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Abstract
This paper introduces the Furthest Hyperplane Problem (FHP), which is an unsupervised coun-
terpart of Support Vector Machines. Given a set of n points in Rd, the objective is to produce
the hyperplane (passing through the origin) which maximizes the separation margin, that is, the
minimal distance between the hyperplane and any input point.

To the best of our knowledge, this is the first paper achieving provable results regarding FHP.
We provide both lower and upper bounds to this NP-hard problem. First, we give a simple ran-
domized algorithm whose running time is nO(1/θ2) where θ is the optimal separation margin. We
show that its exponential dependency on 1/θ2 is tight, up to sub-polynomial factors, assuming SAT
cannot be solved in sub-exponential time. Next, we give an efficient approximation algorithm. For
any α ∈ [0, 1], the algorithm produces a hyperplane whose distance from at least 1 − 3α fraction
of the points is at least α times the optimal separation margin. Finally, we show that FHP does
not admit a PTAS by presenting a gap preserving reduction from a particular version of the PCP
theorem.

1. Introduction

One of the most well known and studied objective functions in machine learning for obtaining linear
classifiers is the Support Vector Machines (SVM) objective. SVM’s are extremely well studied,
both in theory and in practice. We refer the reader to Vapnik and Lerner (1963); Mangasarian
(1965) and to Burges (1998) for a thorough survey and references therein. The simplest possible
setup is the separable case. Given a set of n points {x(i)}ni=1 in Rd and labels y1, . . . yn ∈ {1,−1}
find hyperplane parameters w ∈ Sd−1 (the unit sphere in `2 in dimension d) and b ∈ R which
maximize θ′ subject to (〈w, x(i)〉 + b)yi ≥ θ′. The intuition is that different concepts will be
“well separated” from each other and that the best decision boundary is the one that maximizes the
separation. This intuition is supported by extensive research which is beyond the scope of this paper.
Algorithmically, the optimal solution for this problem can be obtained using Quadratic Programing
or the Ellipsoid Method in polynomial time. In cases where the problem has no feasible solution the
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constraints must be made “soft” and the optimization problem becomes significantly harder. This
discussion, however, also goes beyond the scope of this paper.

As a whole, SVM’s fall under the category of supervised learning, although semi-supervised
and unsupervised versions have also been considered (see references below). We note that to the
best of our knowledge the papers dealing with the unsupervised scenario were purely experimental
and did not contain any rigorous proofs. In this model, the objective remains unchanged but some
(or possibly all) of the point labels are unknown. The maximization, thus, ranges not only over the
parameters w and b but also over the possible labels for the unlabeled points yi ∈ {1,−1}. The
integer constraints on the values of yi make this problem significantly harder than SVM’s.

The name Maximal Margin Clustering (MMC) was coined by Xu et al. (2005) for the case where
none of the labels are known. Indeed, in this setting the learning procedure behaves very much like
clustering. The objective is to assign the points to two groups (indicated by yi) such that solving
the labeled SVM problem according to this assignment produces the maximal margin.1 Bennett
and Demiriz (1998) propose to solve the resulting mixed integer quadratic program directly using
general solvers and give some encouraging experimental results. Bie and Cristianini (2003) and Xu
et al. (2005) suggest an SDP relaxation approach and show that it works well in practice. Joachims
(1999) suggests a local search approach which iteratively improves on a current best solution. While
the above algorithms produce good results in practice, their analysis does not guaranty the optimality
of the solution. Moreover, the authors of these papers state their belief that the non convexity of this
problem makes it hard, but to the best of our knowledge no proof of this was given. In a recent work
Peng et al. (2011) suggests an efficient approach to MMC based on gradual feature selection, but is
mainly supported by numerical experiments.

FHP is very similar to unsupervised SVM or Maximum Margin Clustering. The only difference
is that the solution hyperplane is constrained to pass through the origin. Formally, given n points
{x(i)}ni=1 in a d-dimensional Euclidean space, FHP is defined as follows:

Maximize θ′

s.t ‖w‖2 = 1

∀ 1 ≤ i ≤ n |〈w · x(i)〉| ≥ θ′ (1)

The labels in this formulation are given by yi = sign(〈w · x(i)〉) which can be viewed as the
“side” of the hyperplane to which x(i) belongs. At first glance, MMC appears to be harder than FHP
since it optimizes over a larger set of possible solutions. Namely, those for which b (the hyperplane
offset) is not necessarily zero. We claim however that any MMC problem can be solved using at
most

(
n
2

)
invocations of FHP. The simple observation is that any optimal solution for MMC must

have two equally distant points in opposite sides of the hyperplane. Therefore, there always are at
least two points i and j such that (〈w, x(i)〉 + b) = −(〈w, x(j)〉 + b). This means that the optimal
hyperplane obtained by MMC must pass through the point (x(i) + x(j))/2. Thus, solving FHP
centered at (x(i) +x(j))/2 will yield the same hyperplane as MMC. Iterating over all pairs of points
concludes the observation. From this point on we explore FHP exclusively but the reader should
keep in mind that any algorithmic claim made for FHP holds also for MMC due to the above.

1. The assignment is required to label at least one point to each cluster to avoid a trivial unbounded margin.
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1.1. Results and techniques

In Section 2 we begin by describing three exact (yet exponential) algorithms for FHP. These
algorithms are somewhat naı̈ve and their proofs use standard techniques. However, we choose to
present them for two reasons. First, they are the natural directions to consider and give the reader a
reacher and fuller understanding of the problem (so we hope). Second, they turn out to be preferable
to one another for different problem parameters. These parameter are: the dimension d, the number
of points n, and the optimal margin θ which is not known apriori.

The first algorithm is a brute force search through all feasible labelings which runs in time nO(d).
The second looks for a solution by enumerating over an ε-net of the d-dimensional unit sphere and
requires (1/θ)O(d) operations. The last generates solutions created by random unit vectors and can
be shown to find the right solution after nO(1/θ2) tries (w.h.p.). While algorithmically the random
hyperplane algorithm is the simplest, its analysis is the most complex. Assuming a large constant
margin, which is not unrealistic in machine learning applications, this algorithm provides the first
polynomial time solution to FHP. Unfortunately, due to the hardness result below, its exponential
dependency on θ cannot be improved.

In section 3 we show that if one is allowed to discard a small fraction of the points then much
better results can be obtained. We note that in the perspective of machine learning, a hyperplane
that separates almost all of the points still provides a meaningful result (see the discussion at the end
of section 3) . We give an efficient algorithm which finds a hyperplane whose distance from at least
1 − 3α fraction of the points is at least αθ , where α ∈ [0, 1] is any constant and θ is the optimal
margin of the original problem. The main idea is to first find a small set of solutions which perform
well ‘on average’. These solutions are the singular vectors of row reweighed versions of a matrix
containing the input points. We then randomly combine those to a single solution.

In section 4 we prove that FHP is NP-hard to approximate to within a small multiplicative
constant factor, ruling out a PTAS. We present a two-step gap preserving reduction from MAX-
3SAT using a particular version of the PCP theorem, see Arora (1994). It shows that the problem
is hard even when the number of points is linear in the dimension and when all the points have
approximately the same norm. As a corollary of the hardness result we get that the running time of
our exact solution algorithm is, in a sense, optimal. There cannot be an algorithm solving FHP in
time nO(1/θ2−ε) for any constant ε > 0, unless SAT admits a sub-exponential time algorithm.

1.2. Preliminaries and notations

The set {x(i)}ni=1 of input points for FHP is assumed to lie in a Euclidean space Rd, endowed
with the standard inner product denoted by 〈·, ·〉. Unless stated otherwise, we denote by ‖ · ‖ the
`2 norm. Throughout the paper we let θ denote the solution of the optimization problem defined
in Equation (1). The parameter θ is also referred to as “the margin of {x(i)}ni=1”, or simply “the
margin” when it is obvious to which set of points it refers to. Unless stated otherwise, we consider
only hyperplanes which pass through the origin. They are defined by their normal vector w and
include all points x for which 〈w, x〉 = 0. By a slight abuse of notation, we usually refer to
a hyperplane by its defining normal vector w. Due to the scaling invariance of this problem we
assume w.l.o.g. that ‖x(i)‖ ≤ 1. One convenient consequence of this assumption is that θ ≤ 1. We
denote by N (µ, σ) the standard Gaussian distribution with mean µ and standard deviation σ.
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Definition 1 (Labeling, feasible labeling) We refer to any assignment of y1, . . . , yn ∈ {1,−1} as
a labeling. We say that a labeling is feasible if there existsw ∈ Sd−1 such that ∀i : yi

〈
w, x(i)

〉
> 0.

For any hyperplane w ∈ Sd−1 we define its labeling as yi = sign(
〈
w, x(i)

〉
).

Definition 2 (Labeling margin) The margin of a feasible labeling is the margin obtained by solv-
ing SVM on {x(i)}ni=1 using the corresponding labels but constraining the hyperplane to pass
through the origin. This problem is polynomial time solvable by Quadratic Programing or by the
Ellipsoid Method Kozlov et al. (1979). We say a feasible labeling is optimal if it obtains the maximal
margin.

2. Exact algorithms

2.1. Enumeration of feasible labelings

The most straightforward algorithm for this problem enumerates over all feasible labelings of the
points and outputs the one maximizing the margin. Note that there are at most nd+1 different
feasible labelings to consider. This is due to Sauer’s Lemma Sauer (1972) and the fact that the VC
dimension of hyperplanes in Rd is d + 1.2 This enumeration can be achieved by a Breadth First
Search (BFS) on the graph G(Y,E) of feasible labelings. Every node in the graph G is a feasible
labeling (|Y | ≤ nd+1) and two nodes are connected by an edge iff their corresponding labelings
differ by at most one point label. Thus, the maximal degree in the graph is n and the number of
edges in this graph is at most |E| ≤ |Y |n ≤ nd+2. Moreover, computing for each node its neighbors
list can be done efficiently since we only need to check the feasibility (linear separability) of at most
n labelings. Performing BFS thus requires at most O(|Y |poly(n, d) + |E| log(|E|)) = nd+O(1).
The only non trivial observation is that the graph G is connected. To see this, consider the path
from a labeling y to a labeling y′. This path exists since it is achieved by rotating a hyperplane
corresponding to y to one corresponding to y′. By an infinitesimal perturbation on the point set
(which does not effect any feasible labeling) we get that this rotation encounters only one point at a
time and constitutes a path in G. To conclude, there is a simple enumeration procedure for all nd+1

linearly separable labelings which runs in time nd+O(1).

2.2. An ε-net algorithm

The second approach is to search through a large enough set of hyperplanes and measure the margins
produced by the labelings they induce. Note that it is enough to find one hyperplane which obtains
the same labels as the optimal margin does. This is because having the labels suffices for solving
the labeled problem and obtaining the optimal hyperplane. We observe that the correct labeling
is obtained by any hyperplane w whose distance from the optimal one is ‖w − w∗‖ < θ. To see
this, let y∗ denote the correct optimal labeling y∗i 〈w, x(i)〉 = 〈w∗, y∗i x(i)〉 + 〈w − w∗, y∗i x(i)〉 ≥
θ − ‖w − w∗‖ · ‖x(i)‖ > 0. Hence, it is enough to consider hyperplane normals w which belong
to an ε-net on the sphere Sd−1 with ε < θ. Deterministic constructions of such nets exist with size
(1/θ)O(d) Lorentz et al. (1996). Enumerating all the points on the net produces an algorithm which
runs in time O((1/θ)O(d)poly(n, d)).3

2. Sauer’s Lemma Sauer (1972) states that the number of possible feasible labelings of n data points by a classifier with
VC dimension dV C is bounded by ndV C .

3. This procedure assumes the margin θ is known. This assumption can be removed by a standard doubling argument.
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2.3. Random Hyperplane Algorithm

Both algorithms above are exponential in the dimension, even when the margin θ is large. A first
attempt at taking advantage of the large margin uses dimension reduction. An easy corollary of the
well known Johnson-Lindenstrauss lemma yields that randomly projecting the data points into di-
mensionO(log(n)/θ2) preserves the margin up to a constant. Then, applying the ε-net algorithm on
the reduced space requires only nO(log(1/θ)/θ2) operations. Similar ideas were introduced in Arriaga
and Vempala (1999) and subsequently used by Klivans and Servedio (2004); Har-peled et al. (2006)
and florina Balcan et al. (2004). However, a simpler approach improves on this: pick nO(1/θ2) unit
vectors w uniformly at random from the unit sphere. Output the labeling induced by one of those
vectors which maximizes the margin. To establish the correctness of this algorithm it suffices to
show that a random hyperplane induces the optimal labeling with a large enough probability.

Lemma 3 Let w∗ and y∗ denote the optimal solution of margin of θ and the labeling it induces.
Let y be the labeling induced by a random hyperplane w. The probability that y = y∗ is at least
n−O(1/θ2).

The proof of the lemma is somewhat technical and is deferred to Appendix A. The assertion of the
lemma may seem surprising at first. The measure of the spherical cap of vectors w whose distance
from w∗ is at most θ is only ≈ θd. Thus, the probability that a random w falls in this spherical cap
is very small. However, we show that it suffices for w to merely have a weak correlation with w∗ in
order to guarantee that (with large enough probability) it induces the optimal labeling.

Given Lemma 3, the Random Hyperplane Algorithm is straightforward: randomly sample
nO(1/θ2) hyperplanes, compute their induced labelings, and output the labeling (or hyperplane)
which admits the largest margin. If the margin θ is not known, we use a standard doubling argu-
ment to enumerate it. The algorithm solves FHP w.h.p. in time nO(1/θ2).

Tightness of Our Result A corollary of our hardness result (Theorem 12) is that, unless SAT
has sub-exponential time algorithms, there exists no algorithm for FHP whose running time is
nO(θ1/(2−ζ)) for any ζ > 0. Thus, the exponential dependency of the Random Hyperplane Algorithm
on θ is optimal. This is since the hard FHP instance produced by the reduction in Theorem 12 from
SAT has n points in Rd with d = O(n) where the optimal margin is θ = Ω(1/

√
d). Thus, if there

exists an algorithm which solves FHP in time nO(θ1/(2−ζ)), it can be used to solve SAT in time
2O(n1−ζ/2 log(n)) = 2o(n).

3. Approximation algorithm

In this section we present a simple and efficient algorithm which approximates the optimal margin
if one is allowed to discard a small fraction of the points. For any α > 0 it finds a hyperplane
whose distance from (1 − O(α))-fraction of the points is at least α times the optimal margin θ of
the original problem.

Consider first the easier problem of finding the hyperplane whose average margin is larger than
θ. The optimal hyperplane w is simply the top right singular vector of a matrix A whose i’th
row contains x(i). To see this, assume the problem has a separating hyperplane w∗ with mar-
gin θ and let Ei denote the expectation over choosing i uniformly at random from [n]. Then,
Ei
〈
w, x(i)

〉2
= 1/n

∑
i

〈
w, x(i)

〉2 ≥ 1/n
∑

i

〈
w∗, x(i)

〉2
= Ei

〈
w∗, x(i)

〉2 ≥ θ2. This is sim-

ply because w maximizes the expresion
∑

i

〈
w, x(i)

〉2
. However, there is no guarantee that this
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singular vector obtains a high margin value |
〈
w, x(i)

〉
| for all the points x(i). It is possible, for

example, that |
〈
w, x(i)

〉
| = 1 for θ2n points and 0 for all the rest. Our first goal is to produce a set

of weak solution hyperplanes w(1), . . . , w(t) which are good on average for every point. Namely,
∀ i : Ej

〈
w(j), x(i)

〉2
= Ω(θ2). To achieve this, we adaptively re-weight points according to their

distance to previous weak solutions. Points which exhibit a large margin to current weak solutions,
are weighted down so their influence is reduced. We then combine the weak solutions using random
Gaussian weights to obtain a single random hyperplane which is good for any individual point w.p.

Algorithm 1: Approximate FHP Algorithm
Input: Set of points

{
x(i)
}n
i=1
∈ Rd

Output: w ∈ Sd−1

τ1(i)← 1 for all i ∈ [n]
j ← 1
while

∑n
i=1 τj(i) ≥ 1/n do

Aj ← n× d matrix whose i’th row is
√
τj(i) · x(i)

w(j) ← top right singular vector of Aj
σj(i)←

∣∣〈x(i), w(j)
〉∣∣

τj+1(i)← τj(i) · c−σ
2
j (i)

j ← j + 1
end while
w′ ←

∑t
j=1 gj · w(j) for gj ∼ N (0, 1)

return: w ← w′/‖w′‖

We note that our technique resembles the regret minimization framework. However, due to
the different nature of our objective, a straight forward implementation of this approach does not
work.4 Additionally, note that the last step of combining the solution does not use averaging, as in
the regret minimization framework, but rather a random Gaussian combination, as the former fails.
The constant c will be determined later.

Claim 4 Algorithm 1 terminates after at most t ≤ 2 ln(n)/
(
θ2(1− 1/c)

)
iterations.

Proof Fix some j. Define τj
∆
=
∑n

i=1 τj(i). We know that for some unit vector w∗ (the optimal so-
lution to the FHP) it holds that |

〈
x(i), w∗

〉
| ≥ θ for all i. Also since w(j) maximizes the expression

‖Ajw‖2 we have:

n∑
i=1

σ2
j (i)τj(i) = ‖Ajw(j)‖2 ≥ ‖Ajw∗‖2 =

n∑
i=1

τj(i) ·
〈
x(i), w∗

〉2
≥ τj · θ2.

It follows that (and by using the fact that c−x ≤ 1− (1− 1/c)x whenever 0 ≤ x ≤ 1):

τj+1 =

n∑
i=1

τj(i) · c−σ
2
j (i) ≤

n∑
i=1

τj(i) ·
(

1−
(

1− 1

c

)
σ2
j (i)

)
≤ τj ·

(
1− θ2

(
1− 1

c

))
,

4. A more involved, and somewhat less intuitive, use of the regret minimization framework can be applied. We defer
the details to a full version of this paper, and include for completeness a full proof using continuous weights.
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and the claim follows since τ1 = n and ln
(

1
1−x

)
≥ x whenever 0 ≤ x < 1.

Claim 5 Let σi
∆
=
√∑t

j=1 σ
2
j (i). When Algorithm 1 terminates, for each i it holds

σ2
i ≥ ln(n)/ ln(c).

Proof Fix i ∈ [n]. When the process ends, τt(i) ≤ τt < 1/n. As τ1(i) = 1 we get that:

1/n ≥ τt(i) = τ1(i) ·
t∏

j=1

c−σ
2
2(i) = c−

∑t
j=1 σ

2
j (i).

By taking logarithms from both sides, we get that
∑t

j=1 σ
2
j (i) ≥ log(n)/ ln(c) as claimed.

The following lemma states the approximation guarantee of Algorithm 1.5

Lemma 6 Let 0 < α < 1. Algorithm 1 outputs a random w ∈ Sd−1 such that with probability at
least 1/147 at most a 3α fraction of the points are such that

∣∣〈x(i), w
〉∣∣ ≤ αθ.

Proof First, by Markov’s inequality and the fact that E[‖w′‖2] = t we have that ‖w′‖ ≤ 7/4 ·
√
t

w.p. at least 33/49. We assume this to be the case from this point on. Note that we do not condition
on this event happening. Rather, we accept a 16/49 failure probability which we include in a union
bound later in the proof. Now we bound the probability that the algorithm ‘fails’ for point i.

Pr
[∣∣∣〈w, x(i)

〉∣∣∣ ≤ αθ] ≤ Pr

[∣∣∣〈w′, x(i)
〉∣∣∣ ≤ 7

4

√
tαθ

]
≤ Pr

Z∼N (0,
√

ln(n)/ ln(c))

[
|Z| ≤ 7

4

√
tαθ

]

= Pr
Z∼N (0,1)

[
|Z| ≤ 7

4

√
ln(c)

√
tαθ√

ln(n)

]

≤ 7

2
√

2π

√
ln(c)

√
tαθ√

ln(n)
≤

7
√

ln(c)α√
4π
(
1− 1

c

)
The second inequality is derived by using Lemma 5 and the last inequality is derived by using

Lemma 4. Since the expected fraction of failed points is less than 7
√

ln(c)α/
√

4π
(
1− 1

c

)
we

have, using Markov’s inequality again, that the probability that the number of failed points is more

than 3/2 · 7
√

ln(c)α/
√

4π
(
1− 1

c

)
· n is at most 2/3. We also might fail with probability at most

16/49 in the case that ‖w′‖ > 7/4 ·
√
t. Using the union bound on the two failure probabilities and

choosing c = 1.02 completes the proof.

5. We note that we did not try to optimize the constants since the application at hand might provide different restrictions
on the several parameters of the algorithm, such as its success probability, its running time or the fraction of “bad”
points in its output, i.e., points x(i) such that

∣∣∣〈x(i), w〉∣∣∣ ≤ αθ.
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Discussion We note that the problem of finding a hyperplane that separates all but a small fraction
of the points is the non-supervised analog of the well studied soft margin SVM problem. The
motivation behind the problem, from the perspective of machine learning, is that a hyperplane that
separates most of the data points is still likely to correctly label future points. Hence, if a hyperplane
that separates all of the points cannot be obtained, it suffices to find one that separates most (e.g.
1 − α fraction) of the data points. The more common setting in which this problem is presented
is when a separating hyperplane does not necessarily exist. In our case, although a separating
hyperplane is guaranteed to exist, it is (provably) computationally hard to obtain it, as we show in
the next section.

4. Hardness of approximation

The main result of this section is that FHP does not admit a PTAS unless P=NP. That is, obtaining
a (1 − ε)-approximation for FHP is NP-hard for some universal constant ε. The main idea is
straightforward: Reduce from MAX-3SAT for which such a guarantee is well known, mapping
each clause to a vector. We show that producing a “far” hyperplane from this set of vectors encodes
a good solution for the satisfiability problem. However, FHP is inherently a symmetric problem
(negating a solution does not change its quality) while MAX-3SAT does not share this property.
Thus, we carry out our reduction in two steps: in the first step we reduce MAX-3SAT to a symmetric
satisfaction problem. In the second step we reduce this symmetric satisfaction problem to FHP. It
turns out that in order to show that such a symmetric problem can be geometrically embedded as a
FHP instance, we need the extra condition that each variable appears in at most a constant number
of clauses, and that the number of variables and clauses is comparable to each other. The reduction
process is slightly more involved in order to guarantee this. In the rest of this section we consider
the following satisfaction problem.

Definition 7 (SYM formulas) A SYM formula is a CNF formula where each clause has either 2
or 4 literals. Moreover, clauses appear in pairs, where the two clauses in each pair have negated
literals. For example, a pair with 4 literals has the form

(x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4).

We denote by SYM(t) the class of SYM formulas in which each variable occurs in at most t
clauses.

We note that SYM formulas are invariant to negations: if an assignment x satisfies m clauses in a
SYM formula than its negation ¬x will satisfy the same number of clauses.

The following definition will play a central role in the reduction we next describe.

Definition 8 (Expander Graphs) An undirected graphG = (V,E) is called an (n, d, τ)-expander
if |V | = n, the degree of each node is d, and its edge expansion h(G) =
min|S|<n/2(|E(S, Sc)|)/|S| is at least τ . By Cheeger’s inequality Alon and Milman (1985), h(G) ≥
(d − λ)/2, where λ is the second largest eigenvalue, in absolute value, of the adjacency matrix of
G. For every d = p + 1 ≥ 14, where p is a prime congruent to 1 modulo 4, there are explicit
constructions of (n, d, τ)-expanders with τ > d/5 for infinitely many n. This is due to the fact that
these graphs exhibit λ ≤ 2

√
d− 1 (see Lubotzky et al. (1988)), and hence by the above h(G) ≥ (d−

2.8
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2
√
d− 1)/2 > d/5 (say) for d ≥ 14. Expander graphs will play a central role in the construction

of our hardness result in section 4.

The first step is to reduce MAX-3SAT to SYM with the additional property that each variable
appears in a constant number of clauses. We denote by MAX-3SAT(t) the class of MAX-3SAT
formulas where each variable appears in at most t clauses. Theorem 9 is the starting point of our
reduction. It asserts that MAX-3SAT(13) is hard to approximate.

Theorem 9 (Arora (1994), Hardness of approximating MAX-3SAT(13)) Letϕ be a 3-CNF boolean
formula on n variables and m clauses, where no variable appears in more than 13 clauses. Then
there exists a constant γ > 0 such that it is NP- hard to distinguish between the following cases:

1. ϕ is satisfiable.

2. No assignment satisfies more than a (1− γ)-fraction of the clauses of ϕ.

4.1. Reduction from MAX-3SAT(13) to SYM(30)

The main idea behind the reduction is to add a new global variable to each MAX-3SAT(13) clause
which will determine whether the assignment should be negated or not, and then to add all negations
of clauses. The resulting formula is clearly a SYM formula. However, such a global variable will
appear in too many clauses. We thus “break” it into many local variables (one per clause), and
impose equality constraints between them. To achieve that the number of clauses remains linear
in the number of variables, we only impose equality constraints based on the edges of a constant
degree expander graph. The strong connectivity property of expanders ensures that a maximally
satisfying assignment to such a formula would assign the same value to all these local variables,
achieving the same effect of one global variable.

We now show how to reduce MAX-3SAT to SYM, while maintaining the property that each
variable occurs in at most a constant number of clauses.

Theorem 10 It is NP-hard to distinguish whether a SYM(30) formula can be satisfied, or whether
all assignments satisfy at most 1− δ fraction of the clauses, where δ = γ/16 and γ is the constant
in Theorem 9.

Remark 11 We note that Theorem 10 is qualitatively implied by a more general result by Jonsson
et al. (2009), who use expanders together with more powerful algebraic techniques to show that for
any natural 6 constraint satisfaction problem, it is NP hard to distinguish between the case that all
constraints are satisfiable, or only 1 − ε′ fraction of them are satisfiable, even when any variable
appears only in constantly many constraints (See Theorem 3.6 in Jonsson et al. (2009)). Here we
provide an elementary proof of this result for the special case of symmetric CNF formulas, which is
shorter, uses only combinatorial arguments (and not algebraic) and produces a better gap.

Proof (of Theorem 10) We describe a gap-preserving reduction from MAX-3SAT(13) to SYM(30).
Given an instance of MAX-3SAT(13) ϕ with n variables y1, . . . , yn and m clauses, construct a
SYM formula ψ as follows: each clause Ci ∈ ϕ is mapped to a pair of clauses Ai = (Ci ∨ ¬zi)

6. Any CSP which is NP-hard under the Algebraic Dichotomy Conjecture, see Jonsson et al. (2009) for details.
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and A′i = (C ′i ∨ zi) where C ′i is the same as Ci with all literals negated and zi is a new variable
associated only with the i-th clause. For example:

(y1 ∨ ¬y2 ∨ y3) −→ (y1 ∨ ¬y2 ∨ y3 ∨ ¬zi) ∧ (¬y1 ∨ y2 ∨ ¬y3 ∨ zi).

We denote the resulting set of clauses by A. We also add a set of “equality constraints”, denoted B,
between the variables zi and zj as follows. Let G be an (m, d, τ) explicit expander with d = 14 and
τ ≥ d/5 (the existence of such constructions is established in definition 8). For each edge (i, j) of
the expander B includes two clauses: (zi ∨ ¬zj) and (¬zi ∨ zj). Let ψ denote the conjunction of
the clauses in A and B.

We first note that the above reduction is polynomial time computable; that ψ contains M =
(d+2)m = 16m clauses; and that every variable ofψ appears in at most t := max{26, 2d+2} = 30
clauses. Therefore, ψ is indeed an instance of SYM(30). To prove the theorem we must show:

• Completeness: If ϕ is satisfiable then so is ψ.

• Soundness: If an assignment satisfies 1−δ fraction of ψ’s clauses then there is an assignment
that satisfies 1− γ of ϕ’s clauses.

The completeness is straight-forward: given an assignment y1, . . . , yn that satisfies ϕ, we can
simply set z1, . . . , zm to true to satisfy ψ. For the soundness, suppose that there exists an assign-
ment which satisfies 1−δ fraction of ψ’s clauses, and let v = y1, . . . , yn, z1, . . . , zm be a maximally
satisfying assignment.7 Clearly, v satisfies at least 1 − δ fraction of ψ’s clauses. We can assume
that at least half of z1, . . . , zm are set to true since otherwise we can negate the solution while
maintaining the number of satisfied clauses.

We first claim that, in fact, all the zi’s must be set to true in v. Indeed, let S = {i : zi = false}
and denote k := |S| (recall that k ≤ m/2). Suppose k > 0 and let G be the expander graph used
in the reduction. If we change the assignment of all the variables in S to true, we violate at most k
clauses fromA (as each variable zi appears in exactly 2 clauses, but one of them is always satisfied).
On the other hand, by definition of G, the edge boundary of the set S in G is at least τk = kd/5,
and every such edge corresponds to a previously violated clause from B. Therefore, flipping the
assignment of the variables in S contributes at least kd/5 − k = 14

5 k − k > k to the number of
satisfied clauses, contradicting the maximality of v. Now, since all the z′is are set to true, a clause
Ci ∈ ϕ is satisfied iff the clause Ai ∈ ψ is satisfied. As the number of unsatisfied clauses among
A1, . . . , Am is at most δM = δ(d + 2)m we get that the number of unsatisfied clauses in ϕ is at
most δ(d+ 2)m = γ

16 · 16m = γm, as required.

4.2. Reduction from SYM to FHP

We proceed by describing a gap preserving reduction from SYM(t) to FHP.

Theorem 12 Given {x(i)}ni=1 ∈ Rd, it is NP-hard to distinguish whether the furthest hyperplane
has margin 1√

d
from all points or at most a margin of (1 − ε) 1√

d
for ε = Ω(δ), where δ is the

constant in Theorem 10.

7. An assignment which satisfies the maximum possible number of clauses from ψ.
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Remark 13 For convenience and ease of notation we use vectors whose norm is more than 1 but
at most

√
12. The reader should keep in mind that the entire construction should be shrunk by this

factor to facilitate ‖x(i)‖2 ≤ 1. Note that the construction constitutes hardness even for the special
case where n = O(d) and for all points 1/

√
12 ≤ ‖x(i)‖2 ≤ 1.

Proof Let ψ be a SYM(t) formula with d variables y1, ..., yd and m clauses C1, . . . , Cm. We map
each clause Ci to a point x(i) in Rd. Consider first clauses with two variables of the form (yj1 ∨yj2)
with j1 < j2. Let sj1 , sj2 ∈ {−1, 1} denote whether the variables are negated in the clause, where
1 means not negated and −1 means negated. Then define the point x(i) as follows: x(i)

j1
= sj1 ;

x
(i)
j2

= −sj2 ; and x(i)
j = 0 for j /∈ {j1, j2}. For example:

(y2 ∨ y3) −→ (0, 1,−1, 0, . . . , 0).

For clauses with four variables yj1 , . . . , yj4 with j1 < . . . < j4 let sj1 , . . . , sj4 ∈ {−1, 1} denote
whether each variable is negated. Define the point x(i) as follows: x(i)

j1
= 3sj1 ; x(i)

jr
= −sjr for

r = 2, 3, 4; and x(i)
j = 0 for j /∈ {j1, . . . , j4}. For example:

(¬y1 ∨ y3 ∨ y4 ∨ ¬y6) −→ (−3, 0,−1,−1, 0, 1, 0, . . . , 0).

Finally, we also add the d unit vectors e1, . . . , ed to the set of points (the importance of these
“artificially” added points will become clear later). We thus have a set of n = m + d points. To
constitute the correctness of the reduction we must argue the following:

• Completeness: If ψ is satisfiable there exists a unit vector w whose margin is at least 1/
√
d.

• Soundness: If there exists a unit vector w whose margin is at least (1 − ε)/
√
d then there

exists an assignment to variables which satisfies 1− δ fraction of ψ’s clauses.

We first show completeness. let y1, . . . , yd be an assignment that satisfies ψ. Define wi = 1/
√
d

if yi is set to true, and wi = −1/
√
d if yi is set to false. This satisfies ‖w‖2 = 1. Since

the coordinates of all points x(1), . . . , x(n) are integers, to show that the margin of w is at least
1/
√
d it suffices to show that

〈
w, x(i)

〉
6= 0 for all points. This is definitely true for the unit

vectors e1, . . . , ed. Consider now a point x(i) which corresponds to a clause Ci. We claim that if〈
w, x(i)

〉
= 0 then y cannot satisfy both Ci and its negation C ′i, which also appears in ψ since it is

a symmetric formula. If Ci has two variables, say Ci = (y1 ∨ y2), then x(i) = (1,−1, 0, . . . , 0),
and so if

〈
w, x(i)

〉
= 0 we must have w1 = w2 and hence y1 = y2. This does not satisfy either

Ci = y1 ∨ y2 or C ′i = ¬y1 ∨ ¬y2. If Ci has four variables, say Ci = y1 ∨ y2 ∨ y3 ∨ y4, then
x(i) = (3,−1,−1,−1, 0, . . . , 0), and so if

〈
w, x(i)

〉
= 0 then either w = (1/

√
d)(1, 1, 1, 1, . . .) or

w = (1/
√
d)(−1,−1,−1,−1, . . .). That is, y1 = y2 = y3 = y4, which does not satisfy either Ci

or C ′i. The same applies if some variables are negated.
We now turn to prove soundness. Assume there exists a unit vectorw ∈ Rd such that |

〈
w, x(i)

〉
| ≥

(1 − ε) 1√
d

. Define an assignment y1, . . . , yd as follows: if wi ≥ 0 set yi = true, otherwise set

yi = false. If we had that all |wi| ≈ 1/
√
d then this assignment would have satisfied all clauses of

ψ. This does not have to be the case, but we will show that it is so for most wi. Call wi whose ab-
solute value is close to 1/

√
d “good”, and ones which deviate from 1/

√
d “bad”. We will show that

each clause which contains only good variables must be satisfied. Since each bad variable appears
only in a constant number of clauses, showing that there are not many bad variables would imply
that most clauses of ψ are satisfied.
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Claim 14 Let B = {i : |wi − 1/
√
d| ≥ 0.1/

√
d} be the set of “bad” variables. Then |B| ≤ 10εd.

Proof For all i we have |wi| ≥ (1 − ε)/
√
d since the unit vectors e1, . . . , ed are included in the

point set. Thus if i ∈ B then |wi| ≥ 1.1/
√
d. Since w is a unit vector we have

1 =
∑

w2
i =

∑
i∈B

w2
i +

∑
i/∈B

w2
i ≥ |B|

1.12

d
+ (d− |B|)(1− ε)2

d
,

which after rearranging gives |B| ≤ d 1−(1−ε)2
1.12−(1−ε)2 ≤ 10εd.

Claim 15 Let Ci be a clause which does not contain any variable from B. Then the assignment
y1, . . . , yd satisfies C.

Proof Assume by contradiction that Ci is not satisfied. Let x(i) be the point corresponding to Ci.
We show that

〈
w, x(i)

〉
< (1− ε)/

√
d, contradicting our assumption on w.

Consider first the case that Ci contains two variables, say Ci = (y1 ∨ y2), which gives x(i) =
(1,−1, 0, . . . , 0). Since Ci is not satisfied we have y1 = y2 = false, hence w1, w2 ∈ (−1/

√
d±η)

where η < 0.1/
√
d which implies that |

〈
w, x(i)

〉
| ≤ 0.2/

√
d < (1− ε)/

√
d. Similarly, suppose Ci

contains four variables, say Ci = (y1 ∨ y2 ∨ y3 ∨ y4), which gives x(i) = (3,−1,−1,−1, 0, . . . , 0).
SinceCi is not satisfied we have y1 = y2 = y3 = y4 = false, hencew1, w2, w3, w4 ∈ (−1/

√
d±η)

where η < 0.1/
√
dwhich implies that |

〈
w, x(i)

〉
| ≤ 0.6/

√
d < (1−ε)/

√
d. The other cases where

some variables are negated are proved in the same manner.

We now conclude the proof of Theorem 12. We have |B| ≤ 10εd. Since any variable occurs in
at most t clauses, there are at most 10εdt clauses containing a “bad” variable. As all other clauses
are satisfied, the fraction of clauses that the assignment to y1, . . . , yd does not satisfy is at most
10εdt/m ≤ 10εt < δ for ε = 0.1(δ/t) = Ω(δ) since t = 30 in Theorem 10.

5. Discussion

A question which is not resolved in this paper is whether there exists an efficient constant factor
approximation algorithm for the margin of FHP but for all points in the input. The authors have
considered several techniques to try to rule out an O(1) approximation for the problem. For exam-
ple, trying to amplify the gap of the reduction in section 4. This, however, did not succeed. Even
so, the resemblance of FHP to some hard algebraic problems admitting no constant factor approx-
imation leads the authors to believe that the problem is indeed inapproximable to within a constant
factor.
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Appendix A. Proof of Lemma 3

Lemma* 1 Let w∗ and y∗ denote the optimal solution of margin of θ and the labeling it induces.
Let y be the labeling induced by a random hyperplane w. The probability that y = y∗ is at least
n−O(θ−2).

Proof Let c1, c2 be some sufficiently large constants whose exact values will be determined later.
For technical reasons, assume w.l.o.g. that8 d > c1 log(n)θ−2. Denote by E the event that

〈w∗, w〉 >
√
c2 log(n)θ−1 ·

√
1

d
.

The following lemma gives an estimate for the probability ofE. Although its proof is quite standard,
we give it for completeness.

Lemma 16 Let w be a uniformly random unit vector in Rd. There exists some universal constant
c3 such that for any 1 ≤ h ≤ c3

√
d and any fixed unit vector w∗ it holds that

Pr[〈w,w∗〉 > h/
√
d] = 2−Θ(h2).

As an immediate corollary we get that by setting appropriate values for c1, c2, c3 we guarantee that
Pr[E] ≥ n−O(θ−2).

Proof Notice that Pr[〈w,w∗〉 > h/
√
d] is exactly the ratio between the surface area of a spherical

cap defined by the direction w∗ and height (i.e., distance from the origin) h/
√
d and the surface area

of the entire spherical cap. To estimate the probability we give a lower bound for the mentioned
ratio.

Define Sd, Cd,h as the surface areas of the d dimensional unit sphere and d dimensional spherical
cap of hight h/

√
d correspondingly. Denote by Sd−1,r be the surface area of a d − 1 dimensional

sphere with radius r. Then,

Cd,h/Sd =

∫ 1

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH

We compute the ratio
S
d−1,
√

1−H2

Sd
with the well know formula for the surface area of a sphere

of radius r and dimension d of 2πd/2rd−1/Γ(d/2) where Γ is the Gamma function, for which
Γ(d/2) = (d−2

2 )! when d is even and Γ(d/2) = (d−2)(d−4)···1
2(d−1)/2 when d is odd. We get that for any

H < 1/2,
Sd−1,

√
1−H2

Sd
= Ω(

√
d · (1−H2)(d−2)/2) = Ω(

√
d · e−dH2/2)

and that for any H < 1,
Sd−1,

√
1−H2

Sd
= O(

√
d · (1−H2)(d−2)/2) = O(

√
d · e−dH2/2).

The lower bound is given in the following equation.

Pr
[
〈w,w∗〉 > h/

√
d
]

= Cd,h/Sd =

∫ 1

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH ≥

∫ 2h/
√
d

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH

(∗)
=

8. If that is not the case to begin with, we can simply embed the vectors in a space of higher dimension.
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Ω

(∫ 2h/
√
d

H=h/
√
d

√
d · e−dH2/2dH

)
= Ω

(∫ 2h

h′=h
e−h

′2/2dh′
)

= Ω
(
h · e−2h2

)
= e−O(h2)

Equation (∗) holds since 2h/
√
d < 1/2. The upper bound is due to the following.

Pr
[
〈w,w∗〉 > h/

√
d
]

=

∫ 1

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH = O

(∫ 1

H=h/
√
d

√
d · e−dH2/2dH

)
=

O

(∫ ∞
h′=h

e−h
′2/2dh′

)
(∗∗)
= O

(∫ ∞
h′=h

e−h
2/2−hh′dh′

)
= e−Ω(h2)

In equation (∗∗) we used the fact that h2/2 + hh′ ≤ h′2/2 for all h′ ≥ h. The last equation holds
since h ≥ 1.

We continue with the proof of Lemma 3. We now analyze the success probability given the event
E has occurred. For the analysis, we rotate the vector space so that w∗ = (1, 0, 0, . . . , 0). A vector
x can now be viewed as x = (x1, x̃) where x1 = 〈w∗, x〉 and x̃ is the d − 1 dimensional vector
corresponding to the projection of x onto the hyperplane orthogonal to w∗. Since w is chosen as a
random unit vector, we know that given the mentioned event E, it can be viewed as w = (w1, w̃)
where w̃ is a uniformly chosen vector from the d − 1 dimensional sphere of radius

√
1− w2

1 and

w1 ≥
√
c log(n)θ−1 ·

√
1
d .

Consider a vector x ∈ Rd where ‖x‖ ≤ 1 such that 〈w∗, x〉 ≥ θ. As before we write x = (x1, x̃)
where ‖x̃‖ ≤

√
1− x2

1. Then

〈x,w〉 = x1w1 + 〈x̃, w̃〉 ≥
√
c log n

d
+ 〈x̃, w̃〉

Notice that both x̃, w̃ are vectors whose norms are at most 1 and the direction of w̃ is chosen
uniformly at random, and is independent of E. Hence, according to Lemma 16,

Pr
w

[
|〈x̃, w̃〉| ≥

√
c log n/

√
d
]
≤ n−Ω(c).

It follows that the sign of 〈w, x〉 is positive with probability 1 − n−Ω(c). By symmetry we get
an analogous result for a vector x s.t. 〈w∗, x〉 ≤ −θ. By union bound we get that for sufficiently
large c, with probability 1/2 we get that for all i ∈ [n], sign

〈
w, x(i)

〉
= sign

〈
w∗, x(i)

〉
(given the

event E has occurred) as required. To conclude
Pr

w∈Sd−1
[y = y∗] ≥ Pr

w∈Sd−1
[E] · Pr

w∈Sd−1
[y = y∗|E] ≥ n−O(θ−2).

Appendix B. A note on average case complexity of FHP

Given the hardness results above, a natural question is whether random instances of FHP are easier
to solve. As our algorithmic results suggest, the answer to this question highly depends on the maxi-
mal separation margin of such instances. We consider a natural model in which the points {x(i)}ni=1

are drawn isotropically and independently at random close to the unit sphere Sd−1. More formally,
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each coordinate of each point is drawn independently at random from a Normal distribution with
standard deviation 1/

√
d: x(i)

j ∼ N (0, 1/
√
d).

Let us denote by θrand the maximal separation margin of the set of points {x(i)}ni=1. While com-
puting the exact value of θrand is beyond the reach of this paper 9 , we prove the following simple
bounds on it:

Theorem 17 With probability at least 2/3

Ω
( 1

n
√
d

)
= θrand = O

( 1√
d

)
.

Proof For the upper bound, let w be the normal vector of the furthest hyperplane achieving margin
θrand, and let yi ∈ {±1} be the sides of the hyperplane to which the points x(i) belong, i.e, for all
1 ≤ i ≤ n we have yi

〈
w, x(i)

〉
≥ θrand. Summing both sides over all i and using linearity of inner

products we get 〈
w,

n∑
i=1

yi · x(i)

〉
≥ θrand · n (2)

By Cauchy-Schwartz and the fact that ‖w‖ = 1 we have that the LHS of (2) is at most ‖
∑n

i=1 yi ·
x(i)‖ = ‖Xy‖. Here X denotes the d × n matrix whose i’th column is x(i), and by y the {±1}n
vector whose i’th entry is yi.

θrand · n ≤ ‖Xy‖ ≤ ‖y‖ · ‖X‖ ≤
√
n ·O

(√n+
√
d√

d

)
= O

( n√
d

)
(3)

where the second inequality follows again from Cauchy-Schwartz, and the third inequality follows
from the facts that the spectral norm of a d × n matrix whose entries are N (0, 1) distributed is
O(
√
n +
√
d) w.h.p. (see Latala (2005)) and the fact that ‖y‖ =

√
n. Rearranging (3) yields the

desired upper bound.
For the lower bound, consider a random hyperplane defined by the normal vector w′/||w′||

where the entries of w′ distribute i.i.d. 1√
d
N (0, 1). From the rotational invariance of the Gaussian

distribution we have that
〈
w′, x(i)

〉
also distributes 1√

d
N (0, 1). Using the fact that w.h.p ||w′|| ≤ 2

we have for any c > 1:

Pr
[
|
〈
w, x(i)

〉
| ≤ 1

c · n
√
d

]
≤ Pr

[
|
〈
w′, x(i)

〉
| ≤ 2

c · n
√
d

]
= Pr

Z∼N (0,1)

[
|Z| ≤ 2

c · n

]
= O

( 1

c · n

)
. (4)

For a sufficiently large constant c, a simple union bound implies that the probability that there exists
a point x(i) which is closer than 1/(c · n

√
d) to the hyperplane defined by w is at most 1/3. Note

that the analysis of the lower bound does not change even if the points are arbitrarily spread on the
unit sphere (since the normal distribution is spherically symmetric). Therefore, choosing a random
hyperplane also provides a trivial O(n

√
d) worst case approximation for FHP.

9. The underlying probabilistic question to be answered is: what is the probability that n random points on Sd−1 all fall
into a cone of measure θ ?
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