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Abstract
Efficient online learning with pairwise loss functions is a crucial component in building large-
scale learning system that maximizes the area under the Receiver Operator Characteristic (ROC)
curve. In this paper we investigate the generalization performance of online learning algorithms
with pairwise loss functions. We show that the existing proof techniques for generalization bounds
of online algorithms with a pointwise loss can not be directly applied to pairwise losses. Using the
Hoeffding-Azuma inequality and various proof techniques for the risk bounds in the batch learning,
we derive data-dependent bounds for the average risk of the sequence of hypotheses generated by
an arbitrary online learner in terms of an easily computable statistic, and show how to extract a
low risk hypothesis from the sequence. In addition, we analyze a natural extension of the percep-
tron algorithm for the bipartite ranking problem providing a bound on the empirical pairwise loss.
Combining these results we get a complete risk analysis of the proposed algorithm.
Keywords: Generalization bounds, Pairwise loss functions, Online learning, Loss bounds.

1. Introduction

The standard framework in learning theory considers learning from examples Zn = {(xt, yt) ∈
X × Y}, t = 1, 2, · · · , n, drawn at random from an unknown probability distribution D on Z :=
X ×Y (e.g. X = IRd and Y = IR). Typically the loss associated with prediction is based on a single
example and expressed as `(h, (x, y)). In this paper we study learning in the context of pairwise loss
functions, that depend on pairs of examples and can be expressed as ` (h, (x, y), (u, v)). Pairwise
loss functions capture ranking problems that are important for a wide range of applications. For
example, in the supervised ranking problem one wishes to learn a ranking function that predicts
the correct ordering of objects. The misranking loss (Clemençon et al., 2008; Peel et al., 2010) is
a pairwise loss such that `rank (h, (x, y), (u, v)) = II[(y−v)(h(x)−h(u))<0], where II is the indicator
function and the loss is 1 when the examples are ranked in the wrong order. The goal of learning is
to find a hypothesis h that minimizes the expected misranking riskR(h),

R(h) := IE(x,y)IE(u,v) [` (h, (x, y), (u, v))] . (1)

This problem, especially the bipartite ranking problem where Y = {+1,−1}, has been ex-
tensively studied over the past decade in the batch setting, i.e., where the entire sequence Zn is
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presented to the learner in advance of learning. On the empirical end, many algorithms have been
proposed and successfully applied, for example, AUC Support Vector Machine (SVM) (Brefeld and
Scheffer, 2005), Ranking SVM (Joachims, 2002), and RankBoost (Freund et al., 2003). Several
theoretical studies also investigated the batch setting, deriving risk bounds for specific algorithms
(Freund et al., 2003; Rudin et al., 2005), and uniform convergence bounds for empirical estimates of
the risk (Agarwal et al., 2005; Agarwal and Niyogi, 2005, 2009) and relatedU -statistics (Clemençon
et al., 2008; Peel et al., 2010).

In this paper we investigate the generalization performance of online learning algorithms, where
examples are presented in sequence, in the context of pairwise loss functions. Specifically, on
each round t, an online learner receives an instance xt and predicts a label ŷt according to the
current hypothesis ht−1. The true label yt is revealed and ht−1 is updated. The goal of the online
learner is to minimize the expected risk w.r.t. a pairwise loss function `. Online learning algorithms
have been studied extensively, and theoretical results provide relative loss bounds, where the online
learner competes against the best hypothesis (with hindsight) on the same sequence. Conversions of
online learning algorithms and their performance guarantees to provide generalization performance
in the batch setting have also been investigated (e.g., (Kearns et al., 1987; Littlestone, 1990; Freund
and Schapire, 1999; Zhang, 2005)). Cesa-Bianchi et al. (2004) provided a general online-to-batch
conversion result that holds under some mild assumptions on the loss function and some extensions
are reported in (Cesa-Bianchi and Gentile, 2008; Kakade and Tewari, 2009). The main tool in this
work is the use of martingale concentration inequalities (the Hoeffding-Azuma Inequality and the
Friedman Inequality) to derive a bound on the average risk of the sequence of hypotheses generated
by the learning algorithm in terms of a data-dependent statistic. Essentially, this relies on the fact
that the differences Vt of the empirical loss `(ht−1, zt) and the true riskR(ht−1) := IEz[`(ht−1, z)]
form a martingale sequence. Unfortunately, this property no longer holds for pairwise loss functions.

Of course, as mentioned for example in the work of Peel et al. (2010, Sec. 4.2), one can slightly
adapt an existing online learning classification algorithm (e.g., perceptron), feeding it with data
sequence z̆t := (z2t−1, z2t) and modifying the update function accordingly. In this case, previous
analysis (Cesa-Bianchi and Gentile, 2008) does apply. However, this does not make full use of
the examples in the training sequence. In addition, empirical results show that this naive algorithm,
which corresponds to the algorithm for online maximization of the area under the ROC curve (AUC)
with a buffer size of one in (Zhao et al., 2011), is inferior to algorithms that retain some form of
the history of the sequence. Alternatively, it is tempting to consider feeding the online algorithm
with pairs z̆ti = (zi, zt), i < t on each round. However, in this case, existing results would again
fail because z̆ti are not i.i.d. Hence, a natural question is whether we can prove data dependent
generalization bounds based on the online pairwise loss.

This paper provides a positive answer to this question for a large family of pairwise loss func-
tions. On each round t, we measure Mt, the average loss of ht−1 on examples (zi, zt), i < t. Let
Mn denote the average loss, averaging Mt over t > (1 − c)n on a training sequence of length n
where c is a small constant. The main result of this paper, provides a model selection mechanism
to select one of the hypotheses of an arbitrary online learner, and states that the probability that the
risk of the chosen hypothesis ĥ satisfies,

R(ĥ) >Mn + ε
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is at most

2

[
N
(
H, ε

64Lip(φ)

)
+ 1

]
exp

{
−(cn− 1)ε2

512
+ 2 lnn

}
.

Here N (H, η) is the L∞ covering number for the hypothesis class H and Lip(φ) is determined by
the Lipschitz constant of the loss function (definitions and details are provided in the following sec-
tions). Our second main result is an analysis of a natural generalization of the perceptron algorithm
to work with pairwise loss functions, that provides loss bounds in both the separable case and the
inseparable case. As a byproduct, we also derive a new simple proof of the best L1 based mistake
bound for the perceptron algorithm in the inseparable case. Combining the two results we provide
the first online algorithm with corresponding risk bound for bipartite ranking.

The rest of this paper is organized as follows. Section 2 defines the problem and states our main
technical theorem and Section 3 provides a sketch of the proof. We provide model selection results
and risk analysis for convex and general loss functions in Section 4. In Section 5, we describe our
online algorithm for bipartite ranking and analyze it. Finally, we conclude the paper and discuss
possible future directions in Section 6.

2. Main Technical Result

Given a sample Zn = {z1, · · · , zn} where zi=(xi, yi) and a sequence of hypotheses h0, h1, · · · ,
hn generated by an online learning algorithm, we define the sample statistic Mn as

Mn(Zn) =
1

n− cn

n−1∑
t=cn

Mt(Z
t), Mt(Z

t) =
1

t− 1

t−1∑
i=1

` (ht−1, zt, zi) , (2)

where cn = dc · ne and c ∈ (0, 1) is a small positive constant. Mt(Z
t) measures the performance

of the hypothesis ht−1 on the next example zt when paired with all previous examples. Note that
instead of considering all the n generated hypotheses, we only consider the average of the hypothe-
ses hcn−1, · · · , hn−2 where the statistic Mt is reliable and the last two hypotheses hn−1, hn are
discarded for technical reasons. In the following, to simplify the notation, Mn denotesMn(Zn)
and Mt denotes Mt(Z

t).
As in (Cesa-Bianchi et al., 2004), our goal is to bound the average risk of the sequence of

hypotheses in terms ofMn, which can be obtained using the following theorem.

Theorem 1 Assume the hypothesis space (H, ‖ · ‖∞) is compact. Let h0, h1, · · · , hn ∈ H be the
ensemble of hypotheses generated by an arbitrary online algorithm working with a pairwise loss
function ` such that, `(h,z1, z2) = φ(y1 − y2, h(x1) − h(x2)), where φ : IR × IR → [0, 1]
is a Lipschitz function w.r.t. the second variable with a finite Lipschitz constant Lip(φ). Then,
∀c > 0,∀ε > 0, we have for sufficiently large n

P

{
1

n− cn

n−1∑
t=cn

R(ht−1) >Mn + ε

}
6

[
2N

(
H, ε

32Lip(φ)

)
+ 1

]
exp

{
−(cn− 1)ε2

128
+ lnn

}
.

(3)

Here the L∞ covering number N (H, η) is defined to be the minimal ` in IN such that there exist `
disks inH with radius η that coverH. We make the following remarks.
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Remark 2 Let IEt denote IEzt [·|z1, · · · , zt−1]. It can be seen that IEt[Mt]−R(ht−1) is no longer
a martingale sequence. Therefore, martingale concentration inequalities that are usually used in
online-to-batch conversion do not directly yield the desired bound.

Remark 3 We need the assumption that the hypothesis space H is compact so that its covering
number N (H, η) is finite. As an example, suppose X ⊂ IRd and the hypothesis space is the class
of linear functions that lie within a ball BR(IRd) = {w ∈ IRd : sup

x∈X
〈w,x〉 6 R}. It can be shown

(see Cucker and Zhou, 2007, chap. 5) that the covering number is one if η > R and otherwise

N (BR, η) 6

(
2R

η
+ 1

)d
. (4)

Remark 4 We say that f(s, t) is Lipschitz w.r.t the second argument if ∀s, |f(s, t1) − f(s, t2)| 6
Lip(f)‖t1 − t2‖. This form of the pairwise loss function is not restrictive and is widely used. For
example, in the supervised ranking problem, we can take the hinge loss as `hinge(h, z1, z2) = φ(y1−
y2, h(x1) − h(x2)) = [1− (h(x1)− h(x2))(y1 − y2)]+ , which can be thought as a surrogate
function for `rank. Since φ is not bounded, we define the bounded hinge loss using φ̃(s, t) = min([1−
st]+, 1) ∈ [0, 1] if s 6= 0 and 0 otherwise. We next show it is Lipschitz. This is trivial for y =
0. For y 6= 0, when the first argument is bounded a constant C, φ̃(y, ·) satisfies

∣∣φ̃(y, x1) −
φ̃(y, x2)

∣∣ 6 ∣∣ [1− yx1]+ − [1− yx2]+
∣∣ 6 ‖yx1 − yx2‖ 6 C‖x1 − x2‖. Alternatively, one can

take the square loss, i.e. `(h, z1, z2) = [1− (h(x1)− h(x2))(y1 − y2)]2 . If its support is bounded
then ` is Lipschitz.

3. Proof of the Main Technical Result

The proof is inspired by the work of (Cucker and Smale, 2002; Agarwal et al., 2005; Rudin, 2009).
The proof makes use of the Hoeffding-Azuma inequality, McDiarmid’s inequality, symmetrization
techniques and covering numbers of compact spaces.
Proof [Proof of Theorem 1] By the definition ofMn, we wish to bound

PZn∼Dn
(

1

n− cn

n−1∑
t=cn

R(ht−1)− 1

n− cn

n−1∑
t=cn

Mt > ε

)
, (5)

which can be rewritten as

P

(
1

n− cn

n−1∑
t=cn

[
R(ht−1)− IEt[Mt]

]
+

1

n− cn

n−1∑
t=cn

[
IEt[Mt]−Mt

]
> ε

)

6 P

(
1

n− cn

n−1∑
t=cn

[
R(ht−1)− IEt[Mt]

]
>
ε

2

)
+ P

(
1

n− cn

n−1∑
t=cn

[
IEt[Mt]−Mt

]
>
ε

2

)
.

(6)

Thus, we need to bound two terms separately. The proof consists of four parts, as follows.
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Step 1: Bounding the Martingale difference

First consider the second term in (6). We have that Vt = (IEt[Mt] −Mt)/(n − cn) is a martingale
difference sequence, i.e. IEt[Vt] = 0. Since the loss function is bounded in [0, 1], we have |Vt| 6
1/(n − cn), t = 1, · · · , n. Therefore by the Hoeffding-Azuma inequality,

∑
t Vt can be bounded

such that

PZn∼Dn
(

1

n− cn

n−1∑
t=cn

[
IEt[Mt]−Mt

]
>
ε

2

)
6 exp

{
−(1− c)nε2

2

}
. (7)

Step 2: Symmetrization by a ghost sample Ξn

In this step we bound the first term in (6). Let us start with introducing a ghost sample Ξn = {ξj} =
{(x̃j , ỹj)}, j = 1, · · · , n where each ξj follows the same distribution as zj . Recall the definition of
Mt and define M̃t as

Mt =
1

t− 1

t−1∑
j=1

`(ht−1, zt, zj), M̃t =
1

t− 1

t−1∑
j=1

`(ht−1, zt, ξj). (8)

The difference between M̃t and Mt is that Mt is the sum of the loss incurred by ht−1 on the current
instance zt and all the previous examples zj , j = 1, · · · , t− 1 on which ht−1 is trained, while M̃t

is the loss incurred by the same hypothesis ht−1 on the current instance zt and an independent set
of examples ξj , j = 1, · · · , t− 1.

Claim 1 The following equation holds

PZn∼Dn
(

1

n− cn

n−1∑
t=cn

[R(ht−1)− IEt[Mt]] > ε

)
6 2PZn∼Dn

Ξn∼Dn

(
1

n− cn

n−1∑
t=cn

[
IEt[M̃t]− IEt[Mt]

]
>
ε

2

)
,

(9)
whenever n/ log2(n) > 2/(ε(1− c))2.

Notice that the probability measure on the right hand side of (9) is on Zn × Ξn.
Proof [Sketch of the proof of Claim 1] It can be seen that the RHS (without the factor of 2) of (9) is
at least

PZn∼Dn
Ξn∼Dn

({
1

n− cn

n−1∑
t=cn

[R(ht−1)− IEt[Mt]] > ε

}⋂{∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

] ∣∣∣∣ 6 ε

2

})

= IEZn∼Dn

[
II{ 1

n−cn
∑n−1
t=cn [R(ht−1)−IEt[Mt]]>ε

} · PΞn∼Dn

(∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

] ∣∣∣∣ 6 ε

2

∣∣∣∣Zn
)]

.

Since IEΞn∼DnIEt[M̃t] = R(ht−1), by Chebyshev’s inequality

PΞn∼Dn

(∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

]∣∣∣∣ 6 ε

2

∣∣∣∣Zn
)

> 1−
Var

{
1

n−cn
∑n−1

t=cn
IEt[M̃t]

}
ε2/4

.

(10)
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To bound the variance, we first investigate the largest variation when changing one random variable
ξj with others fixed. From (8), it can be easily seen that changing any of the ξj varies each IEt[M̃t],
where t > j by at most by 1/(t−1). Therefore, we can see that the variation of 1

n−cn
∑n−1

t=cn
IEt[M̃t]

regarding the jth example ξj is bounded by

cj =
1

n− cn

 n∑
t=j+1

1

t− 1

 =
1

n− cn

n−1∑
t=j

1

t

 =
1

n− cn
Hj(n).

The partial sum of the harmonic seriesHj(n) 6 log(n), ∀j > 2. Thus, by Theorem 9.3 in (Devroye
et al., 1996), we have

Var

(
1

n− cn

n−1∑
t=cn

IEt[M̃t]

)
6

1

4

n∑
i=1

c2
i 6

1

4(1− c)2

log2(n)

n
. (11)

Thus, whenever n/ log2(n) > 2/(ε(1 − c))2, the LHS of (10) is greater or equal than 1/2. This
completes the proof of Claim 1.

Step 3: Uniform Convergence

In this step, we show how one can bound the RHS of (9) using uniform convergence techniques,
McDiarmid’s inequality and L∞ covering number. Our task reduces to bound the following quantity

PZn∼Dn,Ξn∼Dn
(

1

n− cn

n−1∑
t=cn

[
IEt[M̃t]− IEt[Mt]

]
> ε

)
. (12)

Here we want to bound the probability of the large deviation between the empirical performance
of the ensemble of hypotheses on the sequence Zn on which they are learned and on an indepen-
dent sequence Ξn. Since ht relies on z1, · · · , zt and is independent of {ξt}, we resort to uniform
convergence techniques to bound this probability. Define Lt(ht−1) = IEt[M̃t] − IEt[Mt]. Thus we
have

PZn∼Dn,Ξn∼Dn
(

1

n− cn

n−1∑
t=cn

Lt(ht−1) > ε

)
6 P

(
sup

ĥcn ,··· ,ĥn−1

[
1

n− cn

n−1∑
t=cn

Lt(ĥt−1)

]
> ε

)

6
n−1∑
t=cn

PZt∼Dt,Ξt∼Dt

(
sup
ĥ∈H

[
Lt(ĥ)

]
> ε

)
. (13)

To bound the RHS of (13), we start with the following lemma.

Lemma 5 Given any function f ∈ H and any t > 2

PZt∼Dt,Ξt∼Dt (Lt(f) > ε) 6 exp

{
−(t− 1)ε2

2

}
. (14)
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The proof which is given in the appendix shows that Lt(f) has a bounded variation of 1/(t − 1)
when changing each of its 2(t− 1) variables and applies McDiarmid’s inequality. Finally, our task
is to bound P(sup

f∈H
[Lt(f)] > ε). Consider the simple case where the hypothesis space H is finite,

then using the union bound, we immediately get the desired bound. Although H is not finite, a
similar analysis goes through based on the assumption that H is compact. We will follow Cucker
and Smale (2002) and show how this can be bounded. The next two lemmas (see proof of Lemma 6
in the appendix) are used to derive Lemma 8.

Lemma 6 For any two functions h1, h2 ∈ H, the following equation holds

Lt(h1)− Lt(h2) 6 4Lip(φ)‖h1 − h2‖∞.

Lemma 7 LetH = S1 ∪ · · · ∪ S` and ε > 0. Then

P
(

sup
h∈H

Lt(h) > ε

)
6
∑̀
j=1

P

(
sup
h∈Sj

Lt(h) > ε

)
Lemma 8 For every 2 6 t 6 n, we have

P
(

sup
h∈H

[Lt(h)] > ε

)
6 N

(
H, ε

8Lip(φ)

)
exp

{
−(t− 1)ε2

8

}
. (15)

Proof [Proof of Lemma 8] Let ` = N
(
H, ε

4Lip(φ)

)
and consider h1, · · · , h` such that the disks

Dj centered at hj and with radius ε
4Lip(φ) cover H. By Lemma 6, we have |Lt(h) − Lt(hj)| 6

4Lip(φ)‖h− hj‖∞ 6 ε. Thus, we get

P

(
sup
h∈Dj

Lt(h) > 2ε

)
6 P (Lt(hj) > ε)

Combining this with (14), and Lemma 7 and replacing ε by ε/2, we have (15).

Combining (15) and (13), we have

P

(
1

n− cn

n−1∑
t=cn

Lt(ht−1) > ε

)
6 N

(
H, ε

8Lip(φ)

)
n exp

{
−(cn − 1)ε2

8

}
. (16)

This shows why we need to discard the first cn hypotheses in the ensemble. If we include h2 for
example, according to (15), we have P(L2(f) > ε) 6 e−ε

2/2. As n grows, this heavy term remains
in the sum, and the desired bound cannot be obtained.

Step 4: Putting it all together
From (9) and (13) and substituting ε with ε/4 in (16), we have

PZn∼Dn
(

1

n− cn

n−1∑
t=cn

(R(ht−1)− IEt[Mt]) >
ε

2

)
6 2N

(
H, ε

32Lip(φ)

)
n exp

{
− (cn − 1)ε2

128

}
.

(17)
From (17) and (7), accompanied with the fact that (17) decays faster than (7), we complete the

proof for Theorem 1.
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4. Model Selection

Following Cesa-Bianchi et al. (2004) our main tool for finding a good hypothesis from the ensemble
of hypotheses generated by the online learner is to choose the one that has a small empirical risk. We
measure the risk for ht on the remaining n− t examples, and penalize each ht based on the number
of examples on which it is evaluated, so that the resulting upper bound on the risk is reliable. Our
construction and proofs (in the appendix) closely follow the ones in (Cesa-Bianchi et al., 2004),
using large deviation results for U -statistics (see Clemençon et al., 2008, Appendix) instead of the
Chernoff bound.

4.1. Risk Analysis for Convex losses

If the loss function φ is convex in its second argument and Y is convex, then we can use the average
hypothesis h̄ = 1

n−cn
∑n−1

t=cn
ht−1. It is easy to show that h̄ achieves the desired bound, i.e.

P
(
R(h̄) >Mn(Zn) + ε

)
6

[
2N

(
H, ε

32Lip(φ)

)
+ 1

]
exp

{
−(cn− 1)ε2

128
+ lnn

}
.

4.2. Risk Analysis for General Losses

Define the empirical risk of hypothesis ht on {zt+1, · · · , zn} as R̂(ht, t+ 1)

R̂(ht, t+ 1) =

(
n− t

2

)−1 n∑
k>i, i>t+1

`(ht, zi, zk).

The hypothesis ĥ is chosen to minimize the following penalized empirical risk,

ĥ = argmin
cn−16t<n−1

(R̂(ht, t+ 1) + cδ(n− t)), (18)

where

cδ(x) =

√
1

x− 1
ln

2(n− cn)(n− cn + 1)

δ
.

Notice that we discard the last two hypotheses so that any R̂(ht, t+ 1), cn − 1 6 t 6 n− 2 is well
defined. The following theorem, which is the main result of this paper, shows that the risk of ĥ is
bounded relative toMn.

Theorem 9 Let h0, · · · , hn be the ensemble of hypotheses generated by an arbitrary online algo-
rithm A working with a pairwise loss ` which satisfies the conditions given in Theorem 1. ∀ε > 0,
if the hypothesis is chosen via (18) with the confidence δ chosen as

δ = 2(n− cn + 1) exp

{
−(n− cn)ε2

128

}
,

then, when n is sufficiently large, we have

P
(
R(ĥ) >Mn + ε

)
6 2

[
N
(
H, ε

64Lip(φ)

)
+ 1

]
exp

{
−(cn− 1)ε2

512
+ 2 lnn

}
.
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5. Application: Online Algorithm for Bipartite Ranking

In the bipartite ranking problem we are given a sequence of labeled examples zt = (xt, yt) ∈
IRd×{−1,+1}, t = 1, · · · , n. Minimizing the misranking loss `rank under this setting is equivalent
to maximizing the AUC, which measures the probability that f ranks a randomly drawn positive ex-
ample higher than a randomly drawn negative example. This problem has been studied extensively
in the batch setting, but the corresponding online problem has not been investigated until recently.
Recently, Zhao et al. (2011) proposed an online algorithm using linear hypotheses for this problem
based on reservoir sampling, and derived bounds on the expectation of the regret of this algorithm.
Like previous work, Zhao et al. (2011) use the hinge loss (that bounds the 0-1 loss) to derive the
regret bound. The hinge loss is Lipschitz, but it is not bounded and therefore not suitable for our
risk bounds. Therefore, in the following we use a modified loss function where we bound the Hinge
loss in [0, 1] such that `(f, zt, zj) = φ̃((yt−yj)/2, f(xt)−f(xj)) where φ̃ is defined in Remark 4.
Using this loss function together with Theorem 9 all we need is an online algorithm that minimizes
Mn (or an upper bound of Mn) and this guarantees generalization ability of the corresponding
online learning algorithm. To this end, we propose the following perceptron-like algorithm, shown
in Algorithm 5, and provide loss bounds for this algorithm. Notice that the algorithm does not treat
each pair of examples separately, and instead for each zt it makes a large combined update using
its loss relative to all previous examples. Our algorithm corresponds to the algorithm of Zhao et al.
(2011) with an infinite buffer, but it uses a different learning rate and different loss function which
are important in our proofs.

Initialize: w0 = 0 repeat
At the t-th iteration, receive a training instance zt = (xt, yt) ∈ IRd × {−1,+1}.
for j ← 1 to t− 1 do

Calculate instantaneous loss `tj = `(wt−1, zt, zj).
end
Update the weight vector such that

wt = wt−1 +
1

t− 1

t−1∑
j=1

`tjyt(xt − xj).

until the last instance;
Algorithm 1: Online AUC Maximization (OAM) with Infinite Buffer.

Theorem 10 Suppose we are given a sequence of examples zt, t = 1, · · · , n, and let u be any unit
vector. Assume max

t
‖xt‖ 6 R and define

M =

n∑
t=2

1

t− 1

 t−1∑
j=1

`tj

 ,M∗ =
n∑
t=2

1

t− 1

 t−1∑
j=1

ˆ̀t
j

 ,
where ˆ̀t

j = IIyt 6=yj ·
[
γ − 〈u, 1

2(yt − yj)(xt − xj)〉
]
+

. That is, M∗ is the cumulative average hinge
loss u suffers on the sequence with margin γ. Then, after running Algorithm 5 on the sequence, we
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have

M 6

(√
4R2 + 2 +

√
γM∗

γ

)2

.

When the data is linearly separable by margin γ, (i.e. there exists an unit vector u such that
ˆ̀t
j = 0,∀t 6 n, j < t), we have M∗ = 0 and the bound is constant.

Proof [Proof of Theorem 10] First notice that w0 = w1 = 0 and we also have the following fact[
γ − 〈u, 1

2
(yt − yj)(xt − xj)〉

]
+

> γ − 〈u, 1

2
(yt − yj)(xt − xj)〉,

which implies that when yt 6= yj , 〈u, yt(xt − xj)〉 > γ − ˆ̀t
j . On the other hand, when yt = yj ,

then ˆ̀t
j = 0. Thus we can write

〈wt,u〉 = 〈wt−1,u〉+
1

t− 1

t−1∑
j=1

`tj〈u, yt(xt − xj)〉

> 〈wt−1,u〉+
1

t− 1

t−1∑
j=1

`tj(γ − ˆ̀t
j) = 〈wt−1,u〉+

γ

t− 1

t−1∑
j=1

`tj −
1

t− 1

t−1∑
j=1

`tj · ˆ̀tj

> 〈wt−1,u〉+
γ

t− 1

t−1∑
j=1

`tj −
1

t− 1

t−1∑
j=1

ˆ̀t
j (∵ `tj ∈ [0, 1])

⇒ 〈wt,u〉 >
n∑
t=2

[
γ

t− 1

t−1∑
j=1

`tj −
1

t− 1

t−1∑
j=1

ˆ̀t
j

]
= γM −M∗. (19)

On the other hand, we have,

‖wt‖2 = ‖wt−1‖2 +
2

t− 1

t−1∑
j=1

`tj〈wt−1, yt(xt − xj)〉+

[
1

t− 1

t−1∑
j=1

`tjyt(xt − xj)

]2

6 ‖wt−1‖2 +
2

t− 1

t−1∑
j=1

`tj + 4R2

(
1

t− 1

)2
(
t−1∑
j=1

`tj

)
·

(
t−1∑
j=1

`tj

)
(∵ `tj > 0⇒ 〈wt−1, yt(xt − xj)〉 6 1)

6 ‖wt−1‖2 +
2

t− 1

t−1∑
j=1

`tj + 4R2

(
1

t− 1

)2
(
t−1∑
j=1

`tj

)
· (t− 1) (∵ `tj ∈ [0, 1])

= ‖wt−1‖2 + (4R2 + 2)

[
1

t− 1

t−1∑
j=1

`tj

]

⇒ ‖wn‖2 6 (4R2 + 2)

n∑
t=2

[
1

t− 1

t−1∑
j=1

`tj

]
= (4R2 + 2)M (20)

Combining (19) and (20), we have (γM −M∗)2 6 (4R2 + 2)M, which yields the desired result.

We therefore get the loss bound for the proposed algorithm.

Theorem 11 Let h0, · · · , hn−1 be the ensemble of hypotheses generated by Algorithm 5. ∀ε > 0,
if the hypothesis ĥ is chosen via (18) with the confidence δ chosen to be

δ = 2(n− cn + 1) exp

{
−(n− cn)ε2

128

}
,
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then the probability that

R(ĥ) >
1

n− cn

(√4R2 + 2 +
√
γM∗

γ

)2
+ ε

is at most

2

(64R2
√

5n

ε
+ 1

)d
+ 1

 exp

{
−(cn− 1)ε2

512
+ 2 lnn

}
.

Proof [Proof of Theorem 11] By (20), we can easily see that ‖wt‖ 6
√
n(4R2 + 2), t = 1, · · · , n,

therefore we have ‖wt‖ · ‖x‖ 6 R2
√

5n, ∀t 6 n. Therefore, we can take the hypothesis space to
be H = {w ∈ IRd : max

‖x‖6R
|〈w,x〉| 6 R2

√
5n}. By (4), the covering number can be calculated.

On the other hand, from the definition in (2), it is easy to see that Mn 6 M/(n − cn). Finally,
combining Theorem 9 and Theorem 10 concludes the proof.

A natural criticism is that Algorithm 5 is not a real online algorithm due to the fact that the
entire sample is stored and at each iteration t, the update requiresO(t) time while online algorithms
should have O(1) time per step. One can solve this problem by using the “reservoir sampling”
techniques from (Zhao et al., 2011) (Random OAM). The idea is that at the t-th iteration, instead
of keeping all previous t − 1 examples, we keep a constant size buffer Bt that has a sample of the
history. Zhao et al. (2011) gave a bound on the expectation of the cumulative loss L =

∑
t

∑
j `
t
j .

Translating their bound to our notation we get IE[M ] = M∗ + O(
√
n) where the expectation is

over randomly sampled instances in the buffer. Therefore, when the data are linearly separable, the
cumulative loss given by this bound grows as O(

√
n) which is worse than the bound we provided.

In principle, one could turn the results of Zhao et al. (2011) into a high probability bound on M
using the Chebyshev’s inequality and then use Theorem 9 to analyze its risk. However, this does
not yield exponential convergence as above. It would be interesting to investigate this further to
improve the probabilistic analysis of the loss bound of Zhao et al. (2011), or integrate the buffer
analysis into the risk bound of this paper to yield tighter results.

5.1. Mistake Bound for Perceptron

Interestingly, we can apply our proof strategy in Theorem 10 to analyze the Perceptron algorithm in
the inseparable case. This yields the best known bound in terms of the one-norm of the hinge losses
(given by (Gentile, 2003, Theorem 8) and (Shalev-Shwartz and Singer, 2005, Theorem 2)) using a
simple direct proof.

Theorem 12 (Gentile, 2003; Shalev-Shwartz and Singer, 2005) Let (x1, y1), · · · , (xn, yn) be a
sequence of examples with ‖xi‖ 6 R. Let u be any unit vector and let γ > 0. Define the one-norm
of the hinge losses as D1 =

∑n
t=1 `t, where `t = [γ − yt〈u,xt〉]+. Then the number of mistakes

the perceptron algorithm makes on this sequence is bounded by
(
R+
√
γD1

γ

)2
.

Proof Let mt = IIsgn(wt·xt)6=yt so that the total number of mistakes is M =
∑

tmt. Then, as usual,
the upper bound is ‖wn‖2 6 R2M . On the other hand, using the fact that `t = [γ − yt〈u,xt〉]+ >
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γ − yt〈u,xt〉, which implies yt〈u,xt〉 > γ − `t.. We therefore have the lower bound

〈wt+1,u〉 = 〈wt,u〉+ yt〈xt,u〉mt > 〈wt,u〉+ (γ − `t)mt

= 〈wt,u〉+ γmt − `tmt > 〈wt,u〉+ γmt − `t (∵ mt 6 1)

⇒ 〈wn,u〉 >
n∑
t=1

γmt −
n∑
t=1

`t = γM −D1. (21)

Combing the upper bound R2M with (21), we get (γM − D1)2 6 R2M. Solving the quadratic
equation, we obtain the desired bound.

6. Conclusion and Future work

In this paper, we provide generalization bounds for online learners using pairwise loss functions
and apply these to analyze the risk of an online Bipartite ranking algorithm. There are several
directions for possible future work. From an empirical perspective, although the random Online
AUC Maximization (OAM) is simple and easy to implement, it seems that it does not maintain
buffers in an optimal way. Intuitively, one might want to store “support ranking vectors” that help
to build the correct ranker instead of using a random buffer. We are currently exploring ideas on
building a smart buffer to improve its performance.

From the theoretical point of view, one direction is to improve the current bounds to achieve
faster convergence rates. Alternatively, one can analyze Algorithm 5 from a totally different point
of view. Under the batch setting, Clemençon et al. (2008) already provide fast convergence rates
for the empirical risk minimizer. Since Algorithm 5 is in fact a stochastic gradient descent algo-
rithm to minimize the U -statistic, using online convex programming techniques (Zinkevich, 2003;
Shalev-Shwartz, 2007), one can show that the regret is small. Combining this with the batch results
automatically yields risk bounds for the algorithm. It is interesting to compare this approach to the
one proposed in this paper in terms of the risk bounds that can be obtained. However, it is important
to note that the approach in this paper is more general in two ways. First we only assume that the
loss function is Lipschitz instead of convex. Second, the ensemble of hypotheses can be produced
by an arbitrary online learning algorithm, not just stochastic gradient descent.
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Appendix A. Complete Proof of Claim 1

Proof [Proof of Claim 1] The required probability can be bounded as follows.

PZn∼Dn,Ξn∼Dn
(

1

n− cn

n−1∑
t=cn

[
IEt[M̃t]− IEt[Mt]

]
>
ε

2

)

> PZn∼Dn,Ξn∼Dn
({

1

n− cn

n−1∑
t=cn

(R(ht−1)− IEt[Mt]) > ε

}
⋂{∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

] ∣∣∣∣ 6 ε

2

})

= IEZn∼Dn,Ξn∼Dn

[
II{ 1

n−cn

∑n−1
t=cn

(R(ht−1)−IEt[Mt])>ε} × II{∣∣ 1
n−cn

∑n−1
t=cn [IEt[M̃t]−R(ht−1)]

∣∣6 ε
2

}]
= IEZn∼Dn

[
IEΞn∼Dn

[
II{ 1

n−cn

∑n−1
t=cn

(R(ht−1)−IEt[Mt])>ε} × II{∣∣ 1
n−cn

∑n−1
t=cn [IEt[M̃t]−R(ht−1)]

∣∣6 ε
2

}∣∣∣∣Zn]
]

= IEZn∼Dn

[
II{ 1

n−cn

∑n−1
t=cn

(R(ht−1)−IEt[Mt])>ε}

× PΞn∼Dn

(∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

] ∣∣∣∣ 6 ε

2

∣∣∣∣Zn
)]

(22)

We next show that for sufficiently large n,

PΞn∼Dn

(∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

] ∣∣∣∣ 6 ε

2

∣∣∣∣Zn
)

>
1

2
,

which combined with (22) implies (9). To begin with, we first show that the corresponding random
variable has mean zero

IEΞn∼Dn

(
1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

] ∣∣∣∣Zn
)

= IEΞn∼Dn

 1

n− cn

n−1∑
t=cn

IEt

[
1

t− 1

t−1∑
j=1

`(ht−1, zt, ξj)

]
−R(ht−1)

∣∣∣∣Zn


=
1

n− cn

n−1∑
t=cn

 1

t− 1

t−1∑
j=1

IEξj IEt[`(ht−1, zt, ξj)|Zt]−R(ht−1)


=

1

n− cn

n−1∑
t=cn

 1

t− 1

t−1∑
j=1

R(ht−1)

−R(ht−1)

 = 0.

Thus, we can use Chebyshev’s inequality to bound the conditional probability as follows

P

({∣∣∣∣ 1

n− cn

n−1∑
t=cn

[
IEt[M̃t]−R(ht−1)

]∣∣∣∣ 6 ε

2

}∣∣∣∣Zn
)

> 1−
Var

{
1

n−cn
∑n−1

t=cn
IEt[M̃t]

}
ε2/4

.
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To bound the variance, we resort to the following Theorem (see Devroye et al., 1996, Theorem 9.3)

Theorem 13 Let X1, · · · , Xn be independent random variables taking values in a set A, and as-
sume that f : An → IR satisfies

sup
x1,x2,xn,x′

∣∣f(x1, · · · ,xi, · · · ,xn)− f(x1, · · · ,x′, · · · ,xn)
∣∣ 6 ci ∀1 6 i 6 n.

Then

Var(f(X1, · · · , Xn)) 6
1

4

n∑
i=1

c2
i .

From (8), it can be easily seen that changing any of the ξj varies each IEt[M̃t], where t > j by at
most by 1/(t − 1). Therefore, we can see that the variation of 1

n−cn
∑n−1

t=cn
IEt[M̃t] regarding the

jth example ξj is bounded by

cj =
1

n− cn

 n∑
t=j+1

1

t− 1

 =
1

n− cn

n−1∑
t=j

1

t

 =
1

n− cn
Hj(n).

The partial sum of the harmonic series Hj(n) 6 log(n), ∀j > 2. Thus, we have

Var

(
1

n− cn

n−1∑
t=cn

IEt[M̃t]

)
6

1

4

n∑
i=1

c2
i 6

1

4(1− c)2

log2(n)

n
.

Thus, whenever n/ log2(n) > 2/(ε(1 − c))2, the LHS of (10) is greater or equal than 1/2. This
completes the proof of Claim 1.

Appendix B. Proof of Lemma 5

Proof [Proof of Lemma 5] To bound the probability, we use the McDiarmid’s inequality.

Theorem 14 (McDiarmid’s Inequality) Let X1, · · · , XN be independent random variables with
Xk taking values in a set Ak for each k. Let φ : (A1 × · · · ×AN )→ IR be such that

sup
xi∈Ai,x′k∈Ak

|φ(x1, · · · , xN )− φ(x1, · · · , xk−1, x
′
k, xk+1, · · · , xN )| 6 ck.

Then for any ε > 0,

P {φ(x1, · · · , xN )− IEφ(x1, · · · , xN ) > ε} 6 e−2ε2/
∑N
k=1 c

2
k ,

and
P {|φ(x1, · · · , xN )− IEφ(x1, · · · , xN )| > ε} 6 2e−2ε2/

∑N
k=1 c

2
k .
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For any fixed f ∈ H, we have

IEz1:t−1,ξ1:t−1 [Lt(f)] =
1

t− 1

t−1∑
j=1

IEz1:t−1,ξ1:n−1IEz [`(f, z, ξj)− `(f, z, zj)]

=
1

t− 1

t−1∑
j=1

(
IEξj IEz[`(f, z, ξj)]− IEzj IEz[`(f, z, zj)]

)
= 0

Now, Lt(f) is a function of 2(t− 1) variables with each affecting its value at most by ci = 1/(t−
1), i = 1, 2, · · · , 2(t − 1). Thus, we have

∑2(t−1)
i=1 c2

i = 1
t−1 . Finally, using the McDiarmid’s

inequality, we get

PZt∼Dt,Ξt∼Dt (Lt(f) > ε) 6 exp

{
−(t− 1)ε2

2

}
.

Appendix C. Proof of Lemma 6

Proof [Proof of Lemma 6] From the definition of Lt and the assumption on φ we have

Lt(h1)− Lt(h2) =
1

t− 1

t−1∑
j=1

[
IEz[`(h1, z, ξj)− `(h1, z, zj)]− IEz[`(h2, z, ξj)− `(h2, z, zj)]

]

=
1

t− 1

t−1∑
j=1

IEz

{[
φ(y − ỹj , h1(x)− h1(x̃j))− φ(y − yj , h1(x)− h1(xj))

]
−
[
φ(y − ỹj , h2(x)− h2(x̃j))− φ(y − yj , h2(x)− h2(xj))

]}
=

1

t− 1

t−1∑
j=1

IEz

{[
φ(y − ỹj , h1(x)− h1(x̃j)− φ(y − ỹj , h2(x)− h2(x̃j)

]
−
[
φ(y − yj , h1(x)− h1(xj))− φ(y − yj , h2(x)− h2(xj))

]}
6

1

t− 1

t−1∑
j=1

IEz

{
Lip(φ)

∣∣∣∣[h1(x)− h1(x̃j)

]
−
[
h2(x)− h2(x̃j)

]∣∣∣∣
+ Lip(φ)

∣∣∣∣[h1(x)− h1(xj)

]
−
[
h2(x)− h2(xj)

]∣∣∣∣}
6

1

t− 1

t−1∑
j=1

[
4Lip(φ) sup

x′

∣∣h1(x′)− h2(x′)
∣∣] = 4Lip(φ)‖h1 − h2‖∞

.
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Appendix D. Proof for the Risk Bound of Convex Losses in Section 4.1

Proof Using Jensen’s inequality, we have

R(h̄) = IEzIEz′

[
φ

(
y − y′, 1

n− cn

n−1∑
t=cn

ht−1(x)− 1

n− cn

n−1∑
t=cn

ht−1(x′)

)]

= IEzIEz′

[
φ

(
y − y′, 1

n− cn

n−1∑
t=cn

[
ht−1(x)− ht−1(x′)

])]

6
1

n− cn

n−1∑
t=cn

IEzIEz′ [φ(y − y′, ht−1(x)− ht−1(x′))]

=
1

n− cn

n−1∑
t=cn

IEzIEz′ [`(ht−1, z, z
′)] =

1

n− cn

n−1∑
t=cn

R(ht−1).

Combining with Theorem 1, we have

P
(
R(h̄) >Mn(Zn) + ε

)
6

[
2N

(
H, ε

32Lip(φ)

)
+ 1

]
exp

{
−(cn− 1)ε2

128
+ lnn

}
.

Appendix E. Proof of Theorem 9

Proof [Proof of Theorem 9] The proof is adapted from the proof for Theorem 4 in (Cesa-Bianchi
et al., 2004). The main difference is that instead of using the Chernoff bound we use a large deviation
bound for the U -statistic as follows.

Lemma 15 (see Clemençon et al., 2008, Appendix) Suppose we have i.i.d. random variables
X1, · · · , Xn ∈ X and the U−statistic is defined as

Un =
1

n(n− 1)

n∑
i6=j

q(Xi, Xj) =
2

n(n− 1)

n∑
i>j

q(Xi, Xj),

where the kernel q : X × X → IR is a symmetric real-valued function. Then we have,

P(|Un − IE[Un]| > ε) 6 2 exp{−(n− 1)ε2}. (23)

Therefore, by (23), we have

P
(
|R̂(ht, t+ 1)−R(ht)| > ε

)
6 2 exp{−(n− t− 1)ε2},

or equivalently,

P

(∣∣∣∣R̂(ht, t+ 1)−R(ht)

∣∣∣∣ >
√

1

n− t− 1
ln

2

δ

)
6 δ. (24)
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By the definition of cδ and (24), one can see that

P(
∣∣R̂(ht, t+ 1)−R(ht)

∣∣ > cδ(n− t)) 6
δ

(n− cn)(n− cn + 1)
. (25)

Next, we show the following lemma,

Lemma 16 Let h0, · · · , hn−1 be the ensemble of hypotheses generated by an arbitrary online al-
gorithm A working with a pairwise loss ` which satisfies the conditions given in Theorem 1. Then
for any 0 < δ 6 1, we have

P
(
R(ĥ) > min

cn−16t<n−1
(R(ht) + 2cδ(n− t))

)
6 δ. (26)

Proof [Proof of Lemma 16] The proof closely follows the proof of Lemma 3 in (Cesa-Bianchi et al.,
2004) and is given for the sake of completeness. Let

T ∗ = argmin
cn−16t<n−1

(R(ht) + 2cδ(n− t)) ,

and h∗ = hT ∗ is the corresponding hypothesis that minimizes the penalized true risk and let R̂∗ to
be the penalized empirical risk of hT ∗ , i.e.

R̂∗ = R̂(hT ∗ , T
∗ + 1).

Set, for brevity
R̂t = R̂(ht, t+ 1),

and let
T̂ = argmin

cn−16t<n−1
(R̂t + cδ(n− t)),

where ĥ defined in (18) coincides with h
T̂

. With this notation, and since

R̂
T̂

+ cδ(n− T̂ ) 6 R̂∗ + cδ(n− T ∗)

holds with certainty, we can write

P
(
R(ĥ) > R(h∗) + E

)
= P

(
R(ĥ) > R(h∗) + E , R̂

T̂
+ cδ(n− T̂ ) 6 R̂∗ + cδ(n− T ∗)

)
6

n−2∑
t=cn−1

P
(
R(ht) > R(h∗) + E , R̂t + cδ(n− t) 6 R̂∗ + cδ(n− T ∗)

)
where E is a positive-valued random variable to be specified. Now if

R̂t + cδ(n− t) 6 R̂∗ + cδ(n− T ∗)
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holds, then at least one of the following three conditions:

R̂t 6 R(ht)− cδ(n− t)

R̂∗ > R(h∗) + cδ(n− T ∗)
R(ht)−R(h∗) < 2cδ(n− T ∗)

must hold. Therefore, for any fixed t, we can write

P
(
R(ht) > R(h∗) + E , R̂t + cδ(n− t) 6 R̂∗ + cδ(n− T ∗)

)
6 P

(
R̂t 6 R(ht)− cδ(n− t)

)
+ P

(
R̂∗ > R(h∗) + cδ(n− T ∗)

)
+ P (R(ht)−R(h∗) < 2cδ(n− T ∗),R(ht) > R(h∗) + E) .

The last term is zero if we choose E = 2cδ(n− T ∗). Hence, we can write

P
(
R(ĥ) > R(h∗) + 2cδ(n− T ∗)

)
6

n−2∑
t=cn−1

P
(
R̂t 6 R(ht)− cδ(n− t)

)
+ (n− cn)P

(
R̂∗ > R(h∗) + cδ(n− T ∗)

)
6 (n− cn)× δ

(n− cn)(n− cn + 1)
(By (25).)

+ (n− cn)

[
n−2∑

t=cn−1

P
(
R̂t > R(ht) + cδ(n− t)

)]

6
δ

n− cn + 1
+ (n− cn)2 × δ

(n− cn)(n− cn + 1)
(By (25).)

=
δ

n− cn + 1
+

(n− cn)δ

n− cn + 1
= δ.

Therefore, we know that

P
(
R(ĥ) > min

cn−16t<n−1
(R(ht) + 2cδ(n− t))

)
6 δ. (27)

13.20



ONLINE LEARNING WITH PAIRWISE LOSS FUNCTIONS

The next step is to show that with high probability min
cn−16t<n−1

(R(ht) + 2cδ(n− t)) is close to

Mn. To begin with, notice that

min
cn−16t<n−1

(R(ht) + 2cδ(n− t))

= min
cn−16t<n−1

min
t6i<n−1

(R(hi) + 2cδ(n− i))

6 min
cn−16t<n−1

1

n− 1− t

n−2∑
i=t

(R(hi) + 2cδ(n− i))

= min
cn−16t<n−1

(
1

n− 1− t

n−2∑
i=t

R(hi)

+
2

n− 1− t

n−2∑
i=t

√
1

n− i− 1
ln

2(n− cn)(n− cn + 1)

δ

)

6 min
cn−16t<n−1

(
1

n− 1− t

n−2∑
i=t

R(hi) +
2

n− 1− t

n−2∑
i=t

√
2

n− i− 1
ln

2(n− cn + 1)

δ

)

6 min
cn−16t<n−1

(
1

n− 1− t

n−2∑
i=t

R(hi) + 4

√
2

n− t− 1
ln

2(n− cn + 1)

δ

)

where the last equality holds because
∑n−t−1

i=1

√
1/i 6 2

√
n− t− 1 (see Cesa-Bianchi et al., 2004,

Sec. 2.B). Define

Mm,n =
1

n−m

n−1∑
t=m

Mt(Z
t).

From Theorem 1, one can see that for each t = cn − 1, · · · , n− 2,

P

(
1

n− 1− t

n−2∑
i=t

R(hi) >Mt,n + ε

)
6

[
2N

(
H, ε

32Lip(φ)

)
+ 1

]
exp

{
−(t− 1)ε2

128
+ lnn

}
.

(28)
Then, set for brevity,

Kt = Mt,n + 4

√
2

n− t− 1
ln

2(n− cn + 1)

δ
+ ε.

Using the fact that if min(a1, a2) 6 min(b1, b2) then either a1 6 b1 or a2 6 b2, we can write
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P
(

min
cn−16t<n−1

(R(ht) + 2cδ(n− t)) > min
cn−16t<n−1

Kt

)
6 P

(
min

cn−16t<n−1

(
1

n− 1− t

n−2∑
i=t

R(hi)

+ 4

√
2

n− t− 1
ln

2(n− cn + 1)

δ

)
> min

cn−16t<n−1
Kt

)

6
n−2∑

t=cn−1

P

(
1

n− 1− t

n−2∑
i=t

R(hi) + 4

√
2

n− t− 1
ln

2(n− cn + 1)

δ
> Kt

)

=
n−2∑

t=cn−1

P

(
1

n− 1− t

n−2∑
i=t

R(hi) >Mt,n + ε

)

6 (n− cn − 1)

[
2N

(
H, ε

32Lip(φ)

)]
exp

{
−(cn− 1)ε2

128
+ lnn

}
(By (28).)

6

[
2N

(
H, ε

32Lip(φ)

)]
exp

{
−(cn− 1)ε2

128
+ 2 lnn

}
.

Therefore, using (27), we get

P

(
R(ĥ) > min

cn−16t<n−1

(
Mt,n + 4

√
2

n− t− 1
ln

2(n− cn + 1)

δ

)
+ ε

)

6 δ +

[
2N

(
H, ε

32Lip(φ)

)]
exp

{
−(cn− 1)ε2

128
+ 2 lnn

}
,

which, in particular, leads to

P

R(ĥ) >Mn + 4

√
2

n− cn
ln

2(n− cn + 1)

δ
+ ε


6 δ +

[
2N

(
H, ε

32Lip(φ)

)]
exp

{
−(cn− 1)ε2

128
+ 2 lnn

}
.

By substituting ε with ε/2 and choosing δ as in the statement of Theorem 1, that is, satisfying

4
√

2
n−cn ln 2(n−cn+1)

δ = ε
2 , we have for any c > 0,

P
(
R(ĥ) >Mn + ε

)
6 2(n− cn + 1) exp

{
−(n− cn)ε2

128

}
+

[
2N

(
H, ε

64Lip(φ)

)
+ 1

]
×

exp

{
−(cn− 1)ε2

512
+ 2 lnn

}
6 2

[
N
(
H, ε

64Lip(φ)

)
+ 1

]
exp

{
−(cn− 1)ε2

512
+ 2 lnn

}
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