in terms
of the information distance (Bennett et al., 1998) (the maximum relative Kolmogorov complexity
— the length of the shortest program to describe a second object given the first, or the first given the
second) or relative entropy, also known as Kullback-Leibler information or KL divergence (Kull-
back and Leibler, 1951). Comparing multiple (≥ 2) objects is less well studied. The multi-object
generalisation of information distance (Long et al., 2008) has been formally studied only recently
(Li, 2011; Vitányi, 2011, 2012). Others such generalisations are mentioned later in this introduction.

The f -divergence (Csiszár, 1967, 1963) If (P,Q) (defined formally later) is a generalisation of
KL-divergence which measures the “distance” between two probability distributions P and Q. It is
parametrized by a convex function f : [0,∞)→ R. It is sometimes argued that f -divergences other
than KL-divergence are rarely used and have limited value. However by considering P and Q as
the class conditional distributions of a binary experiment, If (P,Q) can be expressed in terms of the
Bayes risk of the experiment with respect to a loss function ` that depends upon f (Gutenbrunner,
1990); see also (Österreicher and Vajda, 1993). With hindsight one can see many of these results in
(Torgersen, 1981). This “bridge” between the two perspectives allows insight and simplification of
many results (Reid and Williamson, 2011), and extends the results of (Liese and Vajda, 2006); see
also (Liese and Vajda, 2008). Crucially, this bridge means that if one accepts the utility-theoretic
foundations of statistical decision theory (Wald, 1950; Berger, 1985; French and Insua, 2000), which
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form the basis of statistical learning theory, and one is thus willing to countenance a wide variety of
loss functions as abstractions of various end-use problems, then one logically must accept the need
and use of different f -divergences. This is hardly surprising and no different to the need to work
with a wide variety of metrics in the theory of function spaces (Kolmogorov and Fomin, 1970) or
the importance of the choice of similarity measure in clustering (Jain et al., 1999, Section 4).

The theory of binary losses (Reid and Williamson, 2010) has been extended to multiclass losses
(Vernet et al., 2011). The extension actually simplifies and elucidates the binary results. This
raises the question (which we answer in this paper): what is the analogous extension of If (P,Q) to
“multiclass” f -divergences If (P1, . . . , Pk)?

There are several possible extensions of f -divergences to multiple distributions, so it is not
obvious at first whether one can talk of “the” extension. The extension which we study (which
is not new) is the “natural” extension because it has the same properties as the traditional binary
f -divergence.

The multidistribution f -divergence If (P1, . . . , Pk) (formally defined in §3) is known as the f -
dissimilarity (Györfi and Nemetz, 1975, 1978). This was originally presented as a generalisation of
Matusita’s affinity (Matusita, 1971, 1967). Generalisations of particular divergences to several dis-
tributions are the information radius (Sibson, 1969)R(P1, . . . , Pk) = 1

k

∑k
i=1 KL(Pi,

P1+P2+···+Pk
k )

where KL(P,Q) is the Kullback-Leibler divergence and the average divergence (Sgarro, 1981)
K(P1, . . . , Pk) = 1

k(k−1)

∑k
i=1

∑k
j=1 KL(Pi, Pj). Some other approaches to generalising f -divergences

to more than two distributions are summarised by Basseville (2010).
The f -divergence If (P1, . . . , Pk) has been used in hypothesis testing (Menéndez et al., 2005;

Zografos, 1998). Györfi and Nemetz (1975) bounded the minimal probability of error in terms of
the f -affinity; see also (Glick, 1973; Toussaint, 1978). These results are analogous to surrogate
regret bounds because there is in fact an exact relationship between If and the Bayes risk of an
associated multiclass classification problem. Multidistribution f -divergences have also been used
to extend rate-distortion theory (primarily as a technical means to get better bounds) (Zakai and
Ziv, 1975) and to unify information theory with the second law of thermodynamics (Merhav, 2011).
The estimation of If (P1, . . . , Pk) has been studied by Morales et al. (1998). As we will see, the
connection to Bayes risk suggests alternate estimation schemes.

We utilise the theory of comparison of experiments, originally due to Blackwell (1951, 1953);
see (Goel and Ginebra, 2003) for a gentle introduction, or (Torgersen, 1991b; Shiryaev and Spokoiny,
2000) for more complete treatments. We summarise the results we need in §2. The theory has been
applied to multiclass decision problems by Torgersen (1970), but without drawing the connections
that we do to multidistribution f -divergences.

The rest of the paper is organised as follows. We formally introduce multidistribution f -
divergences (§3), relate divergences to Bayes risks (§4), prove the multidistribution f -divergence
satisfies the same properties as the binary divergence If (P,Q) (§5), present some examples (§6)
and conclusions (§7). Proofs missing from the main text can be found in Appendix A, while Ap-
pendix B develops examples of multidistribution divergences.

The key point of the paper is that by viewing f -divergences as a transformation of Bayes risks
we can develop clear insight into what seems to be a complex notion (a divergence between multiple
distributions). By exploiting this bridge all of the proofs in the paper are simple (especially when
compared to those in the literature). We see this as a virtue! Analogously to what was observed by
Vitányi (2011, Section I.B) “the new notation and proofs for the general case are simpler than the
. . . existing proofs for the particular case of pairwise” divergences.
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Standard notation we use is as follows. Vectors are typeset bold: π = (π1, . . . , πk)
′ where the

′ denotes transpose. 1 := (1, . . . , 1)′, the simplex ∆k := {π ∈ Rk+ : π′1 = 1}, [k] := {1, . . . , k},
P[k] := (P1, . . . , Pk)

′ and ek is a vector e such that ek = 1, ei = 0 if i 6= k. If P is a distribution on
Θ, the support of P , suppP := {θ ∈ Θ: P (θ) > 0}. For distributions P and Q we write P � Q
if P is absolutely continuous with respect to Q, i.e. P (A) = 0 for every set A such that Q(A) = 0.

2. Statistical Experiments

We introduce statistical experiments and their comparison (Shiryaev and Spokoiny, 2000). A statis-
tical experiment E = (Ω,F, {Pθ : θ ∈ Θ}) is given by a set of probability spaces (Ω,F, Pθ), θ ∈ Θ,
with the family of measures P = {Pθ : θ ∈ Θ} being parameterized by a parameter θ.

It is natural to think of the elements θ ∈ Θ as “theories” or hypotheses that, due to the exper-
iment, manifest themselves through probability distributions on some observable space. For our
purposes, we will assume that Θ is a finite set Θ = {1, . . . , k}.

An experiment is said to be totally non-informative if the distributions P1 = · · · = Pk. This
means that nothing can be learned about θ by observing samples from the experiment. On the
other hand, an experiment is totally informative if supp(Pθi) 6= supp(Pθj ) which we write Pi ⊥ Pj
∀i 6= j. This directly implies that the hypothesis “generating” a sample can be known with certainty.
In order to compare two experiments it is merely necessary that the set of hypothesis Θ is the same
for both. Most notably this implies that it is perfectly possible to compare experiments with different
sample spaces.

A typical machine learning task comprises an experiment plus a loss function which takes into
account the terminal consequences of the statistical decisions made based on the data observed
from it: ` : Θ×D → R, where D is the decision space. Some experiments E are always better (has
lower risk) than others Ẽ, regardless of the loss function. We say that in that case experiment E is
sufficient for Ẽ. A formal definition of risk is given in §3.

Sufficiency is a very stringent condition and for most pairs of experiments no such relation will
hold. It thus defines a partial order between experiments.

Let Pπ :=
∑k

i=1 πiPi, π ∈ ∆k, be a probability measure which dominates all the distributions
in the experiment (for example, this is always true if πi > 0, ∀i ∈ [k]). It is well known that the
vector-valued statistic

tπ(ω) =
1

dPπ(ω)
(dP1(ω), . . . , dPk(ω))′ ,

taking values inKπ :=
{
u ∈ Rk+ : π′u = 1

}
is sufficient forE, so its distribution characterizes the

statistical properties of E. Thus statistic is called the likelihood ratio. Consider now the posterior
probability vector for a given prior probability π ∈ ∆k:

ηπ(ω) =
1

dPπ(ω)
(π1dP1(ω), . . . , πkdPk(ω)) . (1)

It can be interpreted as a normalized version of the likelihood ratio, so it takes values in the standard
simplex ∆k. In Bayesian terms talking about posterior probabilities implies that Pπ has a meaning
of prior probability, instead of just a base measure. However, we will not make such a distinction
here.

Under this setup, a totally non-informative experiment will yield constant tπ(ω), while totally
informative experiments result in tπ(ω) whose elements are all strictly 0 except for the one cor-
responding to the generating hypothesis. Intuitively, how informative an experiment is should be
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related to how much the corresponding tπ(ω) deviates from the constant vector. How should that
deviation be measured? An answer is given by the Blackwell-Sherman-Stein theorem. Before stat-
ing the theorem, a few definitions are in order. Let ` : Θ×∆k → R be a loss function and π ∈ ∆k.
The Bayes risk of the (multiclass) classification problem with class-conditional distributions PΘ

and prior probability π for loss ` is given by

L`(π,PΘ) = min
T : Ω→∆k

k∑
i=1

πiEω∼Pi [`(i, T (ω))]

Let (Ω,F) and (Ω̃, F̃) be two measurable spaces. A Markov kernel from (Ω,F) to (Ω̃, F̃) is
a function mapping each point ω ∈ Ω to a probability measure Mω on (Ω̃, F̃) so that for each
B ∈ F̃ the map ω 7→Mω(B) is F-measurable. Intuitively, Markov kernels can be understood as the
equivalents of stochastic matrices in the continuous case. In general they introduce randomization
by transforming a distribution concentrated on ω into a more spread-out distribution.

A Markov kernel M also defines a map between probability measures P on F and probability
measures MP on F̃ given by

MP (A) =

∫
Ω
M(ω,B)P (dω), B ∈ F̃.

Theorem 1 (Blackwell-Sherman-Stein) Suppose thatE = (Ω,F, {Pθ}θ∈Θ) and Ẽ = (Ω̃, F̃, {P̃θ}θ∈Θ)
are two statistical experiments. Then the following conditions are all equivalent

(C1) The Bayes risks satisfy L`(π,PΘ) ≤ L`(π, P̃Θ) for any loss function ` and prior probability
vector π.

(C2) There is a Markov kernel M such that P̃θ = MPθ for all θ ∈ Θ, i.e. P̃θ can be obtained from
Pθ via randomization.

(C3) For some strictly positive set of weights π, EPπ [φ(tπ(ω))] ≥ EP̃π

[
φ(t̃π(ω̃))

]
for every

convex φ(·) defined on Kπ. Moreover, if this holds for any strictly positive weights, it also
holds for any other set of weights resulting in a dominating measure.

If any of the above conditions holds, all of them hold and experiment E is said to be sufficient for
Ẽ.

This important theorem links the sufficiency ordering of experiments with the convex or Bishop-
de-Leeuw ordering of the corresponding likelihood ratio statistics (Shaked and Shanthikumar, 1994).
This convex ordering is once again a partial order. For the sake of comparing arbitrary experiments
or random variables, it would be desirable to have mappings into a completely ordered set (such as
R) which are consistent with these important orderings. This is the main idea behind f -divergences;
the f -divergence of P[k] is a real number that measures the joint dissimilarity of the k distributions
that make up P[k].
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3. f -divergences and their multidistribution extension

Assume that we have two binary experiments (dichotomies) E = (Ω,F, {P1, P2}) and Ẽ =
(Ω̃, F̃{P̃1, P̃2}) such that E is sufficient for Ẽ. Let π ∈ (0, 1), P π = πP1 + (1 − π)P2, P̃ π =
πP̃1 + (1− π)P̃2 and φ : K(π,1−π)′ → R be any convex function. Then, by Theorem 1,

EPπ
[
φ

(
dP1

dP π
,
dP2

dP π

)]
≥ EP̃π

[
φ

(
dP̃1

dP̃ π
,
dP̃2

dP̃ π

)]
.

Assume now that P1 � P2 and P̃1 � P̃2. Then, we can use P2 and P̃2 as dominating measures and
write

EP2

[
φ

(
dP1

dP2
,
dP2

dP2

)]
≥ EP̃2

[
φ

(
dP̃1

dP̃2

,
dP̃2

dP̃2

)]
Since φ is a convex function, f(t) := φ(t, 1) is also convex and thus the binary f -divergence

If (P1, P2) := EP2

[
f

(
dP1

dP2

)]
≥ EP̃2

[
f

(
dP̃1

dP̃2

)]
= If (P̃1, P̃2).

It is thus obvious that f -divergences If are consistent with the convex ordering for the likelihood
ratio dP1

dP2
and thus for the sufficiency ordering of experiments. Hence f -divergences provide a

proper relaxation of the partial sufficiency ordering into a total order.
This connection suggests a natural way to extend f -divergences to multiple distributions. Con-

sider k probability distributions P1, . . . , Pk. In order to define a f -divergence between them it is
necessary to specify the index j of the distribution to be used as a reference measure and a convex
function fj ∈ Ck−1, where Ck := {φ : [0,∞)k → R, φ convex}. Alternatively, the characterization
can be carried out in terms of a function φ ∈ Ck. Let

tj =
1

dPj
P[k] and t̃j =

(
dP1

dPj
, . . . ,

dPj−1

dPj
,
dPj+1

dPj
, . . . ,

dPk
dPj

)′
.

With these ingredients we define

Iφ,j(P[k]) = EPj
[
φ(tj)

]
= EPj

[
fj
(
t̃j
)]
,

where fj : Rk−1 → R is defined to satisfy fj(t̃j) = φ(tj). The notation in terms of k − 1 di-
mensional functions links nicely with the usual definition of f -divergences for the binary case, but
makes the multiclass derivations cumbersome, so in the following we will work only with k dimen-
sional functions. Moreover, for notational simplicity we will assume in the following that j = k,
so we can drop the indices. We can also think of the divergences as functions of two arguments: a
vector P[k−1] of probability distributions and a single distribution Pk, so

Iφ(P[k]) := EPk
[
φ(tk)

]
≡ EPk [φ(t)] . (2)

The definition of an f -divergence can thus be seen as a two-step process: first we relativise the
probability distributions by taking Radon-Nikodym derivatives with respect to the reference dis-
tribution. After that, the dispersion of the resulting likelihood ratio is measured using the desired
convex function.
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Since t ∈ Kk := {x ∈ [0,∞)k : xk = 1}, the behaviour of φ(x) whenever xk 6= 1 does not
affect the divergence. As we show in Theorem 5, Jensen’s inequality implies Iφ(P[k]) ≥ φ(1).
In the binary case f -divergences are usually defined using functions such that f(1) = 0, so the
divergence is lower-bounded by 0. We can do the same thing in the general case and thus require
φ ∈ Ck1 , where Ck1 := {φ ∈ Ck : φ(1) = 0}. From now on when we write Iφ(P[k]) we will presume
that φ ∈ Ck1 .

4. Relating Multidistribution f -Divergences and Bayes risks

We now relate multidistribution f -divergences to Bayes risks. There is a well-known relationship
in the binary case relating posterior probabilities and likelihood ratios (Reid and Williamson, 2011,
§4.1). This relationship is the key that bridges f -divergences and Bayes risks written in their typ-
ical form involving the posterior probability function. Here we present a general version of this
relationship. Let Kj

k := {x ∈ [0,∞)k : xj = 1} and define the mapping Rj,π : ∆k → Kj
k

Rj,π(η) :=
πj
ηj

η

π
(3)

where vector division is interpreted element-wise, and its inverse mapping R−1
j,π : Kj

k → ∆k

R−1
j,π(t) =

π ◦ tj

π′tj
, (4)

where ◦ denotes the element-wise or Hadamard product and calling this the inverse is justified by
the following lemma.

Lemma 2 If ηπ is defined via (1) and P1, . . . , Pk � Pj , then ηπ = R−1
j,π(tj) and tj =

Rj,π(ηπ).

As long as the densities are absolutely continuous with respect to the chosen base measure, that
base measure can be changed using the Radon-Nikodym theorem, and the resulting likelihood ratio
vector normalized to yield a posterior probability vector. Then, anything that can be written in
terms of posterior probabilities (as is usually the case with the Bayes risk) can also be written as a
function of likelihood ratios with respect to an arbitrary dominating measure. We can thus think of
f -divergences as a reparametrization of Bayes risks when the dominating measure is selected from
the set of class conditional distributions.

The Bayes risk for a loss ` : [k]×∆k → R can be rewritten as

L`(π,P[k]) = min
T : Ω→∆k

k∑
i=1

πiEω∼Pi [`(i, T (ω))] = min
T : Ω→∆k

∫
Ω

k∑
i=1

πi`(i, T (ω))dPi(ω)

= min
T : Ω→∆k

∫
Ω

k∑
i=1

`(i, T (ω))
πidPi
dPπ

dPπ = min
T : Ω→∆k

Eω∼Pπ

[
Ey∼ηπ(ω)`(y, T (ω))

]
= Eω∼Pπ

[
min

T (ω)∈∆k
Ey∼ηπ(ω)`(y, T (ω))

]
= Eω∼Pπ [L`(η

π(ω))] , (5)
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whereL` : ∆k → R is a concave1 function which we call the point-wise Bayes risk. The interchange
of the min and the expectation is justified by (Rockafellar and Wets, 2004, Theorem 14.10).

There are results relating f -divergences and Bayes risks in the binary classification setting (Reid
and Williamson, 2011, Theorem 9). We now generalise these to the multiclass setting. These results
relate If to a Bayes risk L.2 We make use of the notion of Statistical Information due to DeGroot
(1962, 1970) and defined as the difference between the prior and posterior Bayes risks:

∆Lφ(π,P[k]) := L(π)− L(π,P[k]). (6)

Note that L(π) = L(π).

Theorem 3 For an arbitrary function φ ∈ Ck1 and prior probability π ∈ ∆k define

Lπ
φ (ηπ) := −

ηπk
πk
φ

(
πk
ηπk

ηπ

π

)
+ Lπ(π) ∀P[k]. (7)

Then
∆Lφ(π,P[k]) = Iφ(P[k]) ∀P[k]. (8)

Conversely, for an arbitrary point-wise Bayes risk L(η) and prior probability π ∈ ∆k, if

φπL(t) := L(π)− π′tL
(
π ◦ t
π′t

)
∀t ∈ Rk+ (9)

then
IφπL(P[k]) = ∆L(π,P[k]) ∀P[k]. (10)

Proof Manipulating the definition of an f -divergence in (2) we obtain∫
φ(t)dPk = −

∫
−φ(t)

dPk
dPπ

dPπ = −
∫
−
ηπk
πk
φ (Rk,π(ηπ)) dPπ

where we have used ηπk = πkdPk
dPπ . Then, by comparison with (5) we can define the point-wise risk

Lφ corresponding to the multiclass f -divergence parametrized by φ as

Lπ
φ (ηπ) = −

ηπk
πk
φ

(
πk
ηπk

ηπ

π

)
.

(Note that if φ ∈ Ck1 , then φ (Rk,π(π)) = φ(1) = 0 and Lπ
φ (π) = 0. This is a rather unusual

condition on Bayes risks, and that is why it is more natural to associate f -divergences to statistical
informations.) Fix Lπ(π) to any desired value and define Lπ

φ (ηπ) as in (7). Then the point-
wise statistical information is ∆Lπ

φ (ηπ) = Lπ(π) − Lπ
φ (ηπ). Obviously, ∆Lπ

φ (π) = 0. Taking
expectations with respect to Pπ we get the first result in the theorem.

The converse relation can be easily shown. Observe that∫
L(η)dPπ =

∫
L(η)

dPπ

dPk
dPk

and dPπ

dPk
is simply dPπ

dPk
=
∑k

i=1 πi
dPi
dPk

= π′t. Applying the conversion between posterior proba-
bilities and likelihood ratios in (3) completes the proof.

1. Since it is the pointwise infimum of linear functions
2. Such results can be combined with those that relate multiclass Bayes risks and proper losses (Vernet et al., 2012).
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5. Properties of Multidistribution f -Divergences

In this section we present multidistribution analogs of the key properties of binary f -divergences.
The connection with the comparison of experiments framework prove valuable here. It allows us to
prove one of the most important properties of f -divergences, the information processing property,
as a direct consequence of the Blackwell-Sherman-Stein theorem. Moreover, in the proofs and
corollaries we emphasise what these properties mean for Bayes risks, taking advantage of the bridge
between divergences and statistical informations.

5.1. Information Processing

The information processing property of binary f -divergences is one of their most defining properties
(Pardo and Vajda, 1997; Harremoës and Tishby, 2007). It states that

If (P,Q) ≥ If (P̃ , Q̃),

where P̃ = MP and Q̃ = MQ are obtained from P and Q via some randomization mech-
anism (Markov kernel) M . The multidistribution version is as follows. We write MP[k] =
(MP1, . . . ,MPk)

′.

Theorem 4 Let M be any Markov kernel. Then for any φ ∈ Ck1 ,

Iφ(P[k]) ≥ Iφ(MP[k]) ∀P[k].

Proof The experimentE(Ω,F, {Pi : i ∈ Θ}), Θ = {1, . . . , k} is sufficient for experiment Ẽ(Ω,F, {MPi : i ∈
Θ}) by Theorem 1 (C2). Then, (C3) of that same theorem yields the desired result since a multidis-
tribution f -divergence is just the expectation of a convex function of the likelihood ratio.

5.2. Reflexivity

The property of reflexivity (Csiszár, 1967) for binary f -divergences also holds for multidistribution
divergences.

Theorem 5 For any function φ ∈ Ck1 such that φ is strictly convex around 1

Iφ(P[k]) = 0 if and only if P1 = · · · = Pk.

Proof By Jensen’s inequality,

Iφ(P[k]) =

∫
φ

(
1

dPk
P[k]

)
dPk ≥ φ

([∫
dPi

]k
i=1

)
= φ(1). (11)

Furthermore, if φ is strictly convex around 1 then (11) becomes an equality if and only if dPi
dPk

= 1
for all i.

Corollary 6 (Lower bound of multidistribution f -divergences) For any φ ∈ Ck,

Iφ
(
P[k]

)
≥ φ(1), ∀P[k].
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5.3. Invariance to affine terms

Divergences do not change when an affine function is added to φ.

Theorem 7 Let φ̃(t) := φ(t) + w′ (1− t). Then Iφ(P[k]) = Iφ̃(P[k]) ∀P[k].

The following corollary comes from applying the transformation between divergences and statistical
informations in (7).

Corollary 8 If L̃(η) = L(η) + w′η, w ∈ Rk, then ∆L(π,P[k]) = ∆L̃(π,P[k]) ∀P[k].

5.4. Uniqueness

If two divergences are equal (for all distributions), the corresponding φ are equal up to affine offsets.

Theorem 9 If Iφ(P[k]) = Iφ̃(P[k]) for all P[k] then φ̃(t) = φ(t) + w′ (1− t) for all t ∈ Kk.

5.5. Change of order

A standard property of binary f -divergences is that

If (P,Q) = If�(Q,P ),

where f�(t) = tf(1
t ) is known as the Csiszár dual of the function f . We now extend this change of

order property to the multidistribution case.
The multidistribution analog of the Csiszár dual is φ�j and is defined as follows for j ∈ [k] and

t ∈ Rk,

φ�j (t) := tj φ

(
1

tj
tj↔k

)
(12)

where tj↔k = (tj↔k1 , . . . , tj↔kk ) and

tj↔kc =


tc, c 6= j, k
tj , c = k
tk, c = j.

Theorem 10 For every P[k]

Iφ(P[k]) = Iφ�j (P
j↔k
[k] ).

Moreover, the mapping φ→ φ�j is an involution, since (φ�j )�j = φ.

Corollary 11 The divergence Iφ induced by the function φ̃ = φ +
∑k−1

i=1 φ
�i is symmetric in the

sense that for all P[k], for all j ∈ [k − 1],

Iφ̃(P[k]) = Iφ̃(Pj↔k
[k] ).

Corollary 12 For all φ ∈ Ck1 , if Iφ(P[k]) = ∆L(π,P[k]) then Iφ�j (P[k]) = ∆L(πj↔k,Pj↔k
[k] ).
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Divergences Risks

Iφ(P[k]) ∆L(π,P[k]) = L(π)− L(π,P[k])

φ̃ = φ+ w′(1− t) L̃(η) = L(η) +
(
w
π

)′
η

Iφ̃(P[k]) = Iφ(P[k]) L̃(π,P[k]) = L(π,P[k]) + w′1

φ�j L
(
πj↔k,Pj↔k

[k]

)
φ(ek) L(π)− πkL(ek)

φ�j (ek) −πjL(ej)

Table 1: Summary of some relations between operations on φ and L

5.6. Range of Values

The range of values theorem (Csiszár, 1963; Vajda, 1972) bounds the values of a binary f -divergence
in terms of properties of the defining convex function. We generalize this theorem via the bridge
between divergences and risks.

Theorem 13 For any k-vector of probability distributions P[k] and function φ ∈ Ck such that φ is
bounded below,

φ(1) ≤ Iφ
(
P[k]

)
≤ φ(ek) +

k−1∑
j=1

φ�j (ek).

6. Examples

In this section we particularize the formulae in the previous sections to obtain some multiclass gen-
eralizations of well-known f -divergences. With one exception, we will focus on divergences which
are linked to a risk with a well-known multiclass generalization. Then, we will recover the general-
ized divergence based on the multiclass risk. We present the calculations for Variational divergence
below. Other divergences are summarised in Table 2 with derivations relegated to Appendix B.

Variational Divergence Consider the 0-1 loss `0−1(i, î) := Ĵi 6= iK which has corresponding
point-wise and expected Bayes risks

L0−1(η) = 1−max
i
ηi and L0−1(η, Pπ) = Eω∼Pπ [1−max

i
ηi(ω)].

In the binary case, the 0-1 loss is related to the well-known variational divergence, given by
V (P,Q) =

∫ ∣∣∣dQdλ − dP
dλ

∣∣∣ dλ, where λ is any measure dominating P and Q. This divergence corre-

sponds with If where the convex function f(t) = |t− 1|. Then, L0−1

(
1
2 , P,Q

)
= 1

2 −
1
4V (P,Q).

Strictly speaking, the f function defining the divergence corresponding to the statistical information
for the 0-1 loss in a binary experiment (under a uniform prior) is given by f(t) = 1

2 max(0, 1− t).
Note that this hinge function is used as a primitive for the integral representation of f -divergences
(Reid and Williamson, 2011).
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Divergence Multidistribution φ(t) L(η) Loss Binary f(t)

Variational
k − 1

k
− 1

k

(
k∑

i=1

ti −max
i

(ti)

)
1−max

i
ηi 0-1 1

2 max(0, 1− t)

Triangular
1

2k

(
k − 1−

k∑
i=1

ti +

∑k
i=1 t

2
i∑k

i=1 ti

)
1

2

(
1−

k∑
i=1

η2i

)
Square

1

4

t− 1

t+ 1

Jensen-
Shannon

ln(k) +
1

k

k∑
i=1

ti ln

(
ti∑k
j=1 tj

)
k∑

i=1

ηi ln
1

ηi
Log 1

2

[
t ln
(

t
t+1

)
+ ln

(
4

t+1

)]

Matusita 1−

(
k∏

i=1

ti

) 1
k

k

(
k∏

i=1

ηi

) 1
k

— 1−
√
t

Table 2: Some multidistribution f -divergences and their corresponding Bayes risks.

We may apply the formulae in the previous sections to obtain a multiclass generalization of
this divergence, starting from the multiclass 0-1 loss. The φ function defining the f -divergence
corresponding to the multiclass 0-1 loss under a uniform prior is given by

φ(t) =
k − 1

k
− 1

k

∑
i∈[k]

ti −max
i∈[k]

(ti)

 .

When k = 2 this reduces to the standard case. Denoting t1 = t and since t2 = dQ
dQ = 1,

1

2
− 1

2
(t+ 1−max(t, 1)) = −1

2
(t−max(t, 1)) =

1

2
(max(t, 1)− t) =

1

2
max(0, 1− t).

By analogy with the binary case, we can define the multiclass variational divergence as the one
resulting from the convex function

φV (t) = −4

k

(
k∑
i=1

ti −max
i

(ti)

)
.

In the binary case, adopting the standard notation for binary divergences, this reduces to

fV (t) = −2(t+ 1−max(t, 1)) = −2 min(t, 1),

which by Th. 7 results in the same divergence as the function t 7→ |t − 1| since min(t, 1) =
t+1−|t−1|

2 , so −2 min(t, 1) = |t− 1| − t− 1 and both functions differ only by an affine term.

7. Conclusions

We have studied the f -affinity and shown it is indeed a natural generalisation of Csiszár’s f -
divergence. The justification of “natural” comes from its properties which mimic those of the clas-
sical binary f -divergence. We have proved (simply!) these properties via the bridge to Bayes risks
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which generalises the existing bridge in the binary case. Viewing the experiment as the fundamental
object is a basic tenet of the theory of comparison of experiments — one can view If (P[k]) as a
“measure of information” in an experiment; confer (Lindley, 1956; DeGroot, 1962). Thus we see
the natural interpretation of Iφ(P[k]) is as a measure of joint similarity of P1, . . . , Pk; analogous to
the notion of information distance between multiple objects (Li, 2011; Vitányi, 2011, 2012).

Given the bridge, we expect many other results can be transferred. Certainly we expect to be
able to extend integral representations (general experiments are combinations of simple ones —
confer (Vernet et al., 2011) and (Birnbaum, 1961) and the extension to k classes due to Torgersen
(1970)). Integral representations for f -divergences are well known (Österreicher and Feldman,
1981; Feldman and Österreicher, 1989; Liese and Vajda, 2006; Reid and Williamson, 2011), but
we are unaware of results for multidistribution divergences. It is also reasonable to expect one
could extend the approximate comparison of dichotomies of Torgersen (1991a) (confer Liese and
Vajda (2006)), surrogate regret bounds and their relation to Pinsker style inequalities (Reid and
Williamson, 2011) and results on the joint range of two multidistribution f -divergences (Harremoës
and Vajda, 2010).
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Imre Csiszár. Information-type measures of difference of probability distributions and indirect ob-
servations. Studia Scientiarum Mathematicarum Hungarica, 2:29–318, 1967.

Morris H. DeGroot. Uncertainty, Information, and Sequential Experiments. The Annals of Mathe-
matical Statistics, 33(2):404–419, 1962.

Morris H. DeGroot. Optimal Statistical Decisions. McGraw-Hill Book Company, 1970.
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László Györfi and Tibor Nemetz. f -dissimilarity: A general class of separation measures of several
probability measures. In I. Csiszár and P. Elias, editors, Topics in Information Theory, volume 16
of Colloquia Mathematica Societatis János Bolyai, pages 309–321. North-Holland, 1975.

28.13

http://hal.inria.fr/inria-00542337/fr/
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Paul M.B. Vitányi. Information distance in multiples. IEEE Transactions on Information Theory,
57(4):2451–2456, 2011.
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Appendix A. Proofs

Proof of Lemma 2 We can use the Radon-Nykodym theorem to write

ηπi =
πidPi∑k
t=1 πtdPt

=
πi

dPi
dPj∑k

t=1 πt
dPt
dPj

=
πit

j
i∑k

t=1 πtt
j
t

�

Proof of Theorem 7

Iφ̃(P[k]) =

∫ (
φ

((
dP1

dPk
, . . . ,

dPk−1

dPk
, 1

)′)
+ w′

(
1− dP1

dPk
, . . . , 1− dPk−1

dPk
, 0

)′)
dPk

= Iφ(P[k]) +

∫ k∑
i=1

wi

(
1− dPi

dPk

)
dPk

= Iφ(P[k]) +
k∑
i=1

∫
wi

(
1− dPi

dPk

)
dPk

= Iφ(P[k]) +

k∑
i=1

wi

(∫
dPk −

∫
dPi

)
= Iφ(P[k]).

�

28.16



Proof of Theorem 9 Assume that two risk curves L(η) and L̃(η) result in the same statistical
information for all P[k] and denote R(η) = L(η)− L′(η). From (8) this implies

R(π) =

∫
R(ηπ(ω))dPπ(ω) =: c ∀P[k]. (13)

Consider the case where P1 ⊥ . . . ⊥ Pk and denote w̃ = w̃[k], where w̃i = R(ei). Then

c = w̃′π. (14)

Consider an arbitrary vector u ∈ [0, 1]k and k distributions over a finite set Ω = [k] given by
Pi(ω) = uiδ(ω) + (1 − ui)δ(ω − i), i ∈ [k], where δ is the Kronecker delta function. Let
au := π◦u

π′u ∈ ∆k. Then from (13),

c =

∫
R(ηπ(ω))dPπ(ω) = R(au)u′π + (π ◦ (1− u))′ w̃.

Together with (14) this implies that R(au)u′π = (π ◦ u)′ w̃, so that R(au) = w̃′au. This must
hold for every u ∈ [0, 1]k, and so for every au ∈ ∆k, and so

∆L(π,P[k]) = ∆L̃(π,P[k]) ∀P[k] ⇒ L̃(η) = L(η) + w̃′η.

The converse implication is given by Corollary 8, so we obtain a characterisation. Translating to
divergences we use (9) to obtain

φπL(t)− φπ
L̃

(t) = π′w̃ − π′t
(

(π ◦ t)′ w̃
(π′t) w̃

)
= π′w̃ − (π ◦ w̃)′ t = (π ◦ w̃)′ (1− t).

Setting w = π ◦ w̃ gives the desired result. �

Proof of Theorem 13 The lower bound is trivial and comes from Corollary 6. We prove the
upper bound by using the link between divergences and statistical informations. It is easy to see that
the statistical information ∆L(π,P[k]) is upper bounded by L(π) −

∑k
i=1 πiL(ei), which equals

∆L(π,P[k]) for a totally informative experiment where P1 ⊥ . . . ⊥ Pk. We can write the convex
function φπL defining the equivalent divergence for a given π using (9). Then,

φπL(ek) = L(π)− πk lim
t→ek

L

(
π ◦ t
π′t

)
−
k−1∑
i=1

πi lim
t→ek

tiL

(
π ◦ t
π′t

)
,

where3 limt→t0 f(t) = lim||t−t0||2→0 f(t). If φ is bounded below then L is bounded above, so then
φπL(ek) = L(π)− πkL(ek), since limt→ek tiL

(
π◦t
π′t

)
6= 0 for any i implies that L(ek))→ −∞, so

φπL(ek) =∞, as the equation predicts. Recalling the definition in (12) we have

φ�j (t) = tj

L(π)−
k−1∑
i=1
i6=j

(
πi
ti
tj

+ πj
1

tj
+ πk

)
L

( 1
tj
π ◦ tj↔k

1
tj
π′tj↔k

) .
3. Since t ∈ Kk ⊂ Rk the choice of norm is actually irrelevant because all norms are equivalent in finite dimensions.
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Similarly as above (φπ)�j (ek) = −πjL(ej), so

φπ(ek) +
k−1∑
j=1

(φπ)�j (ek) = L(π)−
k∑
j=1

πjL(ej) ≥ ∆L(π,P[k]) = IφπL
(
P[k]

)
∀P[k].

�

Appendix B. Examples

Here we include the analyses of the the other examples in Table 2.

Triangular Discrimination Triangular discrimination is the f -divergence corresponding to the
square loss

LSQ(η) =
1

2

(
1−

k∑
i=1

η2
i

)
in a binary setting when both classes are equally likely. Using the results from previous sections,
we can find that the multiclass triangular discrimination is then defined by the following convex
function

φSQ(t) =
1

2k

(
k − 1−

k∑
i=1

ti +

∑k
i=1 t

2
i∑k

i=1 ti

)
which in the binary case reduces to

fSQ(t) =
1

4

t− 1

t+ 1

Jensen-Shannon divergence The binary Jensen-Shannon divergence

JS(P,Q) =
1

2

(
KL

(
P,
P +Q

2

)
+ KL

(
Q,

P +Q

2

))
is well-known to correspond with the statistical information for the log-loss, whose point-wise
Bayes risk is given by

Llog(η) =

k∑
i=1

ηi ln
1

ηi
,

when k = 2 and both classes are equally likely (π1 = π2 = 1
2 ). Using our multiclass f -divergence

framework, we can get the following expression for the convex function defining the divergence as-
sociated to the log-loss in the general case (assuming also a uniform prior for notational simplicity).

φJS(t) = ln(k) +
1

k

k∑
i=1

ti ln

(
ti∑k
j=1 tj

)

In the binary case this reduces to fJS(t) = 1
2

[
t ln
(

t
t+1

)
+ ln

(
4
t+1

)]
, as in (Reid and Williamson,

2011, Table 1). The resulting divergence can be written in terms of standard, binary KL divergences
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as follows

IJS

(
P[k]

)
=

∫
φJS

((
dP1

dPk
, . . . ,

dPk−1

dPk
, 1

)′)
=

∫ (
ln(k)− 1

k

k∑
i=1

dPi
dPk

ln

(∑k
j=1

dPj
dPk

dPi
dPk

))
dPk =

= ln(k)− 1

k

(
k∑
i=1

∫
ln

∑k
j=1 dPj

dPi
dPi

)
= ln(k)− 1

k

(
k∑
i=1

ln
1

k
+

∫
ln

∑k
j=1

1
kdPj

dPi
dPi

)

= ln(k)− ln k +
1

k

k∑
i=1

∫
ln

dPi∑k
j=1

1
kdPj

dPidPi =
1

k

k∑
i=1

KL

Pi, 1

k

k∑
j=1

Pj

,
which turns out to be a natural extension of the binary case in (B). In fact, this generalization of the
Jensen-Shannon divergence coincides with the one which was proposed in Lin (1991): JS(P[k]) =

H
(∑k

i=1 πiPi

)
−
∑k

i=1 πiH(Pi), where H(·) denotes Shannon’s entropy, since

H

(
k∑
i=1

πiPi

)
−

k∑
i=1

πiH(Pi) =

∫
1

k

k∑
i=1

dPi ln

(
1

1
k

∑k
j=1 dPj

)
−

k∑
i=1

1

k

∫
ln

(
1

dPi

)
dPi

=
1

k

∑
i

[∫
ln

1
1
k

∑
j dPj

dPi −
∫

ln
1

dPi
dPi

]

=
1

k

k∑
i=1

H

Pi, 1

k

k∑
j=1

Pj

−H(Pi) =
1

k

k∑
i=1

KL

Pi, 1

k

k∑
j=1

Pj

 ,

where H(·, ·) denotes the cross-entropy and we have also assumed uniform prior probabilities π1 =
· · · = πk = 1

k . Hence our general framework for multiclass f -divergences naturally encompasses
the existing multiclass Jensen-Shannon divergence.

Matusita divergence The Matusita affinity between distributions (Matusita, 1967) is given by

ρ(P[k]) =

∫ ( k∏
i=1

dPi
dλ

) 1
k

dλ

where λ is any measure dominating P1, . . . , Pk. The f -divergence corresponding to the convex
function φρ ∈ Ck1

φρ(t) = 1−

(
k∏
i=1

ti

) 1
k

can be written as

Iφρ
(
P[k]

)
= −

∫ ( k∏
i=1

dPi
dPk

) 1
k

dPk = −
∫ ( k∏

i=1

dPi
dλ

) 1
k

dλ = −ρ(P[k]),
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so we refer to that divergence as Matusita’s divergence (Györfi and Nemetz, 1975). Using (7), the
risk corresponding to this divergence is given by

Lπ
ρ (η) = −ηk

πk
+

(
k∏
i=1

ηi
πi

) 1
k

When π1 = · · · = πk = 1
k this reduces to Lρ(η) = k

[(∏k
i=1 ηi

) 1
k − ηk

]
. By Corollary 8, this

point-wise risk generates the same statistical information as

Lρ(η) = k

(
k∏
i=1

ηi

) 1
k

,

which in the binary case corresponds to [0, 1] 3 η 7→ L(η) = 2
√
η(1− η).
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