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Abstract

Off-policy evaluation is the problem of evaluating a decision-making policy using data
collected under a different behaviour policy. While several methods are available for ad-
dressing off-policy evaluation, little work has been done on identifying the best methods.
In this paper, we conduct an in-depth comparative study of several off-policy evaluation
methods in non-bandit, finite-horizon MDPs, using randomly generated MDPs, as well as a
Mallard population dynamics model [Anderson, 1975] . We find that un-normalized impor-
tance sampling can exhibit prohibitively large variance in problems involving look-ahead
longer than a few time steps, and that dynamic programming methods perform better than
Monte-Carlo style methods.

1. Introduction

One of the core competencies of most intelligent decision-making agents is the ability to
properly evaluate their decision-making strategy. In a reinforcement learning context, this
is the policy evaluation problem, which involves the estimation of the expected return asso-
ciated with a policy. The ideal method for evaluating policies is to apply them in practice,
observe the return, and estimate the expected return (and its uncertainty) using this data.
However, if data is expensive (or rare), or the number of policies to evaluate is large, this
may be infeasible. A popular alternative is to evaluate the decision-making policy of inter-
est (called the target policy) using data collected under a different, behaviour policy. This
method is known as off-policy policy evaluation. Off-policy learning has been used in a range
of applications, such as energy systems [Hannah and Dunson, 2011], robotics [Riedmiller,
2005], clinical studies [Pineau et al., 2009], and tax collection [Abe et al., 2010].

We focus on two types of off-policy estimators: model-based [Sutton and Barto, 1998;
Mannor et al., 2007], and importance sampling weighting of the returns [Precup et al., 2000;
Robins et al., 2000; Murphy, 2005]. Several methods for continuous MDPs that would fall
in neither category, such as LSTD, can be shown to reduce to a model-based estimator in
the discrete setting [Boyan, 2002]. The tree backup algorithm proposed in Precup et al.
[2000] also becomes, in expectation, equivalent to a model-based estimator. One class of
algorithms which cannot be easily pegged into one of these categories is gradient-based
temporal-difference methods [Sutton et al., 2009]. However, since these algorithms are de-
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signed specifically to handle infinite-horizon problems in which function approximation is
necessary, we will not discuss them in this paper. Three of the estimators we compare have
been proposed in the literature. The other two (per-step importance sampling and nor-
malized per-step importance sampling) are related to existing methods, but have not been
studied in the form we propose.

Previous comparative studies for off-policy estimators considered single-step contextual
bandit problems [Kang et al., 2007; Dudik et al., 2011]. We present an empirical study for
finite-horizon discrete MDPs with arbitrary horizon length. We use a set of randomly gen-
erated MDPs, similar to those used by Castronovo and Ernst [2012], and a simulated model
of the Mallard population dynamics, first proposed by Anderson [1975] and subsequently
used by Fonnesbeck [2005].

2. Finite-horizon MDPs

A finite-horizon MDP is defined as a tuple 〈S,A, P,R〉, where S is a set of states; A is a set
of actions; P : S ×A×S → [0, 1] is the transition model, with P s

′

sa denoting the conditional
probability of a transition to state s′ given current state s and action a; R : S × A→ [0, 1]
is the reward function, with Rsa denoting the immediate expected reward for state s and
action a. A policy π : S ×A→ [0, 1] specifies how decisions are made. In a finite MDP, the
model can be represented using matrices P ∈ R|S×A|×|S| and R ∈ R|S×A|. Similarly, policies
can also be represented as block-diagonal matrices π ∈ R|S|×|S×A|.

The value of a policy π for a decision horizon of length K is defined as:

V π
K(s) = E[r0 + r1 + · · ·+ rK |s0 = s] =

∑

a

πsa

(
Rsa +

∑

s′

P s
′

saV
π
K−1(s

′)

)
.

or, if we consider V π
K to be the vector of all state values,

V π
K = π(R+ PV π

K−1) = · · · =
K∑

k=0

(πP )kπR. (1)

3. Off-policy value function estimation

In practice, the model of the MDP is usually unknown, so Eq. (1) cannot be applied directly.
Furthermore, the user might not be able to obtain trajectories using policy π. In natural
resource management, in particular, implementing a policy is not only expensive but also
potentially unrealistic, given that interesting time horizons may span decades. Instead, the
user may have access to data gathered under some existing policy b (or possibly, under
several known policies from different geographic regions or different periods). Off-policy
value function estimation methods are designed to deal with this case.

All estimators used in this paper are summarized in Table 1. We will now describe the
notation and context for each of them.

Importance sampling [Rubinstein, 1981] is a technique for sampling from one distribution
by weighting the samples generated from another distribution. It has been proposed as an
off-policy estimator for MDPs both in reinforcement learning [Precup et al., 2000] and in the
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Un-normalized Normalized
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V̂ PTIS
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1
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ns∑

i=1
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j=1
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b(si:j , ai:j)




K∑
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ri:l

Instead of ns, divide by
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K∏

j=1
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Per-step
importance
sampling

V̂ PSIS
k (s) =

1

ns

∑

a

πsa
bsa

∑

i∈B(s,a)

[ri+V̂
PSIS
k−1 (s′i)]

Instead of ns, divide by

∑

i∈B(s)

π(s, ai)

b(s, ai)
=
∑

a

nsa
πsa
bsa

Model-based V̂MB
K (s) =

∑

a

πsa

(
R̂sa +

∑

s′

P̂ s
′

saV̂
MB
K−1(s

′)

)
=

K∑

k=0

(πP̂ )kπR̂

Table 1: Off-policy estimators for discrete MDPs. All methods are consistent, but (un-
normalized) per-trajectory importance sampling is the only one that is
unbiased.

clinical trial literature [Robins et al., 2000], where it is called inverse probability weighting.
Importance sampling methods typically assume that the behaviour policy used to collect
the data, denoted b, is known, and that πsa > 0 =⇒ bsa > 0. The naive implementation
of importance sampling for off-policy evaluation weighs entire trajectories. This existing
estimator is the (un-normalized) per-trajectory importance sampling (PTIS) in Table 1. It
is computed based on ns trajectory fragments of length K that start from state s in the
batch, where the ith trajectory is denoted by:

(si:0 = s, ai:0, ri:0, si:1, ai:1, ri:1, ..., si:K , ai:K , ri:K),

The weights in the importance sampling estimator can be scaled to the [0, 1] interval by
normalizing over their sum. This is seen as a way to reduce estimator variance, and leads
to the normalized per-trajectory importance sampling estimator in Table 1, which we will
denote by V̂ PTIS−N . This is also an existing estimator [Precup et al., 2000; Murphy, 2005].

In order to avoid the variance introduced by weighting entire trajectories, we introduce
per-step importance sampling as an alternative. These estimators are very similar to the
per-decision importance sampling [Precup et al., 2000]. However, we present them for state
values and finite-horizon problems with batch data, rather than for action values and episodic
problems with on-line data. Consider the more general setting where a sample i is composed
of start state si, action ai generated from b at si, and (ri, s

′
i) the response of the model (P,R)

at (si, ai). The (un-normalized) per-step importance sampling estimator, shown in Table 1,
uses ns, nsa, and nsas′ to denote the sizes of the subsets restricted by the start state s, action
a and/or next state s′, and B(s) and B(s, a) to denote the subsets of samples for which the
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start state and/or action choice is s, a. If ns = 0, there is no data at this state, so we
have to pre-define V̂ PSIS

k (s). We also construct a normalized version, which we denote by
V̂ PSIS−N
K .

Model-based MDP estimators construct approximations P̂ and R̂ of the transition and
reward model, and then use standard methods such as dynamic programming to compute
the value function for the estimated model. For discrete MDPs, consistent estimators of the
model are given by:

R̂sa =
1

nsa

∑

i∈B(s,a)

ri, P̂ s
′

sa =
nsas′

nsa
. (2)

Similarly to per-step importance sampling, we have to use a pre-defined value if ns = 0 or
nsa = 0. The finite-horizon value function can then be estimated using the approximate
model R̂, P̂ .

This estimator is intuitive and has a long history. However, we are only aware of one
work on its statistical properties, by Mannor et al. [2007]. For infinite-horizon discrete
MDPs with discounting, Mannor et al. [2007] compute second-order approximations for the
bias and variance of the model-based estimator, and examine its empirical performance on
a discretized version of a catalog ordering problem.

Note that the MB estimator can be expressed in the same form as the per-step importance
sampling estimators, but with an estimate of b as surrogate:

V̂MB
k (s) =

1

ns

∑

a

πsa
nsa/ns

∑

i∈B(s,a)

(
ri + V̂MB

k−1 (s
′
i)
)
. (3)

Results from [Rubinstein, 1981] can be used to show that both PTIS and PTIS-N are
consistent estimators. PTIS is also unbiased; however, normalization can introduce bias,
while typically reducing variance. The dynamic programming estimators (PSIS, PSIS-N
and MB) are also consistent. This can be proven using Slutsky’s theorem [Dudewicz and
Mishra, 1988], by noting that all of them can be written in the form

V̂K =

K∑

k=0

(πZP̂ )kπZR̂, (4)

where Z is a diagonal matrix with entries

ZPSISsa = (nsa/ns)/bsa ZPSIS−Nsa = (nsa/W (s))/bsa ZMB
sa = 1,

with W (s) denoting the normalization term for PSIS-N.

4. Empirical results

In this section we study the empirical performance of the different off-policy estimators on
two domains: a simulated model of a natural resource management problem, and a set of
randomly generated MDPs. Note that, for the model-based method, we use a default reward
value Rsa = 0 for the state-action pairs (s, a) for which nsa = 0 (unless otherwise specified),
and a default transition model that self-loops (P ssa = 1).
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4.1. Mallard population model

Anderson’s model is formulated as an MDP with yearly time increments, two-dimensional
state, and continuous actions [Anderson, 1975]. The state variables are the adult population
Nt and the number of ponds Pt (both expressed in millions), while the action Ht represents
the proportion of animals to be harvested in year t. The state transitions are defined by the
following equations:

Nt+1 = Nt(1− 0.37e2.78Ht) +

(
1

12.48
P 0.851
t +

0.519

Nt

)−1

(1− 0.49e0.9Ht)

Pt+1 = −2.76 + 0.391Pt + 0.233ǫt

where ǫt ∼ N(16.46, 4.41) is a normally distributed random variable describing the amount
of precipitation during year t (in inches). The reward is defined as the number of birds
harvested in a given year, computed as

R(Nt, Pt, Ht) = Ht

(
0.92Nt +

(
1

12.48
P 0.851
t +

0.519

Nt

)−1
)
.

Anderson constructed and validated this model based on real data about the evolution of
the Mallard population. For more details, including model justification, we refer the reader
to [Anderson, 1975].

For our experiments, we used a discretized version of the model. Since the states where
the bird population is close to 0 are particularly important, we used a discretization with
higher resolution in that region of the state space. More precisely, we divided Nt into
intervals of length 2 when Nt > 2, and length 0.25 when Nt ≤ 2. Pt was divided into four
intervals of unit length. We also assumed that state features are bounded, so Nt ∈ [0, 17] and
Pt ∈ [0, 4]. This resulted in 64 states. We generated 10 million transitions from the original
MDP by sampling starting states uniformly randomly; then, we used the data to estimate
a transition matrix and reward function for the discrete MDP. The transition function was
estimated using maximum likelihood estimation, whereas the reward function was defined
as a Gaussian for each discretized interval, with its mean and variance estimated from
the generated data. This produced the MDP that we used as “ground truth”; that is, we
investigated how well our methods estimate the value function for this discretized MDP.

We considered three policies, all selecting from two actions: a1 representing Ht = 0 and
a2 representing Ht = 0.3. The first policy, which we call discourage hunting, selects a1 with
probability 0.8 and a2 with probability 0.2 in every state. The second policy, which we call
state-dependent hunting, prescribes reduced hunting when the mallard population or the
number of ponds is low, and larger amounts of hunting otherwise; more precisely, it selects
a1 with probability 0.8 in the discrete states corresponding to [0, 12] × [0, 1], [0, 8] × [1, 2],
[0, 4] × [2, 3], and [0, 2] × [3, 4], and a2 with probability 0.8 for the rest of the state space.
The third policy, called encourage hunting, selects a2 with probability 0.8 in all states.
Throughout the experiments, we used discourage hunting as the behaviour policy, and used
the discrete state corresponding to Nt = 7 and Pt = 1.5 as the starting state s0. Each
batch of training data was generated as a single, uninterrupted trajectory starting in s0,
with actions selected according to the behaviour policy. Hence, the number of samples in a
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Figure 4.1: State probabilities (left) and standard deviations of three estimators (right).
Results averaged over 100, 000 runs. Note the logarithmic scale for the y axis in
the right panel.

batch is the length of this trajectory. We present results estimating the value of the start
state s0 under all policies. Unless otherwise specified, the results are averages over 1000
batches.

As seen in Figure 1(a), the three policies tend to visit different regions of the state
space. In particular, the distribution of states under encourage hunting leads predominantly
to states corresponding to low population numbers, which is very different from the other
two policies. Intuitively, this discrepancy should make estimating the value function for
encourage hunting particularly challenging, given that discourage hunting is used as the
behaviour policy. This intuition is confirmed by our empirical results.

Figure 4.1(b) contains a plot of the standard deviations of the different estimators when
state-dependent hunting is the target policy. Even for a target policy that induces a state
distribution fairly close to the one under the behaviour policy, PSIS and PTIS can have very
large variance for horizons longer than a few time steps.

For the remainder of this section, we further investigate the performance of PSIS-N,
PTIS-N, and MB. We examine the performance of these three estimators in terms of bias
and root mean squared error (RMSE), when either state-dependent hunting or encourage
hunting is the target policy.

For a particular horizon, we can examine the methods’ performance as a function of the
amount of data available, as illustrated in Figures 4.2 and 4.3. As expected, the performance
of both methods improves when increasing the size of the batch, although much slower if
the target policy is very different from the behaviour policy.

PTIS-N exhibits the poorest performance in all settings. The performance difference
is most striking when encourage hunting is the target policy. Encourage hunting has the
reversed action selection probabilities from the behaviour policy, and it induces a completely
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Figure 4.2: RMSE and bias of the 20-step value function estimate for various sample sizes,
using state-dependent hunting as the target policy.
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(a) Default MB reward = 0.
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(b) Default MB reward = 10.

Figure 4.3: RMSE and bias of the 20-step value function estimate for various sample sizes,
using encourage hunting as the target policy. The only difference between the
two graphs is the default value used by the model-based method for Rsa when
nsa = 0. Note that the x axis is different from Figure 4.2, allowing for batch
sizes of up to 500,000 samples.

different state distribution (as seen in Figure 4.1). This suggests that PTIS-N’s performance
is particularly weak when the problem is highly off-policy.

The poor performance of per-trajectory methods is particularly interesting, given that
they are commonly used as a method for evaluating treatment effects from clinical trials
[Robins et al., 2000; Murphy, 2005]. We conjecture that this happens because of at least
two reasons. First, the existing evaluations of multi-stage treatments are based on clinical
trials that typically have very short horizon lengths (two and three stage trials are common),
and for such short horizons the difference between the methods’ performance is not as large.
Second, epidemiologists tend to include information about previous treatment in the state
space, making the set of states accessible in k steps different for all k. In such a setup,
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Figure 4.4: RMSE and bias for various horizons and batches of 500 samples each, using
state-dependent hunting as the target policy. For the bias graph, the line for
PSIS-N overlaps that for the correct value.

methods that take advantage of the Markov property (such as PSIS-N and MB) may offer
fewer benefits.

PSIS-N performed strongly in all settings. The only time that the model-based method
outperformed PSIS-N was when encourage hunting was the target policy, and the default
value used by the model-based method for the state-action pairs (s, a) for which nsa = 0
was Rsa = 0 (Figure 4.3(a)). The good performance of the model-based method in this
setting is likely to be due to the fact that the reward for most states encountered under
encourage hunting is actually very close to zero, because encourage hunting depletes the
animal population. When a different default value was used (Rsa = 10, Figure 4.3(b)), the
model-based method performed noticeably worse, due to the increased bias induced by using
a default reward that was further from the true value.

Figure 4.4 illustrates how the length of the horizon affects performance. The perfor-
mance of all methods degrades as the horizon increases. This is expected, as increasing the
horizon while maintaining the same number of samples means that we effectively have fewer
samples per time step, which increases the variance. However, the ranking of the meth-
ods’ performance remains the same regardless of the horizon. We have observed a similar
phenomenon when using encourage hunting as a target policy.

4.2. Randomly generated MDPs

In this section, we present experiments on a set of randomly generated MDPs. The exper-
iments in the previous section indicated that the model-based method may have reduced
performance due to high bias when there are zero samples for some of the state-action pairs.
Since increasing the total number of available actions increases the probability of having no
samples for a state-action pair, we use the random MDPs to illustrate how the bias of the
model-based method is affected by the number of available actions.

The randomly generated MDPs are similar to those used by Castronovo and Ernst [2012].
Each of the MDPs has 20 states and 5 actions, except for one experiment where we varied
the number of actions. The transition function is generated by randomly selecting, for each
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state-action pair (s, a), 10% of the states as successor states, generating a uniform random
variable in N(s′) ∈ [0, 1] for each of the successor states s′, and then normalizing to obtain

the transition probabilities: P s
′

sa =
N(s′)

∑

s′′∈Succ(s,a)N(s′′) .

For states one through 10, the reward for state-action pair (s, a) is equal to zero with 0.9
probability and to a number chosen uniformly randomly in [0, 1] otherwise. For states 11
through 20, the probabilities are reversed (zero with probability 0.1 and a uniform number
with probability 0.9). This is slightly different from Castronovo and Ernst [2012] - they used
the first reward model (the one we used for states 1-10) as a prior for generating deterministic
rewards at all the states in the MDP. The starting state is state 1.

We used a uniform behaviour policy that selected each action with equal probability at
all states. The target policy was one that ascribed 60% of the probability mass to the first
action, with the rest spread equally among the other actions.

Similar to the previous experiment, we computed the bias and RMSE of the different
estimators with respect to the correct value function. We sampled 10 different MDPs, and
for each of the MDPs we generated 1000 batches. The results we will present are averaged
over the resulting 10000 batches.
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Figure 4.5: RMSE and bias of the 20-step value function estimate for various sample sizes
on the random MDPs.

Figure 4.5 illustrates the performance of the methods as a function of the sample size
on a 20-step problem. The results are similar to those observed on the mallard domain,
with PSIS-N having the best performance, the model-based estimator having high RMSE
for small sample sizes due to bias induced by having to use default parameter values when
nsa = 0, and PTIS-N being very slow to converge.

In order to emphasize the effect that having to use default parameter values when nsa = 0
has on the model-based method, we conducted an experiment where we varied the number
of actions for our random MDPs. Our hypothesis was that the probability that some nsa is
zero will increase as the number of actions increases, and therefore the bias of the model-
based method will increase as well. The results, displayed in Figure 4.6, illustrate this
phenomenon. For small sample sizes (Figure 4.6(a)), the bias of the model-based method
increases steeply as the number of available actions increases. In contrast, PSIS-N appears
to be more robust to changes in the size of the action set. For larger sample sizes, P (nsa = 0)
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(a) Batch size = 500 transitions.
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(b) Batch size = 2000 transitions.

Figure 4.6: RMSE and bias of the 20-step value function estimate for various action set sizes
on the random MDPs. The two graphs differ in the number of samples in the
each batch.

decreases, and all methods are affected by the change in the size of the action set in a similar
way (Figure 4.6(b)).

5. Discussion

We studied several off-policy learning algorithms, including two new estimators, PSIS and
PSIS-N, that are per-step versions of importance sampling which take advantage of Markov
assumptions about the model. We briefly discussed the estimators’ bias and consistency,
and presented a detailed empirical analysis of their performance in a case study pertaining
to the management of an animal species. We found that the model-based estimator and the
normalized per-step estimator (PSIS-N) performed particularly well. We also found that the
model-based estimator can suffer from significant bias if no samples are available for some
of the state-action pairs, particularly for problems with many available actions.

We emphasize that the importance sampling estimators require a fixed and known be-
haviour policy. If the behaviour policy is instead estimated from data, we obtain the model-
based estimator (as shown). Cases in which the data is gathered according to multiple
behaviour policies (e.g. gathered from different geographic locations), could also be easily
incorporated in the estimators by appropriate weighting of the different data batches.

The bias and variance of the off-policy estimators were illustrated through the empirical
results. From a theoretical standpoint, there are challenges in providing a formal analysis
of the weighted estimators in the sequential case (horizon > 1). This is an interesting area
for future work, though we expect it may be difficult to obtain closed-form expressions for
these quantities.

As shown in our experiments, it is crucial to assess values for longer time horizons, as the
horizon impacts the value of a policy, as well as the ordering of policies. Our results suggest
that the horizon length should also be an important factor when choosing an estimator.
Some decision-making domains, notably in medicine, deal with relatively short horizons,
and in those cases estimators such as PTIS, which have large variance over long horizons
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but are unbiased, may be preferable. In domains with longer decision horizons, estimators
such as PSIS-N tend to have lower error (though the error increases with horizon length).

One limitation of this work is that the empirical domains are discrete, simulated environ-
ments. Additional experiments with real data would undoubtedly make the analysis more
compelling. However, gathering real data under a new policy in domains such as natural
resource management tends to be expensive, or even impossible. Therefore, ground truth
(V π in our case) is difficult to establish, potentially rendering comparative analyses less
meaningful.

In continuous MDPs, off-policy learning can be applied, but generates further compli-
cations. In particular, the discrepancy between the probability of a trajectory under the
behaviour and the target policy can lead to divergence. Several algorithms have been pro-
posed in order to account for trajectory distribution discrepancies. Precup et al. [2001] use
importance sampling weights to correct for the probability of reaching a specific point in a
trajectory. The resulting estimators are consistent (in the space of representable value func-
tions) but tend to have high variance. Sutton et al. [2009] address the problem of off-policy
learning from on-line data. The main idea is to estimate a secondary set of parameters
(in addition to those describing the value function), which are used to stabilize the value
function weights and prevent divergence. In discrete MDPs, however, all these estimators
are more conservative and hence less sample-efficient than those on which we focused.
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