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Abstract
We study learning of initial intervals in the prediction model. We show that for each distribution
D over the domain, there is an algorithm AD, whose probability of a mistake in round m is at
most

(
1
2 + o(1)

)
1
m . We also show that the best possible bound that can be achieved in the case in

which the same algorithm A must be applied for all distributions D is at least
(

1√
e
− o(1)

)
1
m >(

3
5 − o(1)

)
1
m . Informally, “knowing” the distribution D enables an algorithm to reduce its error

rate by a constant factor strictly greater than 1. As advocated by Ben-David et al. (2008), knowledge
of D can be viewed as an idealized proxy for a large number of unlabeled examples.
Keywords: Prediction model, initial intervals, semi-supervised learning, error bounds.

1. Introduction

Where to place a decision boundary between a cloud of negative examples and a cloud of positive
examples is a core and fundamental issue in machine learning. Learning theory provides some
guidance on this question, but gaps in our knowledge persist even in the most basic and idealized
formalizations of this problem.

Arguably the most basic such formalization is the learning of initial intervals in the prediction
model (Haussler et al., 1994). Each concept in the class is described by a threshold θ, and an
instance x ∈ < is labeled + if x ≤ θ and − otherwise. The learning algorithmA is given a labeled
m-sample {(x1, y1), . . . , (xm, ym)} where yi is the label of xi. The algorithm must then predict a
label ŷ for a test point x. The x1, ..., xm and x are drawn independently at random from an arbitrary,
unknown probability distribution D. Let opt(m) be the optimal error probability guarantee using
m examples in this model. The best previously known bounds (Haussler et al., 1994) were(

1

2
− o(1)

)
1

m
≤ opt(m) ≤ (1 + o(1))

1

m
. (1)

To our knowledge, this factor of 2 gap has persisted for nearly two decades.
The proof of the lower bound of (1) uses a specific choice of D, no matter what the target.

Thus, it also lower bounds the best possible error probability guarantee for algorithms that are given
the distribution D as well as the sample. The upper bound holds for a particular algorithm and all
distributions D, so it is also an upper bound on the best possible error probability guarantee when
the algorithm does not know D.
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The increasing availability of unlabeled data has inspired much recent research on the question
of how to use such data, and the limits on its usefulness. Ben-David et al. (2008) proposed knowl-
edge of the distribution D as a clean, if idealized, proxy for access to large numbers of unlabeled
examples. Since the lower bound in (1) did not exploit the algorithm’s lack of a priori knowledge
of D, improved lower bounds exploiting this lack of knowledge may also shed light on the utility of
unlabeled data.

This paper studies how knowledge of D affects the error rate when learning initial intervals in
the prediction model. Our positive result is an algorithm that, when givenD, has an error rate at most(
1
2 + o(1)

)
1
m . This matches the lower bound of (1) up to lower order terms. As a complementary

negative result, we show that any prediction algorithm without prior knowledge of D can be forced
to have an error probability at least

(
1√
e
− o(1)

)
1
m >

(
3
5 − o(1)

)
1
m . Thus not knowing D leads

to at least a 20% increase in the probability of making a mistake (when the target and distribution
are chosen adversarially). A third result shows that the maximum margin algorithm can be forced
to have the even higher error rate (1− o(1)) 1

m .
The training data reduces the version space (the region of potential values of θ) to an interval

between the greatest positive example and the least negative example. Furthermore, all examples
outside this region are classified correctly by any θ in the version space. Our algorithm achieving
the
(
1
2 + o(1)

)
1
m error probability protects against the worst case by choosing a hypothesis θ̂ in the

middle (with respect to the distribution D) of this region of uncertainty. This can be viewed as a
D-weighted halving algorithm and follows the general principle of getting in the “middle” of the
version space (Herbrich et al., 2001; Kääriäinen, 2005).

As has become common since (Ehrenfeucht et al., 1989), the proof of our
(

1√
e
− o(1)

)
1
m lower

bound proceeds by choosing θ and D randomly and analyzing the error rate of the resulting Bayes
optimal algorithm. The distribution D in our construction concentrates a moderate amount q of
probability very close to one side or the other of the decision boundary. If D is unknown, and no
examples are seen from the accumulation point (likely if q is not too large), the algorithm cannot
reliably “get into the middle” of the version space. Unlike most analyses showing the benefits of
semi-supervised learning that rely on an assumption of sparsity near the decision boundary, our
analysis uses distributions that are peaked at the decision boundary.

Related work. Learning from a labeled sample and additional unlabeled examples is called
semi-supervised learning. Semi-supervised learning is an active and diverse research area; see
standard texts like (Chapelle et al., 2006) and (Zhu and Goldberg, 2009) for more information.

Our work builds most directly on the work of Ben-David et al. (2008). They proposed using
knowledge ofD as a proxy for access to a very large number of unlabeled examples, and considered
how this affects the sample complexity of learning in the PAC model, which is closely related to the
error rate in the prediction model (Haussler et al., 1994). Their main results concerned limitations
on the impact of the knowledge of D; Darnstädt and Simon (2011) extended this line of research,
also demonstrating such limitations. In contrast, the thrust of our main result is the opposite, that
knowledge of D gives at least a 16% reduction in the (worst-case) prediction error rate. Balcan and
Blum (2010) introduced a framework to analyze cases in which partial knowledge of relationship
between the distribution and the target classifier can improve error rate, whereas the focus of this
paper is to study the benefits of knowingD even potentially in the absence of a relationship between
D and the target. Kääriäinen (2005) analyzed algorithms that use unlabeled data to estimate the
metric ρD(f, g)

def
= Prx∼D(f(x) 6= g(x)), and then choose a hypothesis at the “center” of the
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version space of classifiers agreeing with the labels on the training examples. Our algorithm for
learning given knowledge of D follows this philosophy. Urner et al. (2011) proposed a framework
to analyze cases in which unlabeled data can help to train a classifier that can be evaluated more
efficiently.

The upper bound of (1) is a consequence of a more general bound in terms of the VC-dimension.
Li et al. (2001) showed that the leading constant in the general bound cannot be improved, even in
the case that the VC-dimension is 1. However their construction uses tree-structured classes that are
more complicated than the initial intervals studied here.

2. Further Preliminaries and Main Results

For any particular D and θ, the expected error of Algorithm A, Errm(A;D, θ), is the probability
that its prediction is not the correct label of x, where the probability is over them+1 random draws
from D and any randomization performed by A. We are interested in the worst-case error of the
best algorithm: if the algorithm can depend on D, this is

optD(m) = inf
A

sup
θ

Errm(A;D, θ),

and, if not,
opt(m) = inf

A
sup
D,θ

Errm(A;D, θ).

Our main lower bound is the following.

Theorem 1 opt(m) ≥
(

1√
e
− o(1)

)
1
m ≥

(
3
5 − o(1)

)
1
m .

This means that for every algorithm learning initial intervals, there is a distribution D and threshold
θ such that the algorithm’s mistake probability (after seeingm examples, but not the distributionD)
is at least

(
1√
e
− o(1)

)
1
m . In our proof, distribution D depends on m.

Our main upper bound is the following.

Theorem 2 For all probability distributions D, optD(m) ≤
(
1
2 + o(1)

)
1
m .

We show Theorem 2 by analyzing an algorithm that gets into the middle of the version space with
respect to the given distribution D.

When there are both positive and negative examples, a maximum margin algorithm (Vapnik
and Lerner, 1963; Boser et al., 1992) makes its prediction using a hypothesized threshold θ̂ that is
halfway between the greatest positive example, and the least negative example.

Theorem 3 For any maximum margin algorithm A, there is a D and a θ such that

Errm(AMM;D, θ) ≥ (1− o(1)) 1

m
.

Our construction choosesD and θ as functions ofm. Note that in the case of intervals, the maximum
margin algorithm is similar to the (un-weighted) halving algorithm.

Throughout we use U to denote the uniform distribution on the open interval (0, 1).
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3. Proof of Theorem 1

As mentioned in the introduction, we will choose the target θ and the distribution D randomly, and
prove a lower bound on the Bayes optimal algorithm when D and θ are chosen in this way. No
algorithm A can do better on average over the random choice of θ and D than the Bayes optimal
algorithm that knows the distributions over D and θ. This in turn implies that for any algorithm A
there exist a particular θ and D for which the lower bound holds for A.

Let q = c/m for a c ∈ [0,m) to be chosen later. Define distribution Dθ,q(x) as the following
mixture:

• with probability p = 1− q, x is drawn from U , the uniform distribution on (0, 1).
• with probability q = c/m, x = θ.

We will analyze the following:

1. Fix the sample size m.
2. Draw θ from U and set the target to be (−∞, θ] with probability 1/2, and (−∞, θ) with

probability 1/2.
3. Draw an m-sample S = {x1, . . . , xm} from Dm

θ,q. Extend S to the extended sample, S+ by
adding x0 = 0 and xm+1 = 1 to S. The labeled sample L = {(xi, yi)} where xi ∈ S+ and
yi is the label of xi given by the target (either (−∞, θ) or (−∞, θ]).

4. Draw a final test point x also iid from Dθ,q.

This setting, which we call the open-closed experiment, is not “legal”, because it sometimes uses
open intervals as targets. However, we will now show that a lower bound for this setting implies a
similar lower bound when only closed initial intervals are used. We define the legal experiment as
above, except that instead of using the open target (−∞, θ), the adversary uses target (−∞, θ− 1

m3 ].

Lemma 4 For any algorithm A and any number m of examples, let plegal be the probability that A
makes a mistake in the legal experiment, and poc be the probability that A makes a mistake in the
open-closed experiment. Then plegal ≥ poc − m+1

m3 .

Proof. If none of the training or test examples falls (strictly) between θ− 1
m3 and θ, then the training

and test data are the same in both experiments. The probability that this happens is at least 1− m+1
m3 .

Since a (C − o(1))/m lower bound for the open-closed experiment implies such a bound for
the legal experiment, we can concentrate on the open-closed experiment.

We now consider the following events.
MISTAKE is the event that the Bayes Optimal classifier predicts incorrectly.

ZERO is the event that no xi ∈ S equals θ.
ONE is the event that exactly one xi ∈ S equals θ.

Now, using these events,

Pr(MISTAKE) ≥ Pr(ZERO) Pr(MISTAKE | ZERO) + Pr(ONE) Pr(MISTAKE | ONE). (2)

3.1. Event ZERO, no xi ∈ S is equal to θ.

First we lower bound the probability of ZERO.
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Lemma 5 Pr(ZERO) = (1− c/m)m ≥ e−c
(
1− c2

m

)
.

Proof: The draws from Dθ,q are independent so for q = c/m we have Pr(ZERO) = pm = (1 −
c/m)m. Furthermore, ln ((1− c/m)m) = m ln(1 − c/m) ≥ m

(
− c
m −

c2

m2

)
= −c − c2

m and

exp(−c2/m) ≥ 1− c2/m.
Now, we lower bound the probability of a mistake, given ZERO. In this case, the xi’s in S and

θ are all drawn i.i.d. from the uniform distribution on (0, 1), and with probability one the xi are
all different from θ and each other. Let x+ be the largest xi ∈ S+ smaller than θ, and let x− be
smallest xi ∈ S+ greater than θ. (Recall that instances 0 and 1 have been added to S+ so x+ and
x− are well-defined.)

Lemma 6 Assume event ZERO and let x+ be largest positive point in S+ and x− be the smallest
negative point in S+. After conditioning on the labeled sample L, if the test point is sampled from
Dθ,q (independent of S+) then the error probability of the Bayes Optimal predictor is

Pr(MISTAKE | x+, x−) =
q

2
+ p

(
x− − x+

4

)
=

c

2m
+

(m− c)(x− − x+)
4m

.

Proof: After conditioning on L and event ZERO, θ is uniformly distributed on (x+, x−).
The label of test point x is known whenever x ≤ x+ or x ≥ x−. Only when x+ < x < x− can

the Bayes optimal predictor make a mistake.
The Bayes optimal predictor predicts + on x if x < (x+ + x−)/2, predicts − on x if x >

(x+ + x−)/2, and predicts arbitrarily when x = (x+ + x−)/2. Therefore, for a given value of θ,
when the test point x is drawn from Dθ,q, the probability of mistake is q/2 (for the fraction of time

that x = θ) plus p ·
∣∣∣x++x−

2 − θ
∣∣∣ for the chance that x is drawn from U and falls between θ and the

midpoint of (x+, x−).

Pr(MISTAKE | x+, x−) =
∫ x++x−

2

x+

(
q

2
+ p

(
x+ + x−

2
− θ
))

dP (θ | θ ∈ [x+, x−])

+

∫ x−

x++x−
2

(
q

2
+ p

(
θ − x+ + x−

2

))
dP (θ | θ ∈ [x+, x−])

=
q

2
+
p (x− − x+)

4

as desired.
The following lemma is due to Moran (1947).

Lemma 7 (Moran, 1947) Assume a set {x1, . . . , xm} of m ≥ 3 points are drawn iid from the
uniform distribution on the unit interval. Relabel these points so that x1 ≤ x2 ≤ · · · ≤ xm and set
x0 = 0 and xm+1=1. For the m+1 gap lengths defined by gi = xi+1− xi for 0 ≤ i ≤ m, we have
E
(∑m

i=0 g
2
i

)
= 2

m+2 .

Note: if the set of points is drawn from a circle, then the first point can be taken as the “end-
point”, splitting the circle into an interval. This leads to the following, which we will find useful
later.
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Lemma 8 The expected sum of squared arc-lengths when the circle of circumference 1 is parti-
tioned by m ≥ 4 random points from the uniform distribution is 2/(m+ 1).

Coming back to our lower bound proof, we are now ready to prove a lower bound for the ZERO

case.

Lemma 9 For the Bayes Optimal Predictor,

Pr(MISTAKE | ZERO) =
c

2m
+

1

2(m+ 2)
− c

2m(m+ 2)
.

Proof: Given the event ZERO, each xi in S is drawn iid from the uniform distribution on (0, 1). We
find it convenient to relabel the xi ∈ S in sorted order so that x1 ≤ x2 · · · ≤ xm. Note that x0 = 0
and xm+1 = 1 in S+ are defined consistently with this sorted order. To simplify the notation, we
leave the conditioning on event ZERO implicit in the remainder of the proof.

Pr(MISTAKE) =

∫ ∫
Pr(MISTAKE | S, θ) dθ dP (S) (3)

=

∫ m∑
i=0

Pr(θ ∈ (xi, xi+1) | S) Pr(MISTAKE | θ ∈ (xi, xi+1), S) dP (S) (4)

Since the threshold θ is drawn from U on (0, 1), Pr(θ ∈ (xi, xi+1) | S) = xi+1 − xi. With an
application of Lemma 6 we get:

m∑
i=0

Pr(θ ∈ (xi, xi+1) | S) Pr(MISTAKE | θ ∈ (xi, xi+1), S)

=
m∑
i=0

(xi+1 − xi)
(
q

2
+
p(xi+1 − xi)

4

)
=
q

2
+
p

4

m∑
i=0

(xi+1 − xi)2.

Substituting this into (4),

Pr(MISTAKE) =

∫ (
q

2
+
p

4

m∑
i=0

(xi+1 − xi)2
)
dP (S) (5)

=
q

2
+
p

4
· ES∼Um

[
m∑
i=0

(xi+1 − xi)2
]

(6)

=
q

2
+

p

2(m+ 2)
(7)

using Lemma 7 to evaluate the expectation in (6). Replacing q by c/m and p by 1− c/m gives the
desired result.

3.2. Event ONE, exactly one xi ∈ S is equal to θ.

We lower bound the second term on the RHS of (2) by bounding Pr(ONE) and Pr(MISTAKE | ONE).

Lemma 10 Pr(ONE) = mq(1− q)m−1 ≥ ce−c
(
1 + c−c2

m − c3

m2

)
.
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Proof:

Pr(ONE) = mq(1− q)m−1 = c(1− c/m)m

1− c/m
≥ ce−c(1− c2/m)

1− c/m
≥ ce−c

(
1 +

c− c2

m
− c3

m2

)
,

where Lemma 5 was used to bound (1−c/m)m and the last inequality used the fact that 1/(1−z) ≥
1 + z for all z ∈ [0, 1).

Lemma 11 Pr(MISTAKE | ONE) ≥ 1
2m ·

m−1
m+1 = 1

2m −O(1/m2).

Proof: Since θ is drawn from the uniform distribution, after conditioning on the event ONE, the
xi in S are i.i.d. from the uniform distribution on [0, 1]. Again consider the points relabeled in
ascending order. Each of the xi ∈ S is equally likely to be θ, and the xi = θ is equally likely to
be labeled + or −, giving 2m equally likely possibilities. As before, define x+ and x− to be the
largest xi ∈ S+ labeled + and the smallest xi ∈ S+ labeled − respectively. We proceed assuming
the Bayes Optimal Algorithm “knows” that one of the xi = θ, i.e. that event ONE occurred. (This
can only reduce its error probability.) To simplify the notation, we leave the conditioning on event
ONE implicit in the remainder of the proof.

If there are both positive and negative examples, so that there is a greatest positive example x+
and a least negative examples x−, there are two possibilities: either the target is (−∞, x+] or it is
(−∞, x−). In either case, the entire open interval between x+ and x− shares the same label, and
since the two cases are equally likely that label is equally likely to either + or −. Therefore:

Pr(MISTAKE) ≥
∫ m−1∑

i=1

Pr(xi = x+ | S) Pr(MISTAKE | S, x+ = xi) dPr(S) (8)

=

∫ m−1∑
i=1

Pr(xi = x+ | S)
(
xi+1 − xi

2

)
dPr(S). (9)

We consider the sum in more detail. Note that xi can be x+ when either xi = θ and is labeled + or
xi+1 = θ and is labeled −.

m−1∑
i=1

Pr(xi = x+ | S)
(
xi+1 − xi

2

)
=

m−1∑
i=1

1

m

(
xi+1 − xi

2

)
=

1

2m
(xm − x1).

Plugging it into (9) gives: Pr(MISTAKE) = 1
2mES∼Um [xm − x1] = 1

2m ·
m−1
m+1 since the expected

length of each missing end-interval is 1/(m+ 1).

3.3. Putting it together

Combining Lemma 5, Lemma 9, Lemma 10, and Lemma 11 we get that Pr(MISTAKE | ZERO) Pr(ZERO)+
Pr(MISTAKE | ONE) Pr(ONE) is at least(

c

2m
+

1

2(m+ 2)
− c

2m(m+ 2)

)
e−c

(
1− c2

m

)
+

m− 1

2m(m+ 1)
ce−c

(
1 +

c− c2

m
− c3

m2

)
=

1 + 2c

2m
e−c −O(1/m2).

Setting c = 1/2, the maximizer of (1 + 2c)e−c, the bound becomes 1/(m
√
e) − O(1/m2), com-

pleting the proof of Theorem 1.
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4. Proof of Theorem 2

Here we show that knowledge of D can be exploited by a maximum-margin-in-probability algo-
rithm to achieve prediction error probability at most (1/2 + o(1))/m. The marginal distribution D
and target threshold θ are chosen adversarially, but the algorithm is given distribution D as well as
the training sample.

The first step is to show that we can assume without loss of generality that D is the uniform
distribution U over (0, 1). This is a slight generalization of the “rescaling trick” of Ben-David et al.
(2008).

Lemma 12 optD(m) ≤ optU (m).

Proof Our proof is through a prediction-preserving reduction (Pitt and Warmuth, 1990). This
consists of a (possibly randomized) instance transformation φ and a target transformation ψ. In
this proof φ maps R into [0, 1], and ψ maps a threshold in R to a new threshold in [0, 1]. Implicit
in the analysis of Pitt and Warmuth (1990) is the observation that, if φ(x) ≤ ψ(θ) ⇔ x ≤ θ
for all training and test examples x, then an algorithm At with prediction error bound bt for the
transformed problem can be used to solve the original problem. By feeding At the training data
φ(x1), ..., φ(xm) and the test point φ(x), and using At’s prediction (of whether φ(x) ≤ ψ(θ) or
not) one gets an algorithm with prediction error bound bt for the original problem.

When D has a density, φ(x) = Prz∼D(z ≤ x) and ψ(θ) = Prz∼D(z ≤ θ). In this case the
distribution φ(x) is uniform over (0, 1), and since φ and ψ are identical and monotone, φ(x) ≤
ψ(θ)⇔ x ≤ θ.

If D has a one or more accumulation points, then, for each accumulation point xa, we choose
φ(x) uniformly from the interval (Prz∼D(z < xa),Prz∼D(z ≤ xa)]. We still setψ(θ) = Prz∼D(z ≤
θ) everywhere. For this transformation, the probability distribution over φ(x) is still uniform over
(0, 1), and, as before, if x 6= θ, or if x is not an accumulation point, then φ(x) ≤ ψ(θ) ⇔ x ≤ θ.
When xa = θ for an accumulation point xa, φ(xa) ≤ ψ(θ), since ψ(θ) is set to be the right endpoint
of (Prz∼D(z < xa),Prz∼D(z ≤ xa)]. Thus, overall, φ(x) ≤ ψ(θ) ⇔ x ≤ θ, and the probability
of a mistake in the original problem is bounded by the mistake probability with respect to the trans-
formed problem.

So now we are faced with the subproblem of learning initial intervals in the case that D is the
uniform distribution U over (0, 1). The algorithm that we analyze for this problem is the following
maximum margin algorithmAMM: if the training data includes both positive and negative examples,
it predicts using a threshold halfway between the greatest positive example and the least negative
example. If all of the examples are negative, it uses a threshold halfway between the least negative
example and 0, and if all of the examples are positive, AMM uses a threshold halfway between the
greatest positive example and 1.

The basic idea exploits the fact that the uniform distribution is invariant to horizontal shifts to
average over random shifts. We define x ⊕ s ≡ x + s − bx+ sc to be addition modulo 1, so that,
intuitively, x⊕s is obtained by starting at x, and walking s units to the right while wrapping around
to 0 whenever 1 is reached. We extend the ⊕ notation to sets in the natural way: if T ⊆ [0, 1) then
T ⊕ s = {t⊕ s : t ∈ T}.

Fix an arbitrary target threshold θ ∈ (0, 1) and also fix (for now) an arbitrary set S = {x1, . . . , xm}
of m training points (whose labels are determined by θ). Renumber the points in S so that x1 ≤
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x2 ≤ · · · ≤ xm. To simplify some expressions, we use both x1 and xm+1 to refer to x1. For
each x, s ∈ [0, 1], let error(s, x) be the {0, 1}-valued indicator for whether AMM makes a mis-
take when trained with S ⊕ s and tested with x. Let error(s) = Ex∼U (error(s, x)), and let
error = Es∼U (error(s)).

For 1 ≤ i < m, let Gi = [xi, xi+1) be the points in the interval between xi and xi+1, and let
Gm = [xm, 1) ∪ [0, x1), so the Gi partition [0, 1). Let Ri = {s ∈ [0, 1) : θ ∈ Gi ⊕ s} and notice
that the Ri also partition [0, 1). We have error =

∫ 1
0 error(s)ds =

∑
i

∫
s∈Ri error(s)ds.

We now consider
∫
s∈Ri error(s)ds in more detail. This integral corresponds to the situation

where the shifted sample causes θ to fall in the “gap” between xi and xi+1. Depending on the
location of θ and the length of the gap, the shifted interval might extend past either 0 or 1 while
containing θ, and thus “wrap around” to the other side of the unit interval.

Let the gap length gi be xi+1 − xi (or 1− xm + x1 if i = m), and let ri be the shift taking xi+1

to θ, so xi+1⊕ ri = θ. Note that a shift of ri+ gi takes xi to θ even though ri+ gi might be greater
than one, which happens when θ ∈ [xi, xi+1).

We will now give a “proof-by-plot” that
∫
s∈Ri error(s)ds ≤ g2i /4. For an algebraic proof, see

Appendix A. We begin by assuming θ ≤ 1/2 since the situation with θ > 1/2 is symmetrical.
The cases we consider depend on the relationship between gi and θ: case (A) gi ≤ θ, case (B)
θ < gi ≤ 1 − θ, and case (C) 1 − θ < gi. Cases (B) and (C) have two sub-cases depending on
whether or not θ ≤ gi/2.

The figure for each case shows several shiftings of the interval, and plots error(s) as a function
of s. The predictions of AMM on the shifted interval are indicated, and the region where AMM

makes a prediction error is shaded. The top shifting in each case is actually for s = ri plus some
small ε (so that θ < xi+1 ⊕ s), although it is labeled as s = ri for simplicity.

Note that in each case, the plot of error(s) lies within two triangles with height gi/2. Therefore
the integrals

∫ r1+gi
ri

error(s)ds are at most g2i /4.
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Case (A): gi ≤ θ. The [xi, xi+1)⊕ s interval intersects θ only when s+ xi ≤ θ < s+ xi+1.
error(s)
gi/2

xi ⊕ ri
s = ri + −

xi+1 ⊕ ri

0s = ri + gi/2 + −
gi/2s = ri + gi + −

θ

gi/2

ri ri + gi
s

0

error(s)

Case (B), subcase (1): gi + θ ≤ 1 and θ < gi/2. Note that the dashed part of the interval is
actually shifted to the right-edge of [0, 1).

θ0

error(s)
s = ri +− θ/2

s = ri + θ + − 0

s = ri + gi − θ + − gi/2− θ
s = ri + gi + − gi/2

error(s)

gi/2

θ/2

0
ri ri + θ ri + gi

s

Case (B), subcase (2): gi + θ ≤ 1 and gi/2 < θ < gi. Again, the dashed part of the interval is
actually shifted to right-edge of [0, 1).

θ0

error(s)
θ/2s = ri + −

s = ri + gi − θ + − θ − gi/2
s = ri + gi/2 + − 0

s = ri + gi + − gi/2

gi/2

ri ri + gi
s

0

θ/2

error(s)

Case (C), subcase (1): θ < gi/2, and θ + gi > 1. On the left: shifting the interval between xi
and xi+1 to intersect θ. In this case not only can part of the interval be shifted to right-edge of [0, 1),
but part of the interval can also extend beyond 1 (and be shifted to the left-edge of [0, 1)) while the
shifted interval contains θ.

θ0 1

error(s)
s = ri +− θ/2

s = ri + θ + − 0

s = ri + gi − θ + − gi/2− θ

s = ri + 1− θ + − 1− θ − gi
2

s = ri + gi + − (1− θ)/2

error(s)

gi/2

θ/2

0
ri ri + θ ri + gi

s

The correctness of the plot relies on the “bump” in the
plot at s = ri + 1 − θ never rising outside of the trian-
gle. We have redrawn the triangle in more detail to the
right (dropping the subscripts), and relabeled the x-axis
(in blue). This shows us that at the “bump”, the dotted
line of the triangle is at height g2 ·

1−2θ
g−θ while the bump is

at height 1− θ − g/2.

g/2

r + θ r + g
r + 1− θ

1− θ − g/2
g
2 ·

1−2θ
g−θ

0 g − θ︷ ︸︸ ︷
1 − 2θ
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Solving g
2 ·

1−2θ
g−θ = 1 − θ − g/2 for g yields g = 2θ and g = 1 − θ, exactly the boundaries

of this case. Therefore the difference g
2 ·

1−2θ
g−θ − 1 − θ − g/2 (which is the amount by which the

boundary of the triangle lies above the bump) does not change sign. When g = 5/6 and θ = 2/6
the difference is 1/36, so the difference remains non-negative for all gi and θ in this case.

Case (C), subcase (2): θ > gi/2, and θ + gi > 1. On the left: shifting the interval between xi
and xi+1 to intersect θ. Again, parts of the interval can be shifted across 0 and across 1 while the
shifted interval contains θ.

θ0 1

error(s)
θ/2s = ri + −

s = ri + gi − θ + − θ − gi/2
s = ri + gi/2 + − 0

s = ri + 1− θ + − 1− θ − gi
2

s = ri + gi + − (1− θ)/2

gi/2

ri ri + gi
s

0

θ/2

error(s)

We now have, for any θ ∈ [0, 1],

Pr
S∼Um,x∼U

(AMM incorrect) = ES∼UmEs∼U,x∼U (AMM(S ⊕ s, x) 6= 1≤θ(x))

≤ ES∼Um
m∑
i=1

g2i /4 ≤
1

2m+ 2

where the last inequality uses Lemma 8. This completes the proof of Theorem 2.

5. Proof of Theorem 3

In this section we show that any maximum margin algorithm can be forced to have an error proba-
bility (1− o(1))/m when it is not given knowledge of D (i.e. without transforming the input as in
the previous section). This is a factor of 2 worse than our upper bound for an algorithm that uses
knowledge D to maximize a probability-weighted margin.

Let c be a positive even integer (by choosing a large constant value for c, our lower bound will
get arbitrarily close to 1

m ). For a given training set sizem, consider the set T =
{
3−cm, . . . , 3−2, 3−1

}
containing the first cm powers of 1/3.

Fix distribution D to be the uniform distribution over T . Fix the target threshold to be θ =
3−cm/2−1, so that half the points in T are labeled positively (recall that all points less than or equal
to the threshold are labeled positively).

Maximum margin algorithms can make different predictions only when all the examples have
the same label. For this choice of a distributionD and a target θ, the probability that all the examples
have the same label is 2×2−m. Thus for large enough m, the difference between maximum margin
algorithms is negligible. From here on, let us consider the algorithmAMM, defined earlier, that adds
two artificial examples, (0,+) and (1,−), and predicts using the maximum margin classifier on the
resulting input.

For 1 ≤ i ≤ cm/2, let Ti be the i points in T just above the threshold: if ` = −cm/2 − 1 =
log3 θ then Ti =

{
3`+1, 3`+2, . . . , 3`+i

}
. Let event MISSi be the event that none of the m training

points are in Ti. For i < cm/2, let event EXACTi be the event that both (a) none of the m training
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points are in Ti, and (b) some training point is in Ti+1 (i.e. some training point is 3`+i+1). Let
EXACTcm/2 be the event that no training point is labeled “−”. Therefore the EXACTi events are
disjoint and MISSi =

⋃
j≥i EXACTj .

Note that if EXACTi occurs, then the smallest negative example is 3`+i+1. Furthermore, all
points in Ti are less then half this value and the maximum margin algorithm predicts incorrectly on
exactly the i points in Ti, so Pr(error|EXACTi) = i/(cm). Thus, for m > 2c, we have

Pr(error) =
cm/2∑
i=1

Pr(error|EXACTi) Pr(EXACTi) =

cm/2∑
i=1

i

cm
Pr(EXACTi)

=
1

cm

cm/2∑
i=1

Pr(MISSi) =
1

cm

cm/2∑
i=1

(
cm− i
cm

)m
≥ 1

cm

c2∑
i=1

(
1− i/c

m

)m
.

For i ≤ c2, in the limit as m → ∞,
(
1− i/c

m

)m
→ exp(−i/c), so for large enough m (large

relative to the constant c) we can continue as follows.

Pr(error) ≥ 1

cm

c2∑
i=1

(1− ε) exp(−i/c) = 1− ε
cm

c2∑
i=1

exp(−1/c)i

=
1− ε
cm

exp(−1/c)1− exp(−1/c)c2

1− exp(−1/c)
=

1− ε
cm

exp(−1/c) 1− exp(−c)
1− exp(−1/c)

=
(1− ε)(1− ε2)

cm

exp(−1/c)
1− exp(−1/c)

where ε2 = e−c. Now, replacing 1/c by a we get: Pr(error) ≥ (1−ε)(1−ε2)
m

a exp(−a)
1−exp(−a) Using

L’Hopitals rule, we see that the limit of the second fraction as a → 0 is 1. So for large enough
c, the second fraction is at least 1 − ε3 and Pr(error) ≥ (1−ε)(1−ε2)(1−ε3)

m . Thus, by making the
constant c large enough, and choosing m large enough compared to c, the expected error of the
maximum margin algorithm can be made arbitrarily close to 1/m.

6. Conclusion

Algorithms that know the underlying marginal distribution D over the instances can learn signifi-
cantly more accurately than algorithms that do not. Since knowledge of D has been proposed as a
proxy for a large number of unlabeled examples, our results indicate a benefit for semi-supervised
learning. It is particularly intriguing that our analysis shows the benefit of semi-supervised learning
when the distribution is nearly uniform, but slightly concentrated near the decision boundary. This
is in sharp contrast to previous analyses showing the benefits of semi-supervised learning, which
typically rely on a “cluster assumption” postulating that examples are sparse along the decision
boundary.
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Appendix A. Algebraic completion of the proof of Theorem 2

Here we give an algebraic proof that
∫
s∈Ri error(s)ds ≤ g2i /4, whose proof was sketched using

plots in Section 4. This integral corresponds to the situation where the shifted sample causes θ to
fall in the “gap” between xi and xi+1. We again assume that θ ≤ 1/2 (the other case is symmetrical)
and proceed using the same cases. As before, let ri be the shift taking xi+1 to θ and gi be the length
of the xi, xi+1 gap. Thus xi+1⊕ ri = θ and a shift of ri+ gi takes xi to θ even though ri+ gi might
be greater than one.
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Case (A): gi ≤ θ. In this case, θ falls in the gap only for shifts s where xi ⊕ s ≤ θ < xi+1 ⊕ s.
The maximum margin algorithm makes a mistake on a randomly drawn test point exactly when the
test point is between the middle of the (shifted) gap and θ. Therefore,∫ ri+gi

ri

error(s)ds =
∫ ri+gi

ri

∣∣∣∣(xi + xi+1

2

)
⊕ s− θ

∣∣∣∣ ds = 2

∫ gi/2

0
z dz =

g2i
4
.

Case (B): θ ≤ gi ≤ 1− θ. In this case, as before, the integral goes from ri to ri + gi. However,
the expected error is slightly more complicated: while s ∈ [ri, ri + gi − θ], all of the examples are
negative, and the expected error is

∣∣∣xi+1⊕s
2 − θ

∣∣∣, and when s ∈ [ri + gi − θ, ri + gi] the expected

error is
∣∣∣xi+1+xi

2 ⊕ s− θ
∣∣∣, see the Case B plots in Section 4. Thus:

∫ ri+gi

ri

error(s)ds =
∫ ri+gi−θ

ri

∣∣∣∣xi+1 ⊕ s
2

− θ
∣∣∣∣ ds+ ∫ ri+gi

ri+gi−θ

∣∣∣∣xi+1 ⊕ s+ xi ⊕ s
2

− θ
∣∣∣∣ ds.

Using a change of variables (t = s− ri), we get∫ ri+gi

ri

error(s)ds =

∫ gi−θ

0

∣∣∣∣θ + t

2
− θ
∣∣∣∣ dt+ ∫ gi

gi−θ

∣∣∣∣θ + t+ θ − gi + t

2
− θ
∣∣∣∣ dt

=

∫ gi−θ

0

∣∣∣∣ t− θ2

∣∣∣∣ dt+ ∫ gi

gi−θ

∣∣∣t− gi
2

∣∣∣ dt. (10)

Subcase (B1): gi ≥ 2θ. Continuing from Equation (10),∫ ri+gi

ri

error(s)ds =

∫ θ

0

θ − t
2

dt+

∫ gi−θ

θ

t− θ
2

dt+

∫ gi

gi−θ

gi
2
− t dt

=
θ2

2
− θ2

4
− θ(gi − 2θ)

2
+

(gi − θ)2

4
− θ2

4
+
θgi
2
− g2i

2
+

(gi − θ)2

2

=
g2i
4

+
7θ2

4
− 3giθ

2
< g2i /4.

Subcase (B2): θ < gi < 2θ. Again continuing from Equation (10),∫ ri+gi

ri

error(s)ds =

∫ gi−θ

0

θ − t
2

dt+

∫ gi/2

gi−θ

gi
2
− t dt+

∫ gi

gi/2
t− gi

2
dt

=
θ(gi − θ)

2
− (gi − θ)2

4
+ (θ − gi

2
)
gi
2
− g2i

8
+

(gi − θ)2

2
− g2i

4
+
g2i
2
− g2i

8

=
2θgi − θ2

4
<
g2i
4

since 2θgi− θ2, as a function of θ, is nondecreasing on the interval (gi/2, gi), and therefore at most
g2i over that interval.

Case (C): gi ≥ 1 − θ. When s ∈ [ri, ri + gi − θ], all of the examples are negative (as in case
(B)) and when s ∈ (ri + 1 − θ, ri + gi) all the examples are positive. This partitions the shifts in
(ri, ri+ gi) into three parts (see the plots in Section 4). Initially θ falls in the gap between 0 and the
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shifted xi+1. Then xi shifts in and the θ is in the gap between the shifted xi and xi+1. Finally, xi+1

wraps around and θ is in the gap between the shifted xi and 1.
Thus

∫ ri+gi
ri

error(s) ds equals∫ ri+gi−θ

ri

∣∣∣∣xi+1 ⊕ s
2

− θ
∣∣∣∣ ds+∫ ri+1−θ

ri+gi−θ

∣∣∣∣xi+1 ⊕ s+ xi ⊕ s
2

− θ
∣∣∣∣ ds+∫ ri+gi

ri+1−θ

∣∣∣∣xi ⊕ s+ 1

2
− θ
∣∣∣∣ ds

Using the substitution t = s− ri and following case B this becomes∫ ri+gi

ri

error(s) ds =
∫ gi−θ

0

∣∣∣∣ t− θ2

∣∣∣∣ dt+∫ 1−θ

gi−θ

∣∣∣t− gi
2

∣∣∣ dt+∫ gi

1−θ

∣∣∣∣θ − gi + t+ 1

2
− θ
∣∣∣∣ dt (11)

Subcase (C1): gi ≥ 2θ, so 1− gi ≤ θ ≤ gi/2. Continuing from (11),
∫ ri+gi
ri

error(s) ds equals

∫ θ

0

θ − t
2

dt+

∫ gi−θ

θ

t− θ
2

dt+

∫ 1−θ

gi−θ
t− gi

2
dt+

∫ gi

1−θ

t+ 1− gi − θ
2

dt

=
θ2

4
+

(gi − 2θ)2

4
+

(1− gi)(1− 2θ)

2
+

4gi(1− θ)− g2i − 3(1− θ)2

4

=
g + θ2 + θ

2
− gθ − 1/4.

Note that the second derivative w.r.t. θ is positive, so the r.h.s. is maximized when θ = 1 − gi or
θ = gi/2. In both cases, it is easily verified that the value is at most g2i /4.

Subcase (C2): gi ≤ 2θ. Continuing from (11) and following the logic of case B2,
∫ ri+gi
ri

error(s)ds
equals∫ gi−θ

0

θ − t
2

dt+

∫ gi/2

gi−θ

gi
2
− t dt+

∫ 1−θ

gi/2
t− gi

2
dt+

∫ gi

1−θ

t+ 1− gi − θ
2

dt

=
(3θ − gi)(gi − θ)

4
+

(2θ − gi)2

8
+

(2− gi − 2θ)2

8
+

(gi + θ − 1)(3− gi − 3θ)

4

=
2gi + 2θ − 1− g2i − 2θ2

4
.

This is increasing in θ, and thus maximized when θ = 1/2 where it becomes gi/2−g2i /4−1/8. We
want to show that this bound is at most g2i /4, i.e. that f(gi) = gi/2− g2i /2− 1/8 ≤ 0. Combining
the facts that gi ≥ 1/2 in Case C, f(1/2) = 0, and f ′(gi) ≤ 0 when gi ≥ 1/2, gives the desired
inequality.
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