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Abstract

EXP3 is a popular algorithm for adversarial multiarmed bandits, suggested and analyzed
in this setting by Auer et al. [2002b]. Recently there was an increased interest in the
performance of this algorithm in the stochastic setting, due to its new applications to
stochastic multiarmed bandits with side information [Seldin et al., 2011] and to multiarmed
bandits in the mixed stochastic-adversarial setting [Bubeck and Slivkins, 2012]. We present
an empirical evaluation and improved analysis of the performance of the EXP3 algorithm in
the stochastic setting, as well as a modification of the EXP3 algorithm capable of achieving
“logarithmic” regret in stochastic environments.

1. Introduction

Multiarmed bandits are the simplest instance of the exploration-exploitation trade-off prob-
lem, which is the basic question in reinforcement learning. There exist two main variants
of this problem: stochastic and adversarial. In stochastic multiarmed bandit problems the
rewards for playing each arm are generated independently from unknown distributions cor-
responding to each arm [Auer et al., 2002a]. In adversarial multiarmed bandit problems a
sequence of rewards is generated for each arm by an adversary before the game starts [Auer
et al., 2002b].

The performance of algorithms for multiarmed bandits is usually evaluated in terms of
regret bounds. In the stochastic setting the regret bounds control the difference between the
reward obtained by the algorithm and the expected reward that would have been obtained if
the algorithm would have played the best arm in all rounds of the game. In the adversarial
setting the regret bounds control the difference between the reward obtained by the algo-
rithm and the reward that could have been obtained if the algorithm would have played in
all rounds the arm corresponding to the best rewards sequence. In both stochastic and ad-
versarial environments we can talk about in-expectation and high-probability regret bounds.
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In-expectation regret bounds are concerned with the expected regret of the algorithm (with
respect to its internal randomization and, in the stochastic case, the stochasticity of the
environment). High-probability regret bounds provide stronger high-probability guarantees
on individual roll-outs of the game. This difference is important to keep in mind when
comparing different results.

There exist stochastic and deterministic strategies for stochastic multiarmed bandits.
Deterministic strategies are based on computing upper confidence bounds for each of the
arms at each round of the game and playing the arm with the highest upper confidence
bound. The simplest algorithm from this family is UCB1 algorithm of Auer et al. [2002a],
which uses Hoeffding’s inequality for computing the upper confidence bounds. Several im-
provements of this algorithm were proposed, which use tighter concentration inequalities
for computing the upper confidence bounds and/or more careful algorithms [Audibert and
Bubeck, 2009; Audibert et al., 2009; Auer and Ortner, 2010; Garivier and Cappé, 2011;
Maillard et al., 2011].

Stochastic algorithms for stochastic multiarmed bandits include Thompson sampling
[Thompson, 1933; Chapelle and Li, 2011; Kaufmann et al., 2012] and EwS algorithm of
Maillard [2011]. Stochastic policies have some practical advantages over deterministic UCB-
type algorithms. In particular, they are easier to apply in the situation of delayed feedback
[Chapelle and Li, 2011].

The most well-known algorithm for adversarial multiarmed bandits is the EXP3.P sug-
gested by Auer et al. [2002b]. In each round of the game EXP3.P picks an arm according
to a Gibbs distribution based on upper confidence bounds for each arm, and plays it.

Most analyses of algorithms for stochastic multiarmed bandits provide in-expectation
regret bounds. Typically these bounds achieve regret of the form O(

∑
{a:∆(a)>0}

ln t
∆(a)),

termed “logarithmic” regret, where ∆(a) is the gap between the expected reward of arm a
and the expected reward of the “best” arm (the one corresponding to the highest expected
reward). In the adversarial case EXP3.P yields Õ(

√
KT ) high-probability regret bound,

where the time horizon T is assumed to be known and Õ hides some logarithmic factors
[Auer et al., 2002b]. Unknown time horizons are treated by using the “doubling trick”.

There is another algorithm for adversarial multiarmed bandits suggested in Auer et al.
[2002b], called EXP3, that picks arms according to a Gibbs distribution based on empirical
importance-weighted rewards of the arms instead of using upper confidence bounds. To
be more precise, the Gibbs distribution is mixed in a carefully designed proportion with a
uniform distribution, which performs the exploration.

We note that there is an important distinction between EXP3 and stochastic algorithms
for stochastic multiarmed bandits mentioned earlier (Thompson sampling and EwS): EXP3
is based on importance-weighted sampling, whereas the other two algorithms are based on
unweighted rewards. Importance-weighted sampling provides certain advantages when mov-
ing to more complex problems, such as stochastic multiarmed bandits with side information
[Seldin et al., 2011]. It is also used as a part of the strategy in mixed adversarial and stochas-
tic settings [Bubeck and Slivkins, 2012]. This motivates our study of the performance of
EXP3 in stochastic environments.

Seldin et al. [2012] observed that the performance of EXP3 in stochastic environments
is comparable to the performance of UCB1 in the “initial phase” of the game (the “initial
phase” corresponds to t < ln(∆)2/∆4, where ∆ is the minimal positive gap). However,
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EXP3 cannot keep up with UCB1 after the “initial phase” and the paper provided only
suboptimal high-probability Õ(K1/3t2/3) regret bound for the algorithm. We note that Auer
et al. [2002b] provided a Õ(

√
KT ) in-expectation regret bound for EXP3 in the adversarial

setting, but no high-probability statement could be derived. The question of whether a high-
probability Õ(

√
Kt) regret bound can be derived in the stochastic setting remained open.

Although there is a high-probability Õ(
√
KT ) regret bound for the EXP3.P algorithm in

the adversarial setting (which directly implies that the same bound holds in the stochastic
setting), Seldin et al. [2012] showed that in practice in the stochastic setting EXP3.P is
significantly inferior to EXP3, which provided the motivation for a deeper study of EXP3.

1.1. Summary of the Main Contributions

In Theorem 1 we provide a Õ(
√
KT ) high-probability regret bound for application of the

EXP3 algorithm in stochastic environments. We note that we analyze EXP3 algorithm with
time-varying learning rate, which is a more elegant approach than the doubling trick.

Theorem 1 is based on Lemma 2, which shows that in stochastic environments the
empirical importance-weighted rewards of all arms are “well-behaved” with high probability.
We note that in adversarial environments the empirical importance-weighted rewards are
not “well-behaved” and additional tools are required for their control, such as EXP3.P.

We also propose and analyze a modification of the EXP3 algorithm that we name
EXP3ELM, which is based on a combination of EXP3 with action elimination (see Al-
gorithm 2 box). EXP3ELM performs identically to EXP3 in the “initial phase” of the game
and comparably to UCB1 after the “initial phase”. In Theorem 3 we prove a “logarithmic”
regret bound for EXP3ELM.

We also provide an empirical evaluation of the performance of EXP3 and EXP3ELM.

2. Problem Setting and Definitions

Let A be a set of K actions (arms) and let a ∈ A denote the actions. Denote by R(a) the
expected reward of action a and let p(·|a) be the unknown reward distribution underlying
a. We assume that the support of p(·|a) is contained in the [0,1] interval. Let πt be a
distribution over A that is played at round t of the game (a policy). Let {A1, A2, . . . }
be the sequence of actions played, such that At is distributed according to πt and πt is
computed based on the history of past observations, Ht−1 ≡ (A1, . . . , At−1, R1, . . . , Rt−1),
where R1, R2, . . . is the sequence of observed rewards, so that Rt is distributed according to
p(·|At).

For t ≥ 1 and a ∈ {1, . . . ,K} define a set of random variables Rat (the importance
weighted rewards) and their cumulative sum R̂t(a) as:

Rat ≡
Rt
πt(a)

I{At=a} =

{ 1
πt(a)

Rt, if At = a;

0, otherwise;
R̂t(a) ≡

t∑

τ=1

Raτ .

Note that E[Rat |Ht−1] = R(a) and E[R̂t(a)] = tR(a).
Let a∗ ≡ argmaxaR(a) be the “best” action in the game (if there are multiple “best”

actions, pick any of them arbitrarily). We define the regret and empirical regret of an action
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t = 0; ε0 =
1
K ; ∀a: R̂0(a) = 0.

for t = 1, 2, . . . do

εt = min

{
1
K ,
√

lnK
Kt

}
.

∀a: ρ̃t(a) = (1−Kεt) eεt−1R̂t−1(a)

∑

a′ e
εt−1R̂t−1(a

′)
+εt.

Draw At according to ρ̃t and play it.
Observe reward Rt.
∀a: R̂t(a) = R̂t−1(a) +

Rt

ρ̃t(a)
I{a=At}.

end
Algorithm 1: EXP3.

Input: Confidence parameter δ.
Initialization: t = 0; ε0 = 1

K ; A0 = A;
B = 4(e− 2)

(
2 lnK + ln 2

δ

)
; ∀a: R̂0(a) = 0;

for t = 1, 2, . . . do

εt = min

{
1
K ,
√

lnK
Kt

}
.

∀a ∈ At:
ρ̃t(a) = (1− |At|εt) eεt−1R̂t−1(a)

∑

a′∈At
eεt−1R̂t−1(a

′)
+ εt.

Draw At ∈ At according to ρ̃t and play it.
Observe reward Rt.
∀a: R̂t(a) = R̂t−1(a) +

Rt

ρ̃t(a)
I{a=At}.

∀a ∈ At: VRt(a) = VRt−1(a) +
1

ρ̃t(a)
.

At = At−1\{
a : R̂maxt − R̂t(a) >

√
B(VRt(â

∗
t ) + VRt(a))

}
.

end
Algorithm 2: EXP3ELM.

a by:
∆(a) ≡ R(a∗)−R(a), ∆̂t(a) ≡ R̂t(a∗)− R̂t(a).

Note that R̂t(a)− tR(a) is a martingale. The variance of this martingale satisfies:

t∑

τ=1

E
[
(Raτ −R(a))2

∣∣Hτ−1

]
=

t∑

τ=1

E
[
(Raτ )

2
∣∣Hτ−1

]
− tR(a)2 ≤

t∑

τ=1

πt(a)
(Rt)

2

πt(a)2
=

t∑

τ=1

1

πτ (a)
,

where we used the fact that Rt ≤ 1. Let VRt(a) ≡
∑t

τ=1
1

πτ (a)
be the upper bound on the

variance of the martingale R̂t(a)− tR(a).
Finally, define the highest empirical reward at round t and the empirically best arm at

round t as:
R̂maxt ≡ max

a
R̂t(a), â∗t ≡ argmax

a
R̂t(a).

3. Algorithms

In this section we present two learning algorithms that we are using in this paper. The
first algorithm is a minor modification of the EXP3 algorithm of Auer et al. [2002b]. The
difference is that the learning rate εt, which is equal to the exploration rate, is changing
with time.

The EXP3 algorithm keeps sampling “bad” actions at the rate of εt =
√

lnK
Kt and,

therefore, its regret is Ω(
√
Kt) and it cannot compete with UCB1 after the “initial phase”

of the game. This shortcoming is fixed in the EXP3ELM algorithm in the Algorithm 2 box.
EXP3ELM maintains a set At of “active” actions. Initially, A0 = A and the actions are
withdrawn from the active set as soon as it becomes evident with high probability that they
are suboptimal.
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(a) K = 2, ∆ = 0.1 (b) K = 10, ∆ = 0.1 (c) K = 100, ∆ = 0.1

(d) K = 2, ∆ = 0.01 (e) K = 10, ∆ = 0.01 (f ) K = 100, ∆ = 0.01

Figure 4.1: Comparison of EXP3, EXP3ELM, UCB1, KL-UCB, EwS, and
Thompson sampling. The legend in figure (f) corresponds to all the figures. Solid

lines represent the mean performance over the experiments and dashed lines represent

the mean plus one standard deviation over the ten repetitions of the corresponding

experiment. In figures (c) - (f) the number of rounds was insufficient for arms elim-

ination to take place, therefore, the behavior of EXP3ELM is identical to EXP3 and

EXP3ELM is omitted from the figures. Enlarged version of the figure is provided in

the supplementary material.

4. Experimental Results

Before we dive into the analysis of the algorithms we present several experimental results.
We consider stochastic multiarmed bandit problem with Bernoulli rewards. For all the
suboptimal arms the rewards are Bernoulli with bias 0.5 and for the single best arm the
reward is Bernoulli with bias 0.5 + ∆. We run the experiments with K = 2, K = 10, and
K = 100, and ∆ = 0.1 and ∆ = 0.01 (in total, six combinations of K and ∆). We run each
game for 107 rounds and make ten repetitions of each experiment.

We compare EXP3 and EXP3ELM algorithms presented in the previous section with
UCB1 [Auer et al., 2002a], KL-UCB [Garivier and Cappé, 2011; Maillard et al., 2011] (we use
the version of the algorithm suggested in Garivier and Cappé [2011] with constant c = 3),
EwS [Maillard, 2011], and Thompson sampling [Thompson, 1933; Kaufmann et al., 2012].
From the experiments we see that EXP3 is superior to UCB1 in the “initial phase” of the game
and EXP3ELM is identical to EXP3 in the “initial phase” and comparable to UCB1 after
the “initial phase”. The KL-UCB algorithm is a much stronger competitor. Nevertheless,
for the hardest “needle in a haystack” problems (∆ = 0.01 and K = 10 and 100) EXP3
performs comparably and, in the hardest case, even slightly better. EwS and Thompson
sampling are clear leaders, however, we remind that EXP3 is based on importance-weighted
sampling and its study in the stochastic setting is of independent interest.
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5. Analysis

In this section we present an analysis of the EXP3 and EXP3ELM algorithms. For the rigor-
ous analysis we consider a slightly modified version of the algorithms that we name EXP3C
and EXP3ELMC. The modification reduces the learning rate by a factor of 1/

√
C lnK

(namely, we take εt = min
{
1/
√
CKt, 1/(2K)

}
), where C is defined in Theorem 1. We

point out that C depends on the confidence parameter δ, but not on the time horizon. In
practice, the reduction of the learning rate reduces the performance. The elimination rule
in the modified EXP3ELMC algorithm uses a slightly weaker deterministic upper bound on
the variance of the martingales:

At = At−1 \
{
a : R̂maxt − R̂t(a) > 2

√
CKt

}
. (1)

We let R̂t(EXP3C) ≡
∑t

τ=1Rτ denote the reward of EXP3C after t rounds. Similarly,
R̂t(EXP3ELMC) is the cumulative reward of EXP3ELMC after t rounds.

Theorem 1 Let δ ∈ (0, 1) and define C ≡ 4(e − 2)
(
lnK + ln 4

δ

)
e2. Then with probability

greater than 1− δ the regret of EXP3C is bounded as :

tR(a∗)− R̂t(EXP3C) ≤ (1 + lnK)
√
CKt+ 2(3e− 4)

√
Kt

C
+ (e− 2)

√
1

2
t ln

2

δ
+ 2K. (2)

The key element in the proof of Theorem 1 are inequalities (3) and (4) in the following
lemma, which show that the empirical rewards of all actions in EXP3 are “well-behaved”
and that the empirical reward of the best action a∗ always stays “at the top”. (The proofs
are provided at the end of this section.)

Lemma 2 In the EXP3C algorithm with probability greater than 1− δ
2 , for all t:

R̂maxt ≤ tR(a∗) +
√
CKt, (3)

R̂t(a
∗) ≥ tR(a∗)−

√
CKt, (4)

VRt(a
∗) ≤ C ′Kt, (5)

1

ρ̃t(a∗)
≤ C ′K, (6)

If R̂t−1(a) ≥ (t− 1)R(a∗)−
√
CK(t− 1), then

1

ρ̃t(a)
≤ C ′K, (7)

where C ′ = e2 and C is defined in Theorem 1.

It is important to note that in the EXP3.P algorithm for the adversarial case the con-
trol over empirical importance-weighted rewards is achieved by adding the variance of the
rewards to the exponent of the Gibbs distribution in ρ̃t. As it follows from Lemma 2, in the
stochastic case the empirical importance-weighted rewards are controlled directly.

Finally, we show that EXP3ELM achieves “logarithmic” regret (ln t term does not appear
explicitly in the bound, but it is replaced by ln(1/δ) in the definition of C). The proof of
this theorem is provided in the supplementary material.
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Theorem 3 Let δ ∈ (0, 1) and C as defined in Theorem 1, let RHS (2) be the right hand
side of (2), then with probability greater than 1− δ the regret of EXP3ELMC is bounded as :

tR(a∗)− R̂t(EXP3ELMC) ≤ min

{
RHS (2), 4CK

∑

a

1

∆(a)

}
.

5.1. Proofs

Let ρt(a) ≡ eεt−1R̂t−1(a)

Z(ρt)
denote the non-smoothed version of ρ̃t, where Z(ρt) ≡

∑
a e

εt−1R̂t−1(a)

is the normalization factor. Also, let ρεt (a) ≡ eεR̂t−1(a)

Z(ρεt )
and Z(ρεt ) ≡

∑
a e

εR̂t−1(a) denote the
corresponding quantities, where instead of the “native” value εt−1 we use a different ε.

We use the following two results from prior work. The first result from Auer et al.
[2002b] relates the rewards Rt to the logarithm of the fraction of normalization coefficients.
Note that in the definition of ρt we have εt−1, so Z(ρεt−2

t ) corresponds to ρt with ε from the
definition of ρt−1.

Lemma 4 ([Auer et al., 2002b])

Rt ≥ (1−Kεt)
1

εt
ln
Z(ρ

εt−2

t )

Z(ρt−1)
− (e− 2)εt

1

ρ̃t(At)
(8)

The second result from [Maillard, 2011, Section 3.2] bounds the sum of logarithms of the
fractions of normalization coefficients.

Lemma 5 ([Maillard, 2011])

t∑

τ=1

1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
≥ R̂t(a∗)−

lnK

εt
.

We also prove the following lemma that takes care of the last term in (8). Lemma 5
together with Lemma 6 allow us to work with a varying learning rate.

Lemma 6 With probability greater than 1− δ
2 , for all t:

t∑

τ=1

ετ
1

ρ̃τ (Aτ )
≤ 2

√
Kt

C
+

√
1

2
t ln

2

δ
.

Proof of Lemma 6 We have E

[
1

ρ̃t(At)

∣∣∣∣Ht−1

]
=
∑

a ρ̃t(a)
1

ρ̃t(a)
= K, which implies that

∑t
τ=1 ετ

(
1

ρ̃τ (Aτ )
−K

)
is a martingale. Since εt 1

ρ̃t(At)
∈ (0, 1], we have by Hoeffding-Azuma’s

inequality, with probability greater than 1− δ
2 :

t∑

τ=1

ετ
1

ρ̃τ (Aτ )
≤ K

t∑

τ=1

ετ +

√
1

2
t ln

2

δ
≤ 2

√
Kt

C
+

√
1

2
t ln

2

δ
.
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By martingale stopping argument, similar to the one used in the proof of Bernstein’s in-
equality (see supplementary material), the statement holds for all t simultaneously.

Now we are ready to prove Theorem 1. (The proof of Lemma 2 is provided below.)
Proof of Theorem 1 Summing over t the two sides of Lemma 4 and applying Lemmas 5,
2, and 6, we obtain with probability greater than 1− δ:
t∑

τ=1

Rt ≥
t∑

τ=1

(1−Kετ )
1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
− (e− 2)

t∑

τ=1

ετ
1

ρ̃τ (Aτ )

=

t∑

τ=1

1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
−K

t∑

τ=1

ετ
1

ετ
ln
Z(ρ

ετ−2
τ )

Z(ρτ−1)
− (e− 2)

t∑

τ=1

ετ
1

ρ̃τ (Aτ )

≥ R̂t(a∗)−
lnK

εt
− 2(e− 1)K

t∑

τ=1

ετ − 2(e− 2)

√
Kt

C
− (e− 2)

√
1

2
t ln

2

δ
(9)

≥ tR(a∗)−
√
CKt−

√
CKt lnK − 4(e− 1)

√
Kt

C
− 2(e− 2)

√
Kt

C
− (e− 2)

√
1

2
t ln

2

δ
− 2K

(10)

= tR(a∗)− (1 + lnK)
√
CKt− 2(3e− 4)

√
Kt

C
− (e− 2)

√
1

2
t ln

2

δ
− 2K,

where in (9) we applied Lemmas 5 and 6 and used the following upper bound on 1
εt
ln

Z(ρ
εt−2
t )

Z(ρt−1)
,

which follows from Lemma 4 (by definition εt ≤ 1
2)

1

εt
ln
Z(ρ

εt−2

t )

Z(ρt−1)
≤ 1

1−Kεt

(
Rt + (e− 2)εt

1

ρ̃t(At)

)
≤ 2(1 + (e− 2)) = 2(e− 1),

and in (10) we applied Lemma 2. (By the union bound, Lemmas 2 and 6 hold simultaneously
with probability greater than 1− δ.)

Proof of Lemma 2 We prove the lemma by induction. For t = 1 all the claims of the
lemma hold. We assume that the claims hold for t− 1 and show that this implies that they
also hold for t.

We start with the proof of (6). If ρt(a∗) ≥ 1
K we are done. Otherwise:

1

ρ̃t(a∗)
≤ 1

ρt(a∗)
=

∑
a′ e

εt−1R̂t−1(a′)

eεt−1R̂t−1(a∗)

≤
∑

a′

e
εt−1

(

R̂max
t−1 −(t−1)R(a∗)+

√
CK(t−1)

)

≤ Ke2εt−1

√
CK(t−1) = C ′K,

where we used the fact that R̂t−1(a
′) ≤ R̂maxt−1 for all a′ and the induction assumption

R̂t(a
∗) ≥ tR(a∗)−

√
CKt.

Inequality (5) follows from (6) and inequality (4) follows from (5) by Bernstein’s inequal-
ity (see supplementary material).
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Now we prove (7). We note that the proof of (6) was based on the induction assumption
(4) for t− 1. In (7) we assumed that R̂t−1(a) ≥ (t− 1)R(a∗)−

√
CK(t− 1) and using this

assumption the proof is identical.
It is now left to prove (3). If R̂t−1(a) < (t− 1)R(a∗)−

√
CK(t− 1) then

R̂t(a) = R̂t−1(a) +Rat ≤ (t− 1)R(a∗)−
√
CK(t− 1) +

1

εt
≤ tR(a∗) +

√
CKt.

Otherwise, we are in the case R̂t−1(a) ≥ (t− 1)R(a∗)−
√
CK(t− 1). Let

ℓ(t) ≡ max
τ

{
τ :

τ<t and

R̂τ−1(a)<(τ−1)R(a∗)−
√
CK(τ−1)

and R̂τ (a)≥τR(a∗)−
√
CKτ

}
.

ℓ(t) is the last time before t when R̂τ (a) crosses the τR(a∗) −
√
CKτ line from below. If

R̂τ (a) always stays above this line, define ℓ(t) ≡ 1.
Let R̂t2t1(a) ≡

∑t2
τ=t1+1R

a
τ be the sub-sum of the rewards of arm a from time t1+1 to time

t2. By our assumption and the definition of ℓ(t) we have R̂τ (a) ≥ (t−1)R(a∗)−
√
CK(t− 1)

for all ℓ(t) ≤ τ < t. Furthermore, R̂tℓ(t) − (t − ℓ(t))R(a) is a martingale and, by (7), the
variance of this martingale satisfies

t∑

τ=ℓ(t)+1

E

[
(R̂aτ −R(a))2|Hτ−1

]
≤

t∑

τ=ℓ(t)+1

1

ρ̃τ (a)
≤ C ′K(t− ℓ(t)).

Therefore, by Bernstein’s inequality:

R̂tℓ(t) ≤ (t− ℓ(t))R(a) +
√
CK(t− ℓ(t)) ≤ (t− ℓ(t))R(a∗) +

√
CKt.

As well,

R̂ℓ(t)(a) = R̂ℓ(t)−1(a) +
1

εℓ(t)
≤ (ℓ(t)− 1)R(a∗)−

√
CK(ℓ(t)− 1) +

1

εℓ(t)
≤ ℓ(t)R(a∗).

Putting it together we obtain:

R̂t(a) = R̂ℓ(t)(a) + R̂tℓ(t)(a) ≤ ℓ(t)R(a∗) + (t− ℓ(t))R(a∗) +
√
CKt = tR(a∗) +

√
CKt.

5.2. Comparison with Other Regret Bounds

We stress out that our results in Theorems 1 and 3 and Lemma 2 are high-probability results,
as opposed to in-expectation analysis that is provided for most other algorithms for stochas-
tic multiarmed bandits, so the comparison is not completely straightforward. In Theorem 3
we obtain an O((

√
Kt) lnK) regret in the “initial phase” of the game and O(K lnK

∑
a

1
∆(a))

after the “initial phase” of the game. The bound for the “initial phase” can be compared
with O(

√
KT ln(K lnK)√

lnK
) in-expectation regret bound for an improved version of UCB [Auer
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and Ortner, 2010]. We lose slightly less than a factor of
√
lnK, however, we achieve a

stronger high-probability statement. We also note that the
√
lnK factor can be slightly

reduced by tuning C. The regret bound after the “initial phase” can be compared with the
O(ln t

∑
a

1
∆(a)) in-expectation regret bound for the UCB1 algorithm [Auer et al., 2002a].

We do not have the ln t factor since we eliminate arms, but this factor will come back if
we replace the elimination by more intelligent exploration schedule. On the other hand, we
have K lnK factor in our bound, but, as in the case with the “initial phase”, we provide a
stronger high-probability statement.

It is also interesting to compare our result with the analysis of EXP3 and EXP3.P algo-
rithms for adversarial multiarmed bandits in Auer et al. [2002b]. In Theorem 1 we provide a
high-probability O(lnK

√
Kt) regret bound for EXP3 in the stochastic setting. This can be

compared with O(
√
KT lnK) in-expectation regret bound for EXP3 and O(

√
KT ln(KT ))

high-probability regret bound for EXP3.P in the adversarial setting. (We note that Auer
et al. [2002b] assume that the time horizon T is known and tune the learning rate based
on this knowledge. A similar in-expectation regret bound for application of EXP3 with
time-varying learning rate to adversarial bandits is provided by Maillard [2011].) The main
message of Theorem 1 and Lemma 2 is that in the stochastic setting we can apply Gibbs sam-
pling based on the empirical rewards instead of Gibbs sampling based on upper confidence
bounds used by EXP3.P algorithm for adversarial environments.

6. Discussion

We presented a high-probability analysis of the EXP3 algorithm in stochastic environments
and designed a modification of EXP3 that performs identically to EXP3 in the “initial
phase” of the game and comparably to UCB1 after the “initial phase”. The main distinction
of the proposed algorithm from existing algorithms for stochastic multiarmed bandits is that
it is based on importance-weighted sampling. We provided a comprehensive study of the
behavior of importance-weighted sampling in stochastic environments.
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Supplementary Material

Appendix A. Proof of Theorem 3

For the proof of Theorem 3 we need one small lemma.

Lemma 7

if R̂t−1(a) ≥ R̂maxt−1 − 2
√
CK(t− 1), then

1

ρ̃t(a)
≤ C ′K (11)

and for all actions in the active set At at time t, we have VRt(a) ≤ C ′Kt.

Proof of Lemma 7 We start with the proof of (11). If ρt(a) ≥ 1
K we are done. Otherwise,

1

ρ̃t(a)
≤ 1

ρt(a)
=

∑
a′ e

εt−1R̂t−1(a′)

eεt−1R̂t(a)

≤
∑

a′

e
εt−1

(

R̂max
t−1 −R̂max

t−1 +2
√
CK(t−1)

)

=
∑

a′

e2εt−1

√
CK(t−1) = C ′K,

where we used that fact that R̂t−1(a
′) ≤ R̂maxt−1 for all a′ and the assumption R̂t−1(a) ≥

R̂maxt−1 − 2
√
CK(t− 1). Finally, as long as an action a is in the active set, the precondition

of (11) holds and, therefore, we obtain VRt(a) =
∑t

τ=1
1

ρ̃τ (a)
≤ C ′Kt.

Proof of Theorem 3 By inequalities (3) and (4) and the definition of the elimination rule,
with probability greater than 1− δ the best action a∗ is never eliminated by EXP3ELMC.

Now we bound the number of times that suboptimal actions are played. As long as
action a is active, by Bernstein’s inequality and the bound on VRt(a) in Lemma 7, with
probability greater than 1− δ we have R̂t(a) ≤ tR(a)+

√
CKt. On the other hand, R̂maxt ≥

R̂t(a
∗) ≥ tR(a∗)−

√
CKt. Thus, with probability greater than 1− δ:

R̂maxt − R̂t(a) ≥ t∆(a)− 2
√
CKt. (12)

By the elimination rule (1), an action a is eliminated, at the latest, when the right hand
side of (12) is greater than 2

√
CKt, which means that with probability greater than 1 − δ

each suboptimal action is eliminated after at most 4CK
∆(a)2

rounds. The cumulative regret for

playing action a with regret ∆(a) over 4CK
∆(a)2

rounds is 4CK
∆(a) . Summing over the actions we

obtain the result of the theorem.

Appendix B. Bernstein’s Inequality

We used the following form of Bernstein’s inequality, which is based on a fairly standard
martingale stopping argument [Freedman, 1975; Abbasi-Yadkori et al., 2011].
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Theorem 8 (Bernstein’s Inequality) Let X1, X2, . . . be a martingale difference sequence,
such that |Xt| ≤ αt for an increasing deterministic sequence α1, α2, . . . with probability 1.
Let Mt ≡

∑t
τ=1Xτ be martingale. Let V̄1, V̄2, . . . be a sequence of deterministic upper bounds

on the variance Vt ≡
∑t

τ=1E[X
2
τ |X1, . . . , Xτ−1] of the martingale Mt, such that V̄t-s satisfy√

ln 2
δ

(e−2)V̄t
≤ 1

αt
. Then with probability greater than 1− δ for all t:

|Mt| ≤ 2

√
(e− 2)V̄t ln

2

δ
.

The theorem is based on the following lemma [Freedman, 1975; Beygelzimer et al., 2011].

Lemma 9 For Mt and Vt defined in Theorem 8 and λt ∈ [0, 1
αt
]:

E

[
eλtMt−(e−2)λ2tVt

]
≤ 1.

Proof of Theorem 8. Define the stopping time t⋆:

t⋆ ≡ min

{
t : |Mt| > 2

√
(e− 2)V̄t ln

2

δ

}
.

Define the stopped martingale difference sequence by Xt⋆
t ≡ XtIt≤t⋆ . We have |Xt⋆

t | ≤ αt
for all t. Clearly, the stopped martingale difference sequence is also a martingale difference
sequence. Define by M t⋆

t ≡
∑t

τ=1X
t⋆
t the stopped martingale and by V t⋆

t its conditional
variance process. Clearly, V t⋆

t ≤ V̄ t⋆
t⋆ for all t. Hence, we have:

E

[
eλt⋆M

t⋆

t −(e−2)λ2
t⋆
V̄t⋆
]
≤ E

[
eλt⋆M

t⋆

t −(e−2)λ2
t⋆
V t⋆

t

]
≤ 1.

From here, by Markov’s inequality, with probability greater than 1− δ
2 :

λt⋆M
t⋆

t − (e− 2)λ2t⋆ V̄t⋆ ≤ ln
2

δ
+ lnE

[
eλt⋆M

t⋆

t −(e−2)λ2
t⋆
V̄t⋆
]
≤ ln

2

δ
.

By applying the same argument to the negative martingale −Mt and taking λt⋆ ≡
√

ln 2
δ

(e−2)V̄t⋆

we obtain that with probability greater than 1− δ:

|M t⋆

t | ≤
ln 2

δ

λt⋆
+ (e− 2)λ2t⋆ V̄t⋆ = 2

√
(e− 2)V̄t⋆ ln

2

δ

Finally, we have:

P

{
∃t : |Mt| > 2

√
(e− 2)V̄t ln

2

δ

}
= P {t⋆ <∞} = P

{
|M t⋆

t⋆ | > 2

√
(e− 2)V̄t⋆ ln

2

δ
, t⋆ <∞

}

≤ P

{
|M t⋆

t⋆ | > 2

√
(e− 2)V̄t⋆ ln

2

δ

}
≤ δ
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Appendix C. Enlarged Version of Figure 4.1

(a) K = 2, ∆ = 0.1 (b) K = 2, ∆ = 0.01

(c) K = 10, ∆ = 0.1 (d) K = 10, ∆ = 0.01

(e) K = 100, ∆ = 0.1 (f ) K = 100, ∆ = 0.01

Figure C.1: Enlarged version of Figure 4.1. The columns in this figure correspond to the

rows in Figure 4.1. Please, see the caption of Figure 4.1 for explanations.
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