
JMLR: Workshop and Conference Proceedings vol 23 (2012) 40.1–40.24 25th Annual Conference on Learning Theory

Autonomous Exploration For Navigating In MDPs

Shiau Hong Lim SHONGLIM@GMAIL.COM

Peter Auer AUER@UNILEOBEN.AC.AT

Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria.

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract
While intrinsically motivated learning agents hold considerable promise to overcome limitations of
more supervised learning systems, quantitative evaluation and theoretical analysis of such agents
are difficult. We propose to consider a restricted setting for autonomous learning where systematic
evaluation of learning performance is possible. In this setting the agent needs to learn to navigate
in a Markov Decision Process where extrinsic rewards are not present or are ignored. We present a
learning algorithm for this scenario and evaluate it by the amount of exploration it uses to learn the
environment.
Keywords: autonomous exploration, reinforcement learning, optimism in the face of uncertainty,
computational learning theory

1. Introduction

Learning agents with intrinsic motivation have been studied in many different settings (Schmid-
huber, 1991, 2010; Oudeyer et al., 2007; Oudeyer and Kaplan, 2007; Baranes and Oudeyer, 2009;
Singh et al., 2004, 2010). However, there is no well-defined performance measure or systematic the-
oretical analysis of actual, implementable autonomous learning agents. In the most general setting
this is certainly a formidable task. We make a step in this direction by considering a restricted yet
reasonably rich class of environments for which we can give tractable algorithms with well-defined
performance guarantee.

The learning scenario and the learning algorithm that we analyze have some of the properties
encountered also by biological learners: the environment is potentially infinite and the learner ob-
serves only a small part of it by autonomous exploration; the learner selects exploration paths which
are the most promising to reveal new relevant information; the learner checks if its current knowl-
edge of the environment is sufficiently accurate; the learner incrementally extends its knowledge
about the environment by moving from simpler intrinsic goals to more complicated ones.

2. Problem Definition

We consider learning a discrete-time Markov Decision Process (MDP)Mwith no external rewards.
We assume a countable, possibly infinite state space S, a finite set of actions A with |A| = A, and
an unknown transition function P where P (s′|s, a) gives the probability of reaching next state s′ if
action a is executed in state s. A learner can gain knowledge about its environment only by choosing
an action in its current state and following the resulting trajectory.

The learner is expected to explore this environment autonomously. Such autonomously moti-
vated exploration, however, should ideally be as efficient as possible, wasting no time or resources

c© 2012 S.H. Lim & P. Auer.

LIM AUER

on parts of the world that are already known to the agent. As suggested in (Schmidhuber, 2010),
a quantitative measure of exploration progress is needed. We believe that a natural measure is in
terms of the set of states that can be confidently reached by the agent from a designated reference
or “neutral” starting state.

Definition 1 (Reachability) Let s0 be the designated neutral starting state. For any (possibly non-
stationary) policy π, let τ(s|π) be the expected number of steps before reaching s for the first time,
when executing policy π starting from s0.

Trying to reach a specific state s can be viewed as a subtask whose complexity is measured by
the average number of steps necessary to reach s. Grouping states according to their reachability,
we can consider the states reachable in L steps,1

SL = {s ∈ S : min
π
τ(s|π) ≤ L}.

A natural question is: how many exploration steps are necessary (or sufficient) to learn, for every
s ∈ SL, a policy πs with τ(s|πs) ≤ (1 + ε)L for some ε > 0?

Since the state space can be infinite, it is possible that a learner wanders off in some direction
or gets stuck, without the ability to return to the starting state. To address this issue, we make the
following assumption.

Assumption 1 In every state there is a designated RESET action available, that will transition
back to the starting state s0 with probability 1.2

The motivation for this learning scenario is that it captures interesting properties of an undirected
exploration problem. In contrast to a standard MDP learning problem, where the goal is to find a
good policy for a single problem, in the proposed scenario the learner has to find good policies for
a set of problems: it needs to find a good policy for each reachable state. Still, what is learned by
finding a good policy for one state, might be used to find a good policy for another state. The learner
gets to know its environment in an efficient way.

We believe that this scenario cannot be solved efficiently by a simple adaptation of existing
reinforcement learning algorithms. One problem is to deal with a potentially infinite state space
and to concentrate exploration on a reachable subset of states. Our algorithm solves this problem
by incrementally increasing the search area. Another problem is to generate appropriate reward
functions that can be fed to a reinforcement learner. Our algorithm solves this by implicitly using
a different reward function for each state that is to be reached. Still the question is when to switch
from one reward function to a new one.

2.1. Negative Results

Ideally, one would look for a learning algorithm where the total number of exploration steps is poly-
nomial in |S(1+ε)L|, A, L, and 1/ε. The reason that the larger |S(1+ε)L| instead of |SL| is expected
to appear in the exploration bound, is that the learner might be unable to distinguish between states

1. In all the following we assume that the starting state s0 is fixed and we omit it from any notation.
2. It is possible to relax this requirement in several ways, such as a RESET that requires multiple actions or needs to be

learned, but this mostly clouds the main ideas with unnecessary details.

40.2

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

reachable in L steps and those reachable in (1 + ε)L steps (given a reasonable amount of explo-
ration). Thus the learner might learn also policies to reach states in S(1+ε)L, which needs to be
reflected in the bound. Nevertheless, the following result shows that even with the larger |S(1+ε)L|
efficient learning is not possible in general.

Proposition 2 For any learning algorithm, any L ≥ 2, and any T ≥ 0, there is an MDPM with
actions A = {a0, a1,RESET} and the following properties:

• there is only one state sL (besides s0) that is reachable in L steps, SL = {s0, sL}, and there
is no other state reachable in 3

2L steps,

• after T exploration steps, the probability that the learning algorithm outputs a policy for
reaching sL in 3

2L steps is less than 21−L.

The proof (given in the Appendix) uses a construction such that sL is reachable in L steps only by
a policy that touches upon an arbitrarily large number of intermediate states. To find this policy the
intermediate states need to be explored, which takes time proportional to the number of intermediate
states. Thus for a large number of intermediate states, sL is reached only by luckily choosing the
right L actions, which happens with exponentially small probability.

To avoid the problem with non-reachable intermediate states, one could attempt to learn only
policies for states in the subset S◦L ⊆ SL, where each state in S◦L can be reached in L steps by a
policy staying in S◦L.

Definition 3 (S◦L) A policy π on S ′ is a policy with π(s) = RESET for any s 6∈ S ′. Let S◦L be the
largest set such that all states in S◦L are reachable in L steps by policies on S◦L.

Unfortunately, learning S◦L may still require an exponential number of exploration steps.

Proposition 4 For any learning algorithm, any L ≥ 14, and any T ≤ 2L

8L2 , there is an MDPM
with actions A = {a0, a1,RESET} and the following properties:

• |S◦L| ≤ 4L2, and there are no other states reachable in 3
2L steps,

• there exists g0 ∈ S◦L such that after T exploration steps, the probability that the learning
algorithm outputs a policy for reaching g0 in 3

2L steps is less than 1/L.

The proof (given in the Appendix) exploits the difficulty in distinguishing reachable states (which
need to be explored) from unreachable states (which should be ignored). The construction of the
proof yields an exponential number of unreachable states that are indistinguishable from reachable
states (without extensive exploration). Thus the learning algorithm spends an exponential number
of exploration steps on unreachable states.

2.2. Positive Results

By concentrating on MDPs that allow for an incremental discovery of reachable states, we arrive at
a definition for a subset of states S→L that can indeed be learned efficiently.

Definition 5 (S→L) Let ≺ be a partial order on S. The set S≺L of states reachable in L steps incre-
mentally in respect to ≺, is defined as follows:

40.3

LIM AUER

• s0 ∈ S≺L ,

• if there is a policy π on {s′ ∈ S≺L : s′ ≺ s} and τ(s|π) ≤ L, then s ∈ S≺L .

The set S→L of states reachable in L steps in respect to some partial order is given by

S→L =
⋃
≺
S≺L .

Proposition 6 The set S→L is finite for any L. Furthermore, there exists a partial order ≺ with
S→L = S≺L .

The proof is given in the appendix.

Remark 7 The definition of S→L captures some intuition about the ability to incrementally learn
navigation tasks. A partial order — unknown to the learner — ranks the difficulty of the navigation
tasks, such that a learner that is adaptive to this difficulty might incrementally extend its skill to
navigate in the environment.

Our main result bounds the number of exploration steps necessary to learn policies for the states in
S→L , using our new algorithm UcbExplore presented in the next section.

Theorem 8 When algorithm UcbExplore is run with inputs s0, A, L ≥ 1, ε > 0, and δ ∈ (0, 1),
then with probability 1− δ

• it terminates after O
(
SAL3

ε3

(
log SAL

εδ

)3)
exploration steps,

• discovers a set of states K ⊇ S→L ,

• and for each s ∈ K outputs a policy πs with τ(s|πs) ≤ (1 + ε)L,

where S = |K| ≤ |S→(1+ε)L|.

By running algorithm UcbExplore with increasing L = 1, (1 + ε), (1 + ε)2, . . ., nearly optimal
policies (in respect to some partial order) will be discovered for all reachable states.

Corollary 9 If UcbExplore is run with Lk = (1 + ε)k and δk = δ
2(k+1)2

for k = 0, 1, 2, . . ., then
with probability 1− δ, for any L ≥ 1 and any s ∈ S→L , the algorithm will discover a policy πs with

τ(s|πs) ≤ (1 + ε)2L after O
(
SAL3

ε4

(
log SAL

εδ

)3)
exploration steps where S = |S→(1+ε)2L|.

3. Algorithm UcbExplore

Figure 1 presents our algorithm UcbExplore. The main idea of the algorithm is to consider reaching
a particular state as a task, and to choose an “optimistic” task in each iteration of the algorithm. By
optimistic we mean choosing the easiest state to reach – the one that seems to be reachable in the
shortest number of steps from s0, based on information collected so far. The environment will then
be explored using an optimistic policy for this optimistic task.

The algorithm keeps a set K of “known” states and a set U of “unknown” states. A state is
“known” when a (1 + ε)L-step policy for that state has been found (with high confidence). The

40.4

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

Input: A confidence parameter δ ∈ (0, 1), an error threshold ε > 0, L ≥ 1, A and s0.
Output: A set of known reachable states K and corresponding policies πs for all s ∈ K.

1. Set ε← min(ε,1)
8 and initialize k ← 1, U ← {}, K ← {}, and snew ← s0.

2. For each round,

(a) State Discovery

If snew /∈ K, add snew to K, then sample each action a ∈ A in snew

⌈
L log 8AL|K|2

δ

⌉
times, adding any newly discovered states into U .
Stop the algorithm if U is empty.

(b) Compute Optimistic Policy
For each s ∈ U , compute a Γ-step optimistic policy π̃s and its corresponding value
ũΓ(s0|π̃s,Ms), where Γ = d(1 + 1

ε)Le. Let

ũ∗ = max
s∈U

ũΓ(s0|π̃s,Ms).

Stop the algorithm if ũ∗ < Γ − L. Otherwise choose a state s̃ ∈ U as the target state
satisfying ũΓ(s0|π̃s̃,Ms̃) = ũ∗ and set the policy π̃ ← π̃s̃.

(c) Policy Evaluation

Run π̃ for up to λ =
⌈

6
ε3

log
(

16|K|2
δ

)⌉
episodes. Each episode begins at s0 and ends

either when s̃ is reached or Γ steps have been executed. The average number of steps τ̂
to reach s̃, and the fraction p̂ of episodes that failed to reach s̃, are updated after each
episode. Policy evaluation is terminated before finishing all λ episodes, if one of the
following happens:

• If τ̂+εL+p̂+ε
1−(p̂+ε) > (1 + 8ε)L after any episode, then k ← k + 1 and a new round is

started (the current round has been a failure round).
• For any state-action pair (s, a), a 6= RESET, let N(s, a) be the total number of

times (s, a) has been executed in previous rounds, and let v(s, a) be the number of
times (s, a) has been executed in the current round. If v(s, a) ≥ max{1, N(s, a)},
then start a new round (the current round has been a skipped round).

If the current round is neither a failure nor a skipped round (it is a success round), then
remove s̃ from U , set snew ← s̃ and output πsnew ← π̃.

Figure 1: Algorithm UcbExplore

states in U are states that have been discovered as potential members of S→L , but the algorithm has
yet to produce a (1 + ε)L-step policy for any of them. All observed state transitions are recorded,
to be used as samples for computing future policies.

For any state s∗, we define an induced MDPMs∗ such that all actions in the state s∗ inMs∗

give reward 1 and transition back to s∗ with probability 1. All other states and actions inMs∗ behave

40.5

LIM AUER

exactly as inM, and give zero rewards. Thus maximizing the total rewards inMs∗ is equivalent to
minimizing the number of steps to reach s∗.3

Each major iteration of the algorithm is referred to as a “round”. In each round, a new optimistic
target state s̃ ∈ U is chosen. The optimistic policy forMs̃ will then be executed for a number of
episodes where each episode can be up to Γ = d(1 + 1

ε)Le steps. The outcome of a round can be
either a success or a failure. If it is a success, s̃ will become “known”. The algorithm stops when it
is highly likely that all states in S→L are already known. Otherwise a new round will begin.

The following subsections describe each of the three major steps in the algorithm in more details.

3.1. State Discovery

Since the state space is unknown and possibly infinite, there is a need for state discovery. Whenever
there is a new “known” state snew, this step is performed in order to discover any states reachable
from snew. By definition of a known state, the algorithm has found a policy πsnew that can reach
snew in (1 + ε)L steps. Using this policy, it is possible to sample any action a ∈ A in snew by first
resetting to s0 and then executing πsnew until snew is reached. Each sample requires on average at
most (1 + ε)L+ 1 steps.

3.2. Computing Optimistic Policies

Let Γ = d(1 + 1
ε)Le and let π be a policy with horizon Γ. For i ∈ {0, . . . ,Γ}, let ui(s|π,Ms∗) be

the expected total i-step reward if π is followed for i steps beginning at state s inMs∗ . Let

u∗i (s|Ms∗) = max
π on K

ui(s|π,Ms∗)

be the expected i-step total reward for an optimal policy (restricted to the known states).
Central to the algorithm is the computation of an “optimistic” policy, which is an optimal policy

with respect to an optimistic estimation of u∗i (s|Ms∗). The optimistic i-step reward ũi(s|Ms∗) is
an upper confidence bound of u∗i (s|Ms∗) computed based on an approximate transition function
P̂i(·|s, a) using transitions observed in the past. Figure 2 gives the algorithm for computing an
optimistic policy.

Note that one of the inputs to the algorithm in Fig. 2 is a round index k. As explained in the
next section, the index k is incremented only after a “failure” round.

3.3. Policy Evaluation

In each round, once an optimistic target state s̃ is chosen, the corresponding optimistic policy is
evaluated. The evaluation is performed in a number of episodes. In each episode, the policy is
executed, starting at s0, until either s̃ is reached or Γ steps have been executed. If s̃ is reached the
episode is considered a success, otherwise it is a failure.

After each episode, the average number of steps per episode (regardless of success) is lower
bounded by

τ̂ =

∑n
j=1 τ̂j

λ

3. Losses instead of rewards can be used by assigning loss 1 to any action taken in states other than s∗, the results would
be mathematically equivalent. Although losses might be more natural in this setting, we use rewards for compatibility
with UCRL2 (Jaksch et al., 2010), from which we borrow some ideas.

40.6

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

Input: A, K, U , L, Γ, ε, δ, s0, target state s∗ ∈ U , an index k ∈ {1, 2, . . .} and for each s ∈ K,a ∈
A, a set of N(s, a) ≥ 0 independent transitions.
Output: An optimistic policy π̃ forMs∗ and its corresponding Γ-step value ũΓ(s0).

1. For each s ∈ K, a ∈ A, divide the set of N(s, a) transitions into Γ disjoint sets, each with
at least bN(s,a)

Γ c transition samples. Let Ni(s, a) be the total number of transitions in the i-th
sample set and vi(s′|s, a) be the number of transitions that end up in state s′ in the i-th sample
set. If Ni(s, a) > 0, let P̂i(s′|s, a) = vi(s

′|s,a)
Ni(s,a) for all s′. Otherwise let P̂i(s∗|s, a) = 1 and

P̂i(s
′|s, a) = 0 for all other states s′.

2. Let ũ0(s) = 0 for all s.

3. Let ũi(s∗) = i for i = 1, . . . ,Γ.

4. For each i = 1, . . . ,Γ

• For each s ∈ K and each a ∈ A, let

q̃i(s, a) = min

{
i,

(
P̂i(·|s, a)ũi−1(·) +

σk(L+ 1)
√

Γ√
max{1, N(s, a)}

)}

and
ũi(s) = max

a
q̃i(s, a)

where σk =
√

log 2A|U||K|Γk5
ε4δ

.

• For all s /∈ K, s 6= s∗, let ũi(s) = ũi−1(s0).

5. For s ∈ K and i = 0, . . . ,Γ− 1, let π̃i(s) = arg maxa q̃Γ−i(s, a).
(After executing Γ steps the policy resets to s0 and restarts.)

For each s /∈ K, let π̃i(s) = RESET.

Figure 2: Algorithm for computing an optimistic policy

where λ =
⌈

6
ε3

log
(

16|K|2
δ

)⌉
, n ≤ λ is the number of episodes so far, and τ̂j is the actual number

of steps taken before the episode ends. Also, the failure rate is lower bounded by

p̂ =
f

λ

where f is the number of episodes (out of n) that have failed to reach s̃ so far.
At the end of each episode, a performance check is carried out. If

τ̂ + εL+ p̂+ ε

1− (p̂+ ε)
> (1 + 8ε)L

then the round is considered a “failure” and a new round will begin, with k incremented. If λ
episodes have been executed without failing the performance check, then this is a successful round
and the target s̃ will become a new “known” state.

40.7

LIM AUER

To prevent potentially bad state-action pairs from getting executed too many times in a single
round, a round is terminated early when this happens (resulting in a skipped round, see Step 2c in
Fig. 1).

4. Analysis of Algorithm UcbExplore and Proof of Theorem 8

We can classify each round in the main algorithm into 3 types based on its outcome:

1. A successful round where a new known state is removed from U and gets added to K.

2. A failure round, which is terminated due to a failed performance check (Section 3.3).

3. A “skipped” round, which is terminated due to frequent visits to a possibly bad state (Section
3.3).

Note that the index k in the algorithm only gets incremented in a failure round. It will be shown
that the number of rounds for the other two types can be easily bounded. When we mention “round
k” it will mean failure round k.

For most of the lemmas in the subsequent sections we give a “proof sketch”, which is a short,
intuitive version of the proof, while the full proof is given in the appendix.

4.1. Bound on the Number of Steps in Each Round

We first give a useful bound on the maximum number of steps that can actually be executed in each
round of the algorithm (Lemma 10). A consequence of this is that we can then bound the number
of “skipped” rounds (Lemma 11).

Lemma 10 Assuming ε ∈ (0, 1
8], the number of actual steps executed in any round is at most 2Lλ

where λ =
⌈

6
ε3

log 16|K|2
δ

⌉
.

Proof Sketch For a successful round, since it passed the performance check (to verify that it can
reach the target in L+O(εL) steps) in all λ episodes, the average steps per episode must be at most
L + O(εL) steps. For a failure or “skipped” round, suppose a policy failed the performance check
after some n ≤ λ episodes, it means that it passed the check in all the previous n− 1 episodes, and
the last episode only adds at most O(Lε) = O(εLλ) steps to the total.

Lemma 11 At any round, there can be at most log2 4Lλ previously skipped rounds due to any
particular state-action pair, where λ =

⌈
6
ε3

log 16|K|2
δ

⌉
.

Proof By Lemma 10 the total number of steps in any round is at most 2Lλ. In order for a round
to be skipped due to a particular state-action pair (s, a), it must be that N(s, a) ≤ v(s, a) ≤ 2Lλ,
which means that its total previous visits must be at most 2Lλ.

Since, after every “skipped” round, the total number of visits for this state-action pair will be
doubled, it follows that this can only happen at most log2 4Lλ times.

40.8

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

4.2. State Discovery

Since S→L is unknown, an important aspect of the algorithm is to ensure, with high probability, that
none of the states in S→L are “missed”. In particular, we need to ensure that in every round, unless
all of S→L is already known, at least one of the states in S→L is also in U and that it is reachable
in L steps with a policy restricted to K (RESET will be performed in all other states). Lemma 12
provides the necessary guarantee.

Given any state s ∈ S→L , we define S≺s = {s′ ∈ S→L : s′ ≺ s} with respect to a partial order ≺
such that there is a π∗s on S≺s with τ(s|π∗s) ≤ L. Proposition 6 guarantees that there is at least one
such partial order on S→L .

Lemma 12 With probability at least 1− δ
4 , at any round, either S→L ⊆ K or there exists s∗ ∈ S→L \K

such that s∗ ∈ U and S≺s∗ ⊆ K.

Proof In any round such that S→L \ K is not empty, there is an s∗ ∈ S→L \ K with S≺s∗ ⊆ K. To
show that s∗ ∈ U , first note that since S≺s∗ ⊆ K, there exists a policy on K that can reach s∗ in L
steps. Thus there is an s ∈ K and an action a with P (s∗|s, a) ≥ 1

L , and hence with high probability
s∗ is found during the state discovery phase for s (see Step 2a in Fig. 1). This is made formal by
Lemma 17 in the appendix.

4.3. Policy Evaluation and Performance Bound

In each round a new optimistic policy π̃ for an optimistic target state s̃ is computed and then eval-
uated on M. If π̃ passes the performance check (Section 3.3) then s̃ will become known. The
following lemma ensures that with high probability, all policies that pass the performance check
can reach the target state in (1 + 8ε)L steps.

Lemma 13 Let πs1 , πs2 , . . . , πsn be any sequence of policies output by the algorithm for the cor-
responding target states s1, s2, . . . , sn. For any 0 < ε ≤ 1

8 , with probability at least 1 − δ
4 ,

τ(si|πsi) ≤ (1 + 8ε)L for all policies πsi in the sequence.

Proof Sketch Let π be a policy output by the algorithm and let TΓ be a random variable denoting
the total number of steps that it takes before reaching either the target state or the end of an episode
(Γ steps). Since π must have passed the performance check, it’s empirical performance satisfies
τ̂+εL+p̂+ε

1−(p̂+ε) ≤ (1 + 8ε)L where τ̂ is the empirical average of TΓ and p̂ is the empirical failure
rate (of reaching the target state). Since TΓ is bounded between 0 and Γ, it is possible to bound
its variance, and to show by applying Bernstein’s inequality that passing the performance check
implies E(TΓ) ≤ τ̂ + εL and the true failure rate p ≤ p̂+ ε with high probability.

It is then possible to show that a non-stationary, infinite-horizon policy can be derived from π
by simply performing the RESET action (and repeat the same policy) whenever the target is not
reached after Γ steps, and the expected number of steps to reach the target state with the resulting
policy will be at most (1 + 8ε)L.

40.9

LIM AUER

4.4. Optimistic Policy

The following lemma shows that the value estimate using the empirical transition probabilities
P̂i(·|s, a)ũi−1(·) is close to P (·|s, a)ũi−1(·) for large N(s, a). Note that we omit the target state s∗

in the notation whenever it is clear based on the context, where ũi(s) means ũi(s|Ms∗) and u∗i (s)
means u∗i (s|Ms∗). One consequence of this lemma is that the policy computed by the algorithm in
Fig. 2 is optimistic with high probability.

Lemma 14 At round k, with probability at least 1 − ε4δ
k5

, for every target s∗ ∈ U such that
u∗Γ(s0|Ms∗) ≥ Γ− L, for every state s ∈ K, every action a ∈ A and every i ∈ {1, . . . ,Γ},∣∣∣P̂i(·|s, a)ũi−1(·)− P (·|s, a)ũi−1(·)

∣∣∣ ≤ σk(L+ 1)
√

Γ√
max{1, N(s, a)}

(1)

and
ũi(s) ≥ u∗i (s) . (2)

Proof Sketch The proof makes use of two key ideas:

1. First, by construction, P̂i(·|s, a) and ũi−1(·) are independent for any i ∈ {1, . . . ,Γ} since
they are computed using separate samples of past transitions (see Step 1 in Fig. 2).

2. Second, due to the RESET action, the value of ũi(s) for any s is lower bounded by ũi−1(s0).
Since ũi is also upper bounded by i, and assuming that ũi−1(s0) is optimistic, the range of
values for ũi(s) is at most L+ 1.

With the above, we can obtain inequality (1) by applying Hoeffding’s inequality. By using the same
reasoning inductively for i = 1, . . . ,Γ, (2) can be easily derived and a union bound can be applied
to obtain the total failure probability.

4.5. Regret Bounds

We make use of regret bounds to bound the number of failure rounds. The regret in a Γ-step episode
is defined as

Γ− L−
Γ−1∑
i=0

ri

where ri is the reward received at step i in the episode. We consider the regret only in failure rounds.
First we establish that the total regret of a failure round is at least some ∆failure – this is provided
by Lemma 15. Next we upper-bound the total regret after m failure rounds by some ∆ – this is
provided by Lemma 16. It follows that the number of failure rounds is bounded as m ≤ ∆

∆failure
.

Lemma 15 In any failure round, the total regret is at least λεL where λ =
⌈

6
ε3

log 16|K|2
δ

⌉
.

Proof Sketch This follows from a failed performance check (see Section 3.3), implying that the
target state is reached only after (1 + ε)L steps on average.

40.10

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

Lemma 16 Let S = |S→(1+8ε)L|. Then, with probability at least 1− δ, the average per-round regret
in m failure rounds is at most

173
L2
√
SA

ε2
√
m

log
m

εδ

for all m ≥ SAL.

Proof Sketch Lemma 14 provides the key inequality needed to bound the regret. The rest of the
proof borrows ideas from Jaksch et al. (2010). Please refer to the appendix for details.

4.6. Proof of Theorem 8

Proof First, we count the total steps in successful rounds. By Lemma 13, with probability at least
1 − δ/4 all the policies output by the algorithm have τ(s|πs) ≤ (1 + 8ε)L. Therefore there are
most S = |S→(1+8ε)L| successful rounds, each taking at most O(L

ε3
log S

δ) steps (by Lemma 10).

Additionally, for each new known state and each action, there are O(L2 log ALS
δ) discovery steps.

We therefore have a total of O(SAL
2

ε3
log SAL

δ) steps.
Next, we look at the number of “skipped” rounds. Since for each state-action pair there are at

most O(log LS
εδ) skipped rounds (Lemma 11), each with at most O(L

ε3
log S

δ) steps (Lemma 10), the
total number of steps is O(SAL

ε3
log SL

εδ).
We now focus on the number of failure rounds. We show that

M = 9 · 152SAL2

(
log

152SAL2

εδ

)2

is an upper bound on the number of failure rounds. Let α = 152SAL2. Using the fact that x >
3 log x for all x > 5, it follows that

M = 9α
[
log

α

εδ

]2
= α

[
log

α

εδ
·
(α
εδ

)2
]2

> α

[
log

α

εδ
· 9
(

log
α

εδ

)2
]2

= α

(
log

M

εδ

)2

.

By Lemma 16, the per-round total regret after m ≥M failure rounds is bounded by

173
L2
√
SA

ε2
√
m

(
log

m

εδ

)
< 173

L2
√
SA

ε2
√
α

< 12
L

ε2
< λ1εL ,

where λ1 =
⌈

6
ε3

log 16
δ

⌉
. Hence there is a failure round k ≤ m with total per-round regret less

than λ1εL. This, however, contradicts Lemma 15, which states that such a round cannot be a failure
round. We conclude that the number of failure rounds is at mostM = O(SAL2

(
log SAL

εδ

)2
). Thus,

by Lemma 10, the total number of steps in failure rounds is O(SAL
3

ε3

(
log SAL

εδ

)3
).

Finally, Lemma 12 guarantees that if the algorithm stops, all states in S→L are known, and
Lemma 13 gives the performance guarantee for all policies output by the algorithm, using the fact
that ε = min(1,ε)

8 .

40.11

LIM AUER

4.7. Discussion

Our algorithm employs the idea of optimism under uncertainty, which underlies many PAC-MDP
algorithms (Kearns and Singh, 1998; Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl et al.,
2006; Szita and Szepesvári, 2010). A particular point that we need to clarify is regarding the notion
of “known” states. The meaning of a “known” state in UcbExplore is very different from that in
the R-MAX algorithm (Brafman and Tennenholtz, 2002; Kakade, 2003). In UcbExplore, a state is
“known” if we have learned a good policy to reach it. On the other hand, in R-MAX, a state is
“known” if we have sampled its actions sufficiently often.

It remains an open question if the exploration bound for our algorithm is optimal. One would
expect that the bounds can be improved to Õ

(
SAL2

ε2

)
, but this has not been achieved. New methods

will be necessary to obtain such an improvement.

Acknowledgements

We thank the anonymous reviewers for their very valuable comments. The research leading to
these results has received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦ 231495 (CompLACS) and n◦ 216886 (PASCAL2).

References

A. Baranes and P.-Y. Oudeyer. R-IAC: Robust Intrinsically Motivated Exploration and Active Learn-
ing. IEEE Transactions on Autonomous Mental Development, 1(3):155–169, Oct. 2009. ISSN
1943-0604. doi: 10.1109/TAMD.2009.2037513.

R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. J. Mach.
Learn. Res., 99:1563–1600, August 2010. ISSN 1532-4435.

S. M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, Gatsby Compu-
tationel Neuroscience Unit, University College London, 2003.

M. J. Kearns and S. P. Singh. Near-optimal reinforcement learning in polynominal time. In ICML,
pages 260–268, 1998.

P.-Y. Oudeyer and F. Kaplan. What is Intrinsic Motivation? A Typology of Computational Ap-
proaches. Frontiers in neurorobotics, 1(November):6, Jan. 2007. ISSN 1662-5218. doi:
10.3389/neuro.12.006.2007.

P.-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motivation systems for autonomous mental de-
velopment. IEEE Transactions on Evolutionary Computation, 11:265–286, 2007.

J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proceedings of the first international conference on simulation of adaptive behav-
ior on From animals to animats, pages 222–227, Cambridge, MA, USA, 1991. MIT Press. ISBN
0-262-63138-5.

40.12

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (19902010). Autonomous
Mental Development, IEEE Transactions on, 2(3):230–247, 2010.

S. P. Singh, A. G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning. In NIPS,
2004.

S. P. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforcement learning:
An evolutionary perspective. IEEE T. Autonomous Mental Development, 2(2):70–82, 2010.

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. Pac model-free reinforcement
learning. In ICML, pages 881–888, 2006.

I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight exploration com-
plexity bounds. In ICML, pages 1031–1038, 2010.

Appendix A. Proofs for Section 2

A.1. Proof of Proposition 2

Proof Let n� T and n� L, and consider the state space

S = {s0, s
(1)
1 , . . . , s

(n)
1 , s

(1)
2 , . . . , s

(n)
2 , . . . , s

(1)
L−1, . . . , s

(n)
L−1, sL}

For the transition function, let

• P (s
(k)
1 |s0, ai) = 1/n for k ∈ {1, . . . , n} and i ∈ {0, 1},

• and for each l ∈ {1, . . . , L − 1} and k ∈ {1, . . . , n} there is an index I(l, k) ∈ {0, 1}
with P (s

(k)
l+1|s

(k)
l , aI(l,k)) = 1 and P (s0|s(k)

l , a1−I(l,k)) = 1 (for notational convenience let

s
(1)
L = . . . = s

(n)
L = sL).

We consider an independent and uniform random choice of the indices I(l, k). After T exploration
steps, any learning algorithm has explored at most T of the n paths s0 → s

(k)
1 → · · · → s

(k)
L−1 → sL.

The probability of hitting such an explored path by the random transition from s0 is at most T/n.
The probability — in respect to the random indices I(l, k) — of reaching sL on an unexplored path
is 2−L. Thus for large n the probability of reaching sL in 3

2L steps is at most 21−L. Hence for any
learning algorithm there is a fixed choice of indices I(l, k), such that the probability — in respect
to the randomization of the learning algorithm — of reaching sL in 3

2L steps is less than 21−L.
For any fixed choice of indices I(l, k) state sL can be reached in L steps, and for large n no

other state can be reached in 3
2L steps.

A.2. Proof of Proposition 4

Proof Consider an infinite state space S that is partitioned into a binary tree where each node is
a disjoint subset of S . Let S0 be the root node. Let S(0) and S(1) be the two child nodes of S0.
Similarly, let S(p0) and S(p1) be the child nodes of S(p) where p encodes the binary “path” leading
to S(p). So, an example node at depth 5 would be S(01101).

Let S0 = {s0}. For any other nodes, let S(p) = {s(p)
1 , . . . , s

(p)
2L}. For the transition function, let

40.13

LIM AUER

• P (s
(i)
k |s0, ai) = 1

2L for k = 1, . . . , 2L and i = 0, 1.

• P (s
(pi)
k |s

(p)
j , ai) = 1

2L for j = 1, . . . , 2L, k = 1, . . . , 2L and i = 0, 1.

Note that it is possible to deterministically reach any specific node at depth d within d steps
from s0, but not any particular state within the node.

Now we expand S by adding an additional set of states T . The states in T are organized in a
binary tree of depth log2(2L2) such that each node contains exactly one state. Let g0 be the root
node of T and t(q) be a node encoded by its path q. All transitions within T are deterministic such
that P (t(qi)|t(q), ai) = 1 for i = 0, 1. There are 2log2(2L2) = 2L2 leaf nodes in T .

Consider a uniform random choice over all paths of length L − 1 − log2(2L2) (in the original
S) starting from S0. Let p∗ be a particular choice. Let S∗ be the set of all states in every node
along this path up to node S(p∗). For each state in S(p∗), modify the transition function such that
P (g0|s(p∗)

j , ai) = 1 for j = 1, . . . , 2L and i = 0, 1. Since each node from S contains at most 2L

states, the total number of states in S∗ is at most 2L2. Let each of these states be a unique leaf node
of T .

We now show that in this modified state space, all states in S∗ can be reached in L steps. To see
this, first note that it is possible to reach any one of the states in S(p∗) in L − 1 − log2(2L2) steps.
After that, any action will deterministically transition to g0, and from g0 it only takes log2(2L2)
steps to reach any leaf node – each corresponds to a node in S∗. Adding up, the total number of
steps is L.

We therefore have S◦L = S∗∪T since it contains all the states that are reachable in L steps with
a policy on S∗∪T . Furthermore, |S◦L| ≤ 4L2. All other states require at least 2L steps (on average)
to reach.

Suppose a given learning algorithm stops and outputs π before reaching the node S(p∗). Since
p∗ is unknown to the algorithm, it is possible to choose p∗ such that π has the probability of at most
(1

2)L−1−log2(2L2) = 4L2

2L
of reaching S(p∗). It follows that to output an 3

2L-step policy the node
S(p∗) must be visited at least once.

There are n = 2L−1−log2(2L2) = 2L

4L2 nodes at depth L − 1 − log2(2L2), each requires > L/2
steps to reach from s0. For any learning algorithm there is a choice of p∗, such that the probability
– in respect to the randomization of the algorithm – of reaching g0 after T ≤ 2L

8L2 exploration steps
is at most 1/L.

A.3. Proof of Proposition 6

Proof Since S≺L ⊆ SL for any partial order ≺, we have S→L ⊆ SL. Thus for finiteness of S→L we
show that SL is finite.

Let pk(s) be the probability of being in state s after exactly k steps by following the policy that
maximizes this probability. Then

pk+1(s′) ≤
∑
s

pk(s) max
a

P (s′|s, a)

≤
∑
s

pk(s)
∑
a

P (s′|s, a)

40.14

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

and ∑
s′

pk+1(s′) ≤
∑
s′

∑
s

pk(s)
∑
a

P (s′|s, a)

=
∑
s

pk(s)
∑
a

1

≤ A
∑
s

pk(s).

Since
∑

s p0(s) = 1, we have
∑

s pk(s) ≤ Ak. By Markov’s inequality, for any state s ∈ SL,
the probability that it is reached by its optimal policy within 2L steps is at least 1/2, therefore∑2L

k=0 pk(s) ≥ 1/2. Consequently,

2A2L ≥
2L∑
k=0

Ak ≥
2L∑
k=0

∑
s

pk(s) ≥
∑
s∈SL

2L∑
k=0

pk(s) ≥
1

2
|SL|

which implies |SL| ≤ 4A2L.
Since S→L is finite, it can be represented as the union of finitely many S≺L . Thus it is sufficient

to show that for any partial orders ≺α and ≺β there is a partial order ≺γ with S≺αL ∪ S≺βL ⊆ S≺γL .
We define ≺γ on S≺αL ∪ S≺βL as the transitive closure of

{s′ ≺γ s} = {s′ ≺α s : s′, s ∈ S≺αL } ∪ {s
′ ≺β s : s 6∈ S≺αL }.

Since ≺γ extends ≺α by adding only relations s′ ≺γ s with s 6∈ S≺αL , ≺γ is a partial order on
S≺αL ∪S

≺β
L . Since {s′ : s′ ≺α s} = {s′ : s′ ≺γ s} for s ∈ S≺αL and {s′ : s′ ≺β s} ⊆ {s′ : s′ ≺γ s}

for s 6∈ S≺αL , we get that S≺αL ∪ S≺βL ⊆ S≺γL .

A.4. Proof of Corollary 9

Proof The corollary follows from Theorem 8 by observing that for any L ≥ 1 there is a K with
LK/(1 + ε) ≤ L ≤ LK , and that

K∑
k=0

L3
k

(
log

SALk
εδk

)3

= O

(
L3
K

ε

(
log

SALK
εδ

)3
)
.

Furthermore,
∑

k≥0 δk ≤ δ.

Appendix B. Proofs for Section 4

B.1. Proof of Lemma 10

Proof Let t be the total number of steps executed and τ̂ = t
λ .

40.15

LIM AUER

If the round is a success, then it passes the failure check

τ̂ + εL+ p̂

1− (p̂+ ε)
≤ (1 + 8ε)L

for all n = λ episodes, which gives τ̂ ≤ (1 + 7ε)L.
If the round is a failure or “skipped” after n ≤ λ episodes, it must pass the failure check in the

first n − 1 episodes and therefore the total steps in the first n − 1 episodes is at most (1 + 7ε)Lλ.
The last episode adds at most Γ = d(1

ε + 1)Le < εLλ steps for a total of less than (1 + 8ε)Lλ steps.
Since ε ∈ (0, 1/8] the proof is complete.

B.2. Proof of Lemma 12

The following Lemma is used in proving Lemma 12.

Lemma 17 Let s1, s2, . . . be any sequence of distinct states. Suppose that for every si in the se-
quence, each action a ∈ A is executed dLφie times, where φi = log 8ALi2

δ . Let S ′si,a be the set of
all next states visited during the dLφie executions of (si, a). Then

Pr

(
∃i, s, a : P (s|si, a) ≥ 1

L
∧ s /∈ S ′si,a

)
≤ δ

4
.

Proof The probability that a particular (si, a) fails to discover a particular s with
P (s|si, a) ≥ 1

L is at most

(
1− 1

L

)dLφie
≤

{(
1− 1

L

)L}φi
≤
(

1

e

)φi
=

δ

8ALi2
.

Note that for any (si, a), there can be at most L next states with probability at least 1
L (since

the probabilities must sum up to 1). Taking the union bound over all si in the sequence, all actions
a ∈ A and all valid next states s, the probability of any failure is at most

∞∑
i=1

∑
a

∑
s∈S→

L
,

P (s|si,a)≥
1
L

δ

8ALi2
≤
∞∑
i=1

δ

8i2
=
δ

8

∞∑
i=1

1

i2
≤ δ

4
.

B.3. Proof of Lemma 13

Proof We use i as the index for the sequence of successful rounds, each with an associated target
state si and policy πsi .

In any given round where the chosen target is si, let τ̂j be the total number of of steps in the
j-th episode of that round (before reaching either the target or Γ =

(
1
ε + 1

)
L steps). Let fi be the

40.16

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

total number of failed episodes in that round. Recall that for the algorithm to output a policy πsi , its
empirical performance after λi episodes must satisfy the following:

τ̂ + εL+ p̂+ ε

1− (p̂+ ε)
≤ (1 + 8ε)L (3)

where

τ̂ =

∑λi
j=1 τ̂j

λi
and p̂ =

fi
λi

.

This trivially implies that for a successful round it must be that τ̂ < (1 + 8ε)L.
Let TΓ be the random variable denoting the total number of steps before reaching either the

target si or Γ steps, when we run πsi for one episode. Clearly the range of TΓ is between 0 and Γ.
Note that TΓ < Γ implies a success while TΓ = Γ can mean either successfully reaching si after
Γ steps or a failure episode. Let E(TΓ) and Var(TΓ) denote the expectation and variance of TΓ

respectively.
Let

α =
ε3Γ +

√
(ε3Γ)2 + 48ε3Var(TΓ)

12
.

By Bernstein’s inequality, we have that

Pr
(

E(TΓ) > τ̂ + α
)
< exp

(
− λiα

2

2Var(TΓ) + Γα

)
=

δ

16i2

where we use α as defined above and

λi =
6

ε3
log

16i2

δ
.

Therefore, with probability at least 1− δ
16i2

, we have

E(TΓ) ≤ τ̂ + α .

Now, note that

E(T 2
Γ) =

Γ∑
t=0

Pr(TΓ = t)t2 ≤ Γ
Γ∑
t=0

Pr(TΓ = t)t = ΓE(TΓ)

and therefore
Var(TΓ) = E(T 2

Γ)− [E(TΓ)]2 ≤ ΓE(TΓ) .

Using this bound for Var(TΓ) and the fact that for a successful round τ̂ < (1 + 8ε)L, it is straight-
forward to show that E(TΓ) ≤ τ̂ + α implies E(TΓ) ≤ τ̂ + εL.

Let p be the true probability of failure to reach si within Γ steps. With Hoeffding’s inequality it
is straighforward to show that with probability at least 1− δ

16i2
, p ≤ p̂+ ε.

We therefore have that when the algorithm outputs πsi , with probability at least 1− δ
8i2

, E(TΓ) ≤
τ̂ + εL and p ≤ p̂ + ε. Let T be the (random) number of steps to reach si with πsi . Note that πsi
executes the RESET action whenever si is not reached after Γ steps and repeats the exact same
policy until si is reached. We therefore have that for any t ≥ 0,

Pr(T = Γ + 1 + t) = pPr(T = t) .

40.17

LIM AUER

The expected number of steps to reach si is therefore

τ(si|πsi) =
∞∑
t=0

Pr(T = t)t

=

(
Γ∑
t=0

Pr(T = t)t

)
+

∞∑
t=Γ+1

Pr(T = t)t

=

(
Γ∑
t=0

Pr(T = t)t

)
+

∞∑
t=0

Pr(T = Γ + 1 + t)(Γ + 1 + t)

=

(
Γ∑
t=0

Pr(T = t)t

)
+

∞∑
t=0

pPr(T = t)(Γ + 1 + t)

=

(
Γ∑
t=0

Pr(T = t)t

)
+ pΓ + p

(
1 + τ(si|πsi)

)
= E(TΓ) + p

(
1 + τ(si|πsi)

)
Rearranging, we have

τ(si|πsi) =
E(TΓ) + p

1− p
≤ τ̂ + εL+ p̂+ ε

1− (p̂+ ε)
≤ (1 + 8ε)L . (4)

Applying the union bound over i = 1, . . . , n, the total probability of failure is at most

n∑
i=1

δ

8i2
=
δ

8

n∑
i=1

1

i2
≤ δ

4
.

B.4. Proof of Lemma 14

Proof We first prove that for a fixed target s∗ ∈ U equations (1) and (2) hold for all s, a, i with
probability at least 1− ε4δ

|U|k5 . Since there can be at most |U| possible targets, taking the union bound
will complete the proof.

Fix the number of previous visitsN(s, a) for every state-action pair and fix a target s∗ ∈ U . This
proof relies on the fact that for any particular state-action pair (s, a) and i ∈ {1, . . . ,Γ}, P̂i(·|s, a)
is independent of ũi−1(·) since they use different, independent past transitions by construction.

The case for i = 1 is trivially true. We will prove by induction that it is true for all i > 1 up to Γ.
Assume now that (1) and (2) hold for i = 1, . . . , l for some 1 ≤ l < Γ with probability 1− lε4δ

|U|Γk5 ,

we need to show that it is true for i = l + 1 with probability of failure at most ε4δ
|U|Γk5 .

Fix a state-action pair (s, a). Recall that P̂l+1(·|s, a) is based on n = bN(s,a)
Γ c independent

past transitions from (s, a). Let s′1, . . . , s
′
n be the corresponding next states in these transitions. Let

w̃(·) = ũl(·)− (l − 1− L). Let ζj = P (·|s, a)w̃(·)− w̃(s′j).

40.18

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

Due to the RESET action and the fact that u∗Γ(s0) ≥ Γ− L, we have that for any s′j ,

ũl(s
′
j) ≥ q̃l(s′j ,RESET) = ũl−1(s0) ≥ l − 1− L .

Thus
(l − 1− L) ≤ ũl(s′j) ≤ l

⇒ 0 ≤ w̃(s′j) ≤ l − (l − 1− L) = L+ 1

and therefore |ζj | ≤ L+ 1.
In other words, ζ1, . . . , ζn are independent bounded random variables with expected value

E(ζj) = E[P (·|s, a)w̃(·)− w̃(s′j)]

= E[P (·|s, a)w̃(·)− Is′j (·)w̃(·)]
= E[P (·|s, a)− Is′j (·)]E[w̃(·)] (5)

= 0

where I is an indicator vector. Note that equation (5) holds due to the fact that w̃(·) is independent

of Is′j (·). Let α = σk(L+1)
√

Γ√
max{1,N(s,a)}

. By Hoeffding’s inequality,

Pr

(∣∣∣∣∣
∑n

j=1 ζj

n

∣∣∣∣∣ > α

)
< 2 exp

(
− 2nα2

(L+ 1)2

)
≤ ε4δ

A|U||K|Γk5

where we make use of the fact that n = bN(s,a)
Γ c ≥ 1

2
max{1,N(s,a)}

Γ . It follows that with probability
at least 1− ε4δ

A|U||K|Γk5 ,

∣∣∣P̂l+1(·|s, a)ũl(·)− P (·|s, a)ũl(·)]
∣∣∣ =

∣∣∣∣∣
∑n

j=1 ζj

n

∣∣∣∣∣ ≤ α =
σk(L+ 1)

√
Γ√

max{1, N(s, a)}
.

Taking the union bound over all states in K and all actions, we have that the probability of failure is
at most ε4δ

|U|Γk5 .
For (2), note that for any state-action pair (s, a),

q̃l+1(s, a) = r(s, a) + P̂l+1(·|s, a)ũl(·) +
σk(L+ 1)

√
Γ√

max{1, N(s, a)}
≥ r(s, a) + P (·|s, a)ũl(·)
≥ r(s, a) + P (·|s, a)u∗l (·)
= q∗l+1(s, a)

and therefore
ũl+1(s) = max

a
q̃l+1(s, a) ≥ max

a
q∗l+1(s, a) = u∗l+1(s) .

40.19

LIM AUER

B.5. Proof of Lemma 15

Proof Let τ̂j be the actual number of steps executed in episode j, for j = 1, . . . , n where n ≤ λ is
the actual number of episodes executed in this round. Recall the failure check in the main algorithm
(Section 3.3), which is based on the following empirical performance measure

τ̂ =

∑n
j=1 τ̂j

λ
and p̂ =

f

λ

where f is the number of failed episodes (where Γ steps have been executed without reaching the
target state s̃).

Suppose τ̂ ≤ (1 + ε)L. Then τ̂
ε =

(
1 + 1

ε

)
L ≤ Γ. Since the total number of steps must be at

least fΓ, we have

p̂λΓ = fΓ ≤
n∑
j=1

τ̂j = τ̂λ

and therefore
p̂ ≤ τ̂

Γ
≤ ε .

It is straightforward to verifty that this implies

τ̂ + εL+ p̂+ ε

1− (p̂+ ε)
≤ (1 + 8ε)L

which means that this must be a successful round.
Therefore if this is a failure round, τ̂ > (1 + ε)L. Let ûj = Γ − τ̂j be the total rewards that

would have been received in episode j if the optimistic policy is run inMs̃. For a failure round we
therefore have

n∑
j=1

ûj =
n∑
j=1

Γ− τ̂j = nΓ− λτ̂ < nΓ− λ(1 + ε)L.

The total regret in a failure round is therefore

n∑
j=1

Γ− L− ûj > n(Γ− L)−
(
nΓ− λ(1 + ε)L

)
≥ λεL.

B.6. Proof of Lemma 16

Lemma 16 makes use of the following two lemmas:

Lemma 18 Let
Xj,k
i = P (·|sj,ki , aj,ki)ũΓ−i−1(·)− ũΓ−i−1(sj,ki+1)

where sj,ki denotes the actual state visited at step i in episode j of round k and aj,ki denotes the
actual action taken at step i in episode j of round k (according to the policy in round k). Let nk be

40.20

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

the actual number of episodes executed in round k and τ̂ j,k be the actual number of steps executed
in episode j of round k. Then

m∑
k=1

nk∑
j=1

τ̂ j,k−1∑
i=0

Xj,k
i ≤ 2(L+ 1)

√
Lλm log

4m2

δ

with probability at least 1− δ
4m2 .

Proof For any state s and any l ∈ {1, . . . ,Γ}, let w̃l(s) = ũl(s)− (l− 1−L). It is easy to see that

Xj,k
i = P (·|sj,ki , aj,ki)w̃Γ−i−1(·)− w̃Γ−i−1(sj,ki+1).

Similar to the reasoning in the proof for Lemma 14, we have that |Xj,k
i | ≤ L+ 1.

Note that E[Xj,k
i |s

1,1
0 , a1,1

0 , . . . , sj,ki , aj,ki] = 0 and therefore Xj,k
i is a martingale difference

sequence where |Xj,k
i | ≤ (L+ 1) for all k, j and i. Let T =

∑m
k=1

∑nk
j=1 τ̂

j,k be the total number

of steps, and α = 2(L+ 1)
√
Lλm log 4m2

δ . By the Azuma-Hoeffding inequality,

Pr

 m∑
k=1

nk∑
j=1

Γk,j−1∑
i=0

Xi
k,j ≥ α

 ≤ exp

(
− α2

2T (L+ 1)2

)

= exp

(
−2Lλm

T
log

4m2

δ

)
≤ δ

4m2

where we use the fact that T ≤ 2Lλm from Lemma 10.

Lemma 19 Let vk(s, a) be the actual number of times state-action pair (s, a) is executed in round k
and Nk(s, a) be the total number of times (s, a) is executed before round k. After m failure rounds,∑

s∈K,a∈A

m∑
k=1

vk(s, a)√
max{1, Nk(s, a)}

≤ (
√

2 + 1)
√

2|K|ALλm

Proof For a fixed s ∈ K and a ∈ A. Following the idea from Lemma 19 in Jaksch et al. (2010), we
prove, by induction, that the following statement holds for all m ≥ 1

m∑
k=1

vk(s, a)√
Vk(s, a)

≤ (
√

2 + 1)

√√√√ m∑
k=1

vk(s, a)

where Vk(s, a) = max{1, Nk(s, a)} ≥
∑k−1

i=1 vi(s, a).
We make use of the fact that vk(s, a) < Vk(s, a) for all k since otherwise it would result in a

“skipped” round. This immediately implies that the statement holds for m = 1. Now, assume that
the statement holds for some n ≥ 1. Then

n+1∑
k=1

vk(s, a)√
Vk(s, a)

40.21

LIM AUER

≤ (
√
2 + 1)

√√√√ n∑
k=1

vk(s, a) +
vn+1(s, a)√
Vn+1(s, a)

=

√√√√√(
√
2 + 1)2

(
n∑
k=1

vk(s, a)

)
+

vn+1(s, a)2

Vn+1(s, a)
+ 2(
√
2 + 1)

√√√√ n∑
k=1

vk(s, a)
vn+1(s, a)√
Vn+1(s, a)

≤

√√√√(
√
2 + 1)2

(
n∑
k=1

vk(s, a)

)
+ vn+1(s, a) + 2(

√
2 + 1)vn+1(s, a)

= (
√
2 + 1)

√√√√n+1∑
k=1

vk(s, a)

and therefore it also holds for n+ 1.
Summing up over all (s, a), we have

∑
s,a

m∑
k=1

vk(s, a)√
max{1, Nk(s, a)}

≤ (
√

2 + 1)
∑
s,a

√√√√ m∑
k=1

vk(s, a)

≤ (
√

2 + 1)
√

2|K|ALλm

where we apply Jensen’s inequality in the last inequality using the fact from Lemma 10 that

∑
s,a

m∑
k=1

vk(s, a) ≤ 2|K|ALλm.

Proof (Lemma 16)
We first consider the total regret in the j-th episode of round k. Let s̃k be the chosen optimistic

target. Let τ̂ j,k be the actual number of steps executed in this episode and sj,k0 , sj,k1 , . . . , sj,kτ̂j be the

actual states visited. If τ̂ j,k < Γ then it must be the case that sj,kτ̂j = s̃k (reaching s̃k is the only way
to stop before Γ steps). Note that we simulate running the optimistic policy inMs̃k where the state
s̃k is absorbing with reward 1. Let r0, r1, . . . , rΓ−1 be the rewards that would have been collected
in this episode. It follows that r0 = r1 = . . . = rτ̂ j,k−1 = 0 and rτ̂ j,k = . . . = rΓ−1 = 1. Also∑Γ−1

i=τ̂ j,k ri = Γ− τ̂ j,k = ũΓ−τ̂ j,k(s̃k). The regret is then given by

∆j,k = Γ− L−
Γ−1∑
i=0

ri

≤ ũΓ(sj,k0)−
Γ−1∑
i=0

ri

= ũΓ(sj,k0)− ũ
Γ− ˆτ j,k

(sj,k
τ̂ j,k

)

= P̂Γ[·|sj,k0 , π̃0(sj,k0)]ũΓ−1(·) +
σk(L+ 1)

√
Γ√

max{1, Nk[s
j,k
0 , π̃0(sj,k0)]}

− ũ
Γ− ˆτ j,k

(sj,k
τ̂ j,k

)

40.22

AUTONOMOUS EXPLORATION FOR NAVIGATING IN MDPS

≤ P [·|sj,k0 , π̃0(sj,k0)]ũΓ−1(·) +
2σk(L+ 1)

√
Γ√

max{1, Nk[s
j,k
0 , π̃0(sj,k0)]}

−ũ
Γ− ˆτ j,k

(sj,k
τ̂ j,k

) (6)

= Xj,k
0 + ũΓ−1(sj,k1) +

2σk(L+ 1)
√

Γ√
max{1, Nk[s

j,k
0 , π̃0(sj,k0)]}

− ũ
Γ− ˆτ j,k

(sj,k
τ̂ j,k

) (7)

≤
τ̂ j,k−1∑
i=0

Xj,k
i + I[sj,ki ∈ K]

2σk(L+ 1)
√

Γ√
max{1, Nk[s

j,k
i , π̃i(s

j,k
i)]}

 . (8)

Equation 6 is due to Lemma 14 (we will consider the failure probability later). In equation 7, we
use the definition for Xj,k

i as in Lemma 18. In equation 8, we recursively apply the same set of
arguments to ũΓ−i(s

j,k
i) for i = 1, 2, . . . , τ̂ j,k − 1, at which point the last term gets canceled. The

extra term I[sj,ki ∈ K] is an indicator function that is 1 if sj,ki ∈ K and 0 otherwise. The reason
for this is that π̃i(s

j,k
i) = RESET for all states outside K and its transition is always to s0 with

probability 1 (see also Fig. 2).
Let nk be the actual number of episodes run in round k. The total regret in round k is obtained

by adding ∆j,k for j = 1, . . . , nk

∆k =

nk∑
j=1

∆j,k

≤
nk∑
j=1

τ̂ j,k−1∑
i=0

Xj,k
i + I[sj,ki ∈ K

k]
2σk(L+ 1)

√
Γ√

max{1, Nk[s
j,k
i , π̃i(s

j,k
i)]}

=

{ nk∑
j=1

τ̂ j,k−1∑
i=0

Xj,k
i

}
+
{

2σk(L+ 1)
√

Γ
∑

s∈K,a∈A

vk(s, a)√
max{1, Nk(s, a)}

}
where in the last equation we regroup the steps into number of visits for each state-action pair.

Finally, the total regret after m failure rounds is given by

∆ =

m∑
k=1

∆k

≤ 2Lλ
√
ε2m+

m∑
k=ε
√
m+1

∆k

≤ 2Lλε
√
m+

{
m∑

k=ε
√
m+1

nk∑
j=1

τ̂ j,k−1∑
i=0

Xj,k
i

}
+

{
2σm(L+ 1)

√
Γ
∑
s,a

m∑
k=ε
√
m+1

vk(s, a)√
max{1, Nk(s, a)}

}

≤ 2Lλε
√
m+ 2(L+ 1)

√
Lλm log

4m2

δ
+

40.23

LIM AUER

(2σm(L+ 1)
√

Γ)(
√

2 + 1)
√

2SALλm (9)

≤ m

(
173

L2
√
SA

ε2
√
m

log
m

εδ

)

where we apply Lemma 18 and Lemma 19 in equation 9. In the last inequality we simplify the
terms by using the fact that m ≥ SAL, ε ≤ 1

8 , λ ≤
⌈

6
ε3

log 16S2

δ

⌉
≤ 12

ε3
log m

εδ and σm ≤√
log 2A|U|SΓm5

ε4δ
≤ 3
√

log m
εδ .

We now bound the probability that some of the inequalities may fail.
By Lemma 14, the probability that inequality (6) fails for a particular k is bounded by ε4δ

k5
.

Taking the union bound over all k = (ε
√
m+ 1), . . . ,m, the total failure probability is at most

m∑
k=ε
√
m+1

ε4δ

k5
≤
∫ m

ε
√
m

ε4δ

x5
dx ≤ δ

4m2
.

The inequality (9) fails with probability at most δ
4m2 by Lemma 18.

For anym ≥ SAL, the whole inequality therefore holds with probability at least 1− δ
2m2 . Since∑∞

m=2
1
m2 < 1, taking the union bound over all m ≥ SAL, the total failure probability is at most

δ/2.
Finally, |K| ≤ S if all the known states are indeed reachable in (1 + 8ε)L steps. By Lemma 13

the probability of failure is at most δ/4. Adding up all the failure probabilities completes the proof.

40.24

	Introduction
	Problem Definition
	Negative Results
	Positive Results

	Algorithm UcbExplore
	State Discovery
	Computing Optimistic Policies
	Policy Evaluation

	Analysis of Algorithm UcbExplore and Proof of Theorem 8
	Bound on the Number of Steps in Each Round
	State Discovery
	Policy Evaluation and Performance Bound
	Optimistic Policy
	Regret Bounds
	Proof of Theorem 8
	Discussion

	Proofs for Section 2
	Proof of Proposition 2
	Proof of Proposition 4
	Proof of Proposition 6
	Proof of Corollary 9

	Proofs for Section 4
	Proof of Lemma 10
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16

