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Abstract
Stochastic gradient descent (SGD) is a simple and very popular iterative method to solve stochastic
optimization problems which arise in machine learning. A common practice is to return the average
of the SGD iterates. While the utility of this is well-understood for general convex problems, the
situation is much less clear for strongly convex problems (such as solving SVM). Although the
standard analysis in the strongly convex case requires averaging, it was recently shown that this
actually degrades the convergence rate, and a better rate is obtainable by averaging just a suffix of
the iterates. The question we pose is whether averaging is needed at all to get optimal rates.

We consider the problem of stochastically optimizing a convex function F over a convex domain
W using stochastic gradient descent (SGD). The algorithm makes use of an oracle, which given
some w ∈ W , returns a random vector ĝ whose expectation is a subgradient of F (w). For example,
consider the linear SVM optimization problem over a training set {(xi, yi)}mi=1,

min
w

λ

2
‖w‖2 +

1

m

m∑
i=1

max{0, 1− yi〈xi,w〉}.

Given some w, we can easily compute an unbiased estimate of its gradient, by picking a single ex-
ample (xi, yi) uniformly at random, and returning a subgradient of λ2‖w‖2+max{0, 1−yi〈xi,w〉}.

SGD is parameterized by step sizes η1, . . . , ηT , and is defined as follows: we initialize w1 ∈ W
arbitrarily. At each round t, we obtain an unbiased estimate ĝt of a subgradient of F (wt), and let
wt+1 = ΠW(wt − ηtĝt), where ΠW is the projection operator onW .

This algorithm produces a sequence of iterates w1, . . . ,wT . For general convex problems,
it is well-known that if we pick ηt = Θ(1/

√
T ), and return the average of the iterates w̄T =

(w1 + . . . ,wT )/T , then under mild conditions, F (w̄T ) − infw∈W F (w) ≤ O(1/
√
T ), both in

expectation and in high probability 1− δ (with logarithmic dependence on δ).
We focus here on cases where F is strongly convex - roughly speaking, that it can be lower

bounded at any point inW by a quadratic function (as in the case of SVM optimization). When F
is strongly convex, one can obtain faster convergence rates. For example, by picking ηt = 1/t, the
expected suboptimality of w̄T is O(log(T )/T ) (Hazan et al. (2007); Shalev-Shwartz et al. (2011)).

Recently, Rakhlin et al. (2012) showed that in fact, one can get rid of the log(T ) factor, and
get an optimal 1/T rate for step sizes ηt = Θ(1/T ), by replacing the simple average w̄T by suffix
averaging - namely, the average of the last αT iterates for some constant α ∈ (0, 1). The resulting
expected suboptimality bound is of the form O

(
log(1/(1−α))

α
1
T

)
. Moreover, this change is signifi-
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cant: whereas we can always get 1/T rate with suffix averaging, there are cases where the rate of
w̄T is no better than log(T )/T . This disparity in performance was also demonstrated empirically
on real-world datasets.

However, this is not the end of the story. While the theoretical result above suggests we should
average some constant portion of the iterates, experimental studies suggest that a simpler approach
of averaging just the last few iterates, or even returning the last iterate wT , can work very well in
practice (Shalev-Shwartz et al. (2011); Rakhlin et al. (2012)). Thus, we currently do not have a
satisfactory understanding of which averaging scheme is best, or whether averaging is needed at all,
leading to the question posed in the title.

It is important to note that when F is also smooth at the optimum w∗ (namely, for some µ > 0,
F (w)−F (w∗) ≤ µ‖w−w∗‖2 for any w ∈ W), then one can show that any kind of suffix averag-
ing, and even just the last iterate, enjoys a 1/T convergence rate (see more details below). However,
many important problems in practice, such as SVM optimization, are not smooth. Therefore, we
can formulate the following specific question, with a 50$ monetary reward.

• ($50) What is the expected suboptimality E[F (wT )−F (w∗)] of the last iterate returned
by SGD, for general (possibly non-smooth) strongly convex problems?

The bound should hold for some fixed choice of the step-sizes, and fixed strong convexity parameter,
for any stochastic subgradients with bounded norm, and any boundedW . The full reward will be
given if the rate is shown to be tight up to universal constants.

Another relevant issue is obtaining a bound which holds not just in expectation, but also in
arbitrarily high probability 1 − δ with logarithmic dependence on δ. Such a high probability result
may be important for quantifying the reliability of the last iterate, and how much its suboptimality
can fluctuate. Thus, an extra $20 will be awarded for proving a tight bound (up to constants) on the
suboptimality of wT which holds in high probability.

Partial Results

In the analysis of SGD in a stochastic setting, it is common to analyze the evolution of the quantity
‖wt − w∗‖2. By definition of SGD and assuming (w.l.o.g.) that F is 1-strongly convex, it is not
hard to show that

E[‖wt+1 −w∗‖2] ≤ (1− 2ηt)E[‖wt −w∗‖2] +O(η2t ). (1)

By choosing ηt = Θ(1/t) appropriately and solving the recursion, we get

E[‖wT −w∗‖2] ≤ O
(

1

T

)
. (2)

When F is also smooth, this immediately leads to the E[F (wT )− F (w∗)] ≤ O(1/T ) bound men-
tioned earlier. However, the question here is what can we say in the non-smooth case. Unfortunately,
Eq. (2) is no longer good enough. Using Jensen’s inequality and an assumption that F is Lipschitz,
it only allows us to bound F (wT ) − F (w∗) by the disappointing rate O(1/

√
T ), and this is the

best one can hope for. Thus, to get a better rate in the non-smooth case, it seems one must prove a
stronger version of Eq. (2).
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We conjecture that this should be possible. For example, consider the scalar function F (w) =
1
2w

2 + |w| (so that w∗ = 0 - see figure above), and suppose we take ηt = 1/t. A straightforward
calculation reveals that

E[w2
t+1] ≤ (1− 2ηt)E[w2

t ]− 2ηtE[|wt|] +O
(
η2t
)
.

This is stronger than Eq. (1), due to the −E[|wt|] component. Intuitively, the fact that F is non-
smooth and “pointy” around the optimum makes wt converge faster. This seems to compensate for
the fact that F (w)−F (w∗) now scales down like |w| rather thanw2 (as in the smooth case). Indeed,
if we ignore the fact that we deal with expectations, and consider a recursive inequality of the form

x2t+1 ≤ (1− 2ηt)x
2
t − 2ηtxt +O

(
η2t
)
,

and ηt = Θ(1/t), it can be shown that x2t scales down as 1/t2. This seems to suggest that E[w2
T ]

indeed converges as O(1/T 2) and not just O(1/T ), leading to E[F (wT ) − F (w∗)] ≤ O(1/T ) as
required.

Even if such a result can be proven formally, we don’t know how to generalize this approach
to more complex functions. For example, consider the function F (w) = 1

2w
2 + max{w, 0} (see

figure above). This function is simultaneously smooth around w∗ = 0 in the negative direction,
and non-smooth in the positive direction. In this case, any bound on E[w2

T ] or even E[|wT |] will
not be enough, as it would correspond to different suboptimality rates in the positive and negative
direction. In this particular example, a delicate case analysis might be possible, but it’s not clear
how to make things work with multi-dimensional functions, where the amount of “non-smoothness”
can vary continuously in different directions.
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