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Abstract

Multivariate Gaussian densities are pervasive in pattern recognition and machine learning.
A central operation that appears in most of these areas is to measure the difference between
two multivariate Gaussians. Unfortunately, traditional measures based on the Kullback–
Leibler (KL) divergence and the Bhattacharyya distance do not satisfy all metric axioms
necessary for many algorithms. In this paper we propose a modification for the KL diver-
gence and the Bhattacharyya distance, for multivariate Gaussian densities, that transforms
the two measures into distance metrics. Next, we show how these metric axioms impact
the unfolding process of manifold learning algorithms. Finally, we illustrate the efficacy of
the proposed metrics on two different manifold learning algorithms when used for motion
clustering in video data. Our results show that, in this particular application, the new
proposed metrics lead to boosts in performance (at least 7%) when compared to other
divergence measures.

Keywords: Divergence measures, Gaussian densities, manifold learning, Riemannian met-
ric for covariance matrices.

1. Introduction

There are various applications in machine learning and pattern recognition in which the
data of interest D are represented as a family or a collection of sets D = {Si}ni=1, where
Si = {xij}

ni
j=1, and xij ∈ Rp. For some of these applications, it is reasonable to model

each Si as a Gaussian distribution Gi(µi,Σi) with mean vector µi and a covariance matrix
Σi.

1 In these settings, a natural measure for the (dis)similarity between two Gaussians,
G1 and G2 say, is the divergence measure of probability distributions (Ali and Silvey, 1966;
Csiszár, 1967). For instance, some of the well known divergence measures with closed form
expressions for Gaussian densities are the symmetric Kullback–Leibler (KL) divergence, or

1. Notations: Bold small letters x,y are vectors. Bold capital letters A,B are matrices. Calligraphic and
double bold capital letters X , Y, X, Y denote sets and/or spaces. Positive (semi-)definite matrices, PD
(and PSD) are denoted by A � 0 and A � 0 respectively. tr(·) is the matrix trace. | · | is the matrix
determinant. I is the identity matrix.
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Jeffreys divergence dJ(G1,G2) (Kullback, 1997), the Bhattacharyya distance dB(G1,G2) and
the Hellinger distance dH(G1,G2) (Kailath, 1967).

When considering a learning problem such as classification, clustering, or low dimen-
sional embedding for the family of sets D, via its representation as the set of Gaussians
{Gi}ni=1, a natural question that arises is that of which divergence measure will yield a better
performance? At first glance, one can consider an answer along two main dimensions: 1)
the learning algorithm that shall be used for the sought task, and 2) the data set under
consideration. In this research, however, we show that the metric properties of these diver-
gence measures form a third crucial dimension that has a direct impact on the algorithm’s
performance. In particular, we show that when modifying the closed form expressions for
dJ(G1,G2) and dB(G1,G2) such that both measures satisfy all metric axioms2, the resulting
new measures yield consistent improvements in the discriminability of the embedding spaces
obtained from two different manifold learning algorithms, classical Multidimensional Scal-
ing (cMDS) (Young and Householder, 1938) and Laplacian Eigenmaps (LEM) (Belkin and
Niyogi, 2003). These improvements in discriminability, in turn, result in consistent boosts
in clustering accuracy. For the application considered in this paper, motion clustering in
video data, an improvement in discriminability of at least 7% is observed.

The work presented here is based on the main idea presented in (Abou-Moustafa et al.,
2010) 3 where we sketch the preliminary idea for a metric for Gaussian densities, and focus
on defining a symmetric positive semi-definite (PSD) kernel based on the proposed measure.
Here, we are motivated by the question of how metric properties of divergence measures can
impact the output hypothesis of a learning algorithm, and in particular manifold learning
algorithms. To this end, in Section (2) we analyze the closed form expressions for some
well known divergence measures for the particular case of Gaussian densities since they
are pervasive in machine learning and pattern recognition. We take a closer look on how
each term in these expressions violate the metric axioms, and then propose modifications
for these expressions that result in new distances that satisfy all metric axioms. Then, in
Section (3), we show how the metric properties in general, and for divergence measures in
particular, impact the unfolding process of manifold learning algorithms such as cMDS and
LEM. In Section (4), we evaluate the performance of cMDS and LEM using the proposed
divergence measures against the original divergence measures in the context of clustering
human motion in video data. Concluding remarks and future research directions are drawn
in Section (5).

2. Characteristics of dJ(G1,G2) & dB(G1,G2)

Our discussion begins with the characteristics of of the symmetric KL divergence, or Jeffreys
divergence dJ(G1,G2) and dB(G1,G2) in terms of structure and metric properties. Let Gp be

2. A metric space (Kreyszig, 1989, p. 3) is an ordered pair (X , d), where X is a non-empty abstract set (of
any objects/elements whose nature is left unspecified), and d is a distance function, or a metric, defined
as: d : X × X 7→ R, and ∀ a, b, c ∈ X , the following axioms hold : (i) d(a, b) ≥ 0, (ii) d(a, a) = 0,
(iii) d(a, b) = 0 iff a = b, (iv) Symmetry : d(a, b) = d(b, a), and (v) The triangle inequality : d(a, c) ≤
d(a, b) + d(b, c). Semi-metrics satisfy axioms (i), (ii), and (iv) only. Note that the axiomatic definition
of metrics and semi-metrics, in particular axioms (i) and (ii), produce the positive semi-definiteness of
d. Hence metrics and semi-metrics are PSD.

3. McGill Technical Report (MTR) No. TR–CIM–10-05.
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the family of p–dimensional Gaussian densities, where the density G(µ,Σ) ∈ Gp is defined
as:

G(x;µ,Σ) = (2π)−
p
2 |Σ|−

1
2 exp{−1

2(x− µ)>Σ−1(x− µ)},

x,µ ∈ Rp, Σ ∈ Sp×p++ , and Sp×p++ is the manifold of symmetric positive definite (PD) matrices.
For G1,G2 ∈ Gp, Jeffreys divergence (or symmetric KL) has the closed form expression:

dJ(G1,G2) = 1
2u>Ψu + 1

2tr{Σ−11 Σ2 + Σ−12 Σ1 − 2I}, (1)

where Ψ = (Σ−11 + Σ−12 ), and u = (µ1 − µ2). The Bhattacharyya coefficient ρ, which is a
measure of similarity between probability distributions, is defined as:

ρ(G1,G2) = |Γ|−
1
2 |Σ1|

1
4 |Σ2|

1
4 exp{−1

8u>Γ−1u}, (2)

where Γ = (12Σ1+
1
2Σ2). From ρ(G1,G2), the Hellinger distance dH is defined as

√
2[1− ρ(G1,G2)],

while the Bhattacharyya distance dB is − log ρ(G1,G2), which also yields an interesting
closed form expression:

dB(G1,G2) = 1
8u>Γ−1u + 1

2 ln
{
|Σ1|−

1
2 |Σ2|−

1
2 |Γ|

}
. (3)

Note that 0 ≤ ρ ≤ 1, 0 ≤ dB ≤ ∞, and 0 ≤ dH ≤
√

2. The divergence div between any
two probability distributions, P1 and P2 say, has the following properties: div(P1, P2) ≥ 0,
and div(P1, P2) = 0 iff P1 = P2 (Ali and Silvey, 1966; Csiszár, 1967). Therefore, by
definition, div satisfies axioms (i), (ii), and (iii) of metrics. The divergence, in general, is not
symmetric, and does not satisfy the triangle inequality. The same follows for the symmetric
KL divergence dJ which is not a metric since it does not satisfy the triangle inequality
(Kullback, 1997). Similarly, dB in (3) is not a metric for the same reason, however, dH is
indeed a metric (Kailath, 1967).

From Equations (1) and (3) it can be noted that when the symmetric KL divergence
dJ and the Bhattacharyya distance dB were applied to G1 and G2, they both factored the
difference between the two densities in terms of the difference between their first and second
order moments. The two closed form expressions in Equations (1) and (3) have the same
structure which is a summation of two components in terms of their first and second order
moments. The first term in Equations (1) and (3) measures the difference between the
means µ1 and µ2 weighted by the covariance matrices Σ1 and Σ2. The second term,
however, measures the difference or discrepancy between the covariance matrices Σ1 and
Σ2 only, and is independent from the means µ1 and µ2.

The first term in Equations (1) and (3), up to a scale factor and a square root, is
equivalent to the generalized quadratic distance (GQD) between x,y ∈ Rp: d(x,y; A) =√

(x− y)>A(x− y), where A ∈ Sp×p++ . If Σ1 = Σ2 = Σ, then Equations (1) and (3) reduce
to:

dJ(G1,G2) = 1
2u>Ψu, and (4)

dB(G1,G2) = 1
8u>Γ−1u. (5)

Note that the squared GQD d2(x,y; A) is a semi-metric, and if A is PSD, then d(x,y; A)
is a pseudo-metric. Both, semi-metrics and pseudo metrics, do not satisfy the triangle
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inequality, and hence Equations (4) and (5) are semi-metrics. Further, if Σ1 = Σ2 = I,
then Equations (4) and (5), up to a scale factor, reduce to the squared Euclidean distance.
Note that the squared Euclidean distance is also a semi-metric.

The second term in Equations (1) and (3) is the distance or discrepancy measure between
Σ1 and Σ2, and is independent of µ1 and µ2. If µ1 = µ2 = µ then:

dJ(G1,G2) = 1
2tr{Σ−11 Σ2 + Σ−12 Σ1 − 2I}, and (6)

dB(G1,G2) = 1
2 ln

{
|Γ||Σ1|−

1
2 |Σ2|−

1
2

}
. (7)

Since Equations (1) and (3) by definition, do not satisfy the triangle inequality, and hence
are semi-metrics, then Equations (6) and (7) are also semi-metrics between Σ1 and Σ2.

We note that it is easy to satisfy all the metric properties for Equations (4) and (5) by
taking their square root, and ensuring that Ψ and Γ−1 are PD. In practice, the positive
definiteness of Ψ and Γ−1 can be achieved by ensuring that Σ1 and Σ2 are PD. For high
dimensional data, shrinkage estimators for covariance matrices (Cao et al., 2011) are usu-
ally used to estimate regularized versions of Σ1 and Σ2. These estimates are statistically
efficient, PD, and well conditioned4.

The problem, however, remains with Equations (6) and (7). Covariance matrices Σ1 and
Σ2 are elements of Sp×p++ , which is a metric space with a defined metric for its elements. The
semi-metrics in Equations (6) and (7), although naturally derived from divergence measures
(Ali and Silvey, 1966; Csiszár, 1967), do not define proper metrics for Sp×p++ , and hence violate
its geometric properties. In the following section, we will introduce the Reimannian metric
for Sp×p++ , and see how it differs from (6) and (7).

2.1. The Riemannian metric for symmetric PD matrices

The set of symmetric PD matrices is a set of geometric objects that define the Riemannian
manifold Sp×p++ . A Riemannian manifold is a differentiable manifold equipped with an inner
product that induces a natural distance metric, or a Riemannian metric between all its
elements. The Riemannian metric for Sp×p++ has its roots in the work of Rao (1945) on
defining distances between distributions. Thirty six years later, Atkinson and Mitchell
(1945) obtained explicit expressions for this distance for some distribution families, including
the Gaussian distribution, which resulted in a metric for Sp×p++ when µ1 = µ2. Note that no
results were obtained when µ1 6= µ2 and Σ1 6= Σ2. Independently, Förstner and Moonen
(1999) and Pennec et al. (2004) derived this metric for Sp×p++ . For Σ1,Σ2 ∈ Sp×p++ , the
Riemannian metric is defined as:

dR(Σ1,Σ2) =
(∑p

j=1 log2 λj

) 1
2
, (8)

where diag(λ1, . . . , λp) = Λ is the generalized eigenvalue matrix for the generalized eigen-
value problem (GEP): Σ1V = ΛΣ2V, and V is the column matrix of its generalized
eigenvectors. Note that dR satisfies all metric axioms and is invariant to inversion and to
affine transformations of the coordinate system (Förstner and Moonen, 1999).

4. See for instance (Cao et al., 2011) and its affiliated references for a nice overview on these methods, and
some recent developments in this direction.
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It is worth noting the differences between dR on one hand, and dJ and dB in Equations
(6) and (7) on the other. To see this, we can rewrite Equation (6) in terms of its eigenvalues.
First, note that the GEP of dR(Σ1,Σ2) can be rewritten as: (Σ−12 Σ1)V = ΛV, where
(Σ−12 Σ1) is the second term of dJ in Equation (6). Second, let L = diag(`1, . . . , `p) be the
eigenvalues of (Σ−11 Σ2). Noting that `j = λ−1j , then dJ(Σ1,Σ2) in Equation (6) can be
rewritten as:

dJ(Σ1,Σ2) = 1
2

p∑
j=1

1 + λ2j
λj

− p. (9)

Unlike dR and dJ above, dB in Equation (7) can not be written in terms of λj ’s since it is
composed of |Γ| = |12Σ1 + 1

2Σ2| and |Σ1Σ2|−1/2 which are different from the terms consti-
tuting dJ(Σ1,Σ2) and dR(Σ1,Σ2). Finally, consider the Hellinger distance dH(G1,G2) =√

2[1− ρ(G1,G2)], which satisfies all metric axioms. Setting µ1 = µ2 = µ, then the distance
between Σ1 and Σ2 will be:

dH(Σ1,Σ2) =
(

2− 2|Γ|−
1
2 |Σ1|

1
4 |Σ2|

1
4

) 1
2
, (10)

which is not a metric on Sp×p++ . As will be shown in Section (4), this fact will yield that
dH has inferior performance with respect to the new metrics we propose in the following
section.

2.2. Modifying dJ(G1,G2) and dB(G1,G2)

Modifying the divergence measures dJ(Gi,Gj) and dB(Gi,Gj) in Equations (1) and (3) re-
spectively, will rely on (i) their special structure which decomposes the difference between
two Gaussian densities into the difference between their first and second order moments,
and (ii) the fact that the second term in Equations (1) and (3) is independent from the
means µ1 and µ2. This split of the Gaussian parameters encourages us to exchange the
second term in dJ(G1,G2) and dB(G1,G2), i.e. the semi-metrics for covariance matrices in
Equations (6) and (7), with the Riemannian metric dR in Equation (8). More specifically,
we propose the following metrics as measures for the difference between two Gaussians:

dJR(G1,G2) = (u>Ψu)
1
2 + dR(Σ1,Σ2), and (11)

dBR(G1,G2) = (u>Γ−1u)
1
2 + dR(Σ1,Σ2), (12)

where Ψ � 0, and Γ−1 � 0. Note that each term of the proposed measures satisfy all metric
axioms. Further, Equations (11) and (12) keep the same structure and characteristics
of Equations (1) and (3); in particular the second term is independent from µ1 and µ2.
If µ1 = µ2 = µ then Equations (11) and (12) reduce to the Riemannian metric dR in
Equation (8). If Σ1 = Σ2 = Σ, then Equations (11) and (12) will yield the exact GQD
with symmetric PD matrices Ψ and Γ−1 respectively, and if Σ = I, then the two metrics
will yield the Euclidean distance. In the case when µ1 6= µ2 and Σ1 6= Σ2, an α–weighted
version of (11) and (12) can be expressed as:

dJR(G1,G2;α) = α(u>Ψu)
1
2 + (1− α)dR(Σ1,Σ2), and

dBR(G1,G2;α) = α(u>Γ−1u)
1
2 + (1− α)dR(Σ1,Σ2),
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where α ∈ (0, 1) weights the contribution (or importance) of each term in dJR and dBR.
Note that when the α–weighted version of the measures are plugged in a learning algo-
rithm, α can be optimized by methods of cross validation, or jointly optimized with the
intensity/shrinkage parameters used to regularize the covariance matrices Σ1 and Σ2.

2.3. The Jensen–Shannon divergence

Another well known divergence that satisfies all metric axioms between any two probability
densities is the square root of the Jensen-Shannon (JS) divergence (Fuglede and Topsøe,
2004):

dJS(G1,G2) = [12dKL(G1,M) + 1
2dKL(G2,M)]

1
2 , (13)

where dKL is the KL divergence, and M = 1
2(G1 + G2) is the mixture distribution of the

two Gaussians G1 and G2. The JS divergence, however, has a considerable high computa-
tional overhead due to the mixture (or middle) distribution M. That is, dKL(G1,M) and
dKL(G2,M) do not have closed form expressions, and in practice, they can be computed by
approximation over a finite sample, which turns to be expensive. For a set with m Gaus-
sians {Gj}mj=1 defined over a set of n high dimensional points X = {xi}ni=1, there will be
m(m−1)/2 mixtures of Gaussians, each with two components. To evaluate all the pairwise
JS divergences for {Gj}mj=1, one has to compute the KL divergence m(m− 1) times over all
n points of X . This is unlike evaluating the closed form expressions for dJ , dB, dH , dJR
and dBR with Gaussian densities, which are independent from the number of samples once
their parameters are estimated.

3. Manifold Learning with Divergence Measures

Given a set vectors X = {xi}ni=1, xi ∈ Rp, manifold learning algorithms (Tenenbaum
et al., 2000; Belkin and Niyogi, 2003) construct a neighbourhood graph in which the input
points xi act as its vertices. This graph is an estimate for the topology of an underlying low
dimensional manifold on which the data are assumed to lie on. The learning algorithm then,
tries to unfold this manifold – while preserving some local information – to partition the
graph (as in clustering), or to redefine metric information (as in dimensionality reduction).
The algorithm’s output is the set Y = {yi}ni=1 that lives in a subspace of dimensionality
p0 � p, where yi ∈ Rp0 is the embedding of the input xi.

A different setting occurs when each vertex vi on the graph represents a set Si, where
Si = {xij}

nj

j=1 is a set of vectors. For instance, Si can be the feature vectors describing
a multimedia file (Moreno et al., 2003), an image (Kondor and Jebara, 2003), or a short
video clip (Abou-Moustafa and Ferrie, 2011). In these settings, each Si is modelled as a
Gaussian distribution Gi, and the pairwise dissimilarity between all the Gaussians {Gi}ni=1 is
measured using divergence measures. This, however, turns the problem into obtaining a low
dimensional embedding for the family of Gaussians {Gi}ni=1. Again, the algorithm’s output
is the set Y = {yi}ni=1, with yi ∈ Rp0 being the low dimensional embedding (representation)
of the Gaussian Gi.

Before proceeding to obtain such an embedding, it is important to understand how the
metric properties of divergence measures can affect the graph embedding process of these
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algorithms. To illustrate these properties, we pick two different types of algorithms: cMDS
(Young and Householder, 1938) and LEM (Belkin and Niyogi, 2003).

It turns out that the metric properties of divergence measures are intimately related to
the positive semi-definiteness of the affinity matrix A ∈ Rn×n extracted from the graph’s
adjacency matrix. Let D ∈ Rn×n be the matrix of pairwise divergences where Dij =
div(Gi,Gj), ∀i, j, and div is a symmetric divergence measure.

For cMDS, the affinity matrix A is defined as Aij = −1
2D2

ij , ∀i, j. The matrix A
is guaranteed to be PSD if and only if div(Gi,Gj) is a metric; in particular satisfies the
triangle inequality5. This result is due to Theorem (3) in (Young and Householder, 1938)
and Theorem (4) in (Gower and Legendre, 1986). Therefore, div in the case of cMDS can
be dH , dJS , dJR, or dBR since they are all metrics.

For LEM, and for input vectors xi,xj , the affinity matrix A is defined as Aij =
K(xi,xj), ∀i, j, where K is a symmetric PSD kernel that measures the similarity between
xi and xj . From Mercer kernels (Mercer, 1909), it is known that A is PSD if and only if K
is symmetric and PSD. Recall that for probability distributions P1 and P2, div(P1, P2) ≥ 0,
and equality only holds when P1 = P2. Hence div(P1, P2) is PSD by definition and it can
also be symmetric as dJ , dB, dH , dJS , dJR, and dBR.

A possible kernel for Gi and Gj using a symmetric div is: K(Gi,Gj) = exp{− 1
σdiv(Gi,Gj)} =

exp{− 1
σDij}, where σ > 0 is a parameter that scales the affinity between two densities.

Since div is PSD and symmetric, then K(Gi,Gj) is PSD and symmetric as well. This sim-
ple fact is due to Theorems (2) and (4) in (Schoenberg, 1938), and a discussion on these
particular kernels can be found in (Abou-Moustafa et al., 2011). Further, if div is a metric,
then the isometric embedding exp{−div} will result in a metric space (see footnote in pp.
525 of (Schoenberg, 1938)), and the resulting embedding of LEM will be isometric as well.
Therefore, for LEM, a symmetric PSD affinity matrix can be defined as Aij = K(Gi,Gj),
∀i, j, and using any symmetric div to define the kernel K. Note that LEM is more flexible
than cMDS since it only requires a symmetric divergence, while cMDS needs all metric
axioms to be satisfied.

4. Experiments

To test the validity and efficacy of the proposed measures dJR and dBR, and to compare their
performance to dJ , dB, and dH , we conduct a set of experiments in the context of clustering
human motion from video sequences. Given this particular context, it is important that the
reader notes the following. First, our main objective from these experiments is to show that:
(i) When considering divergence measures for a learning problem, the metric properties
of these divergence measures can have a direct impact on the hypothesis learnt by the
algorithm. While the question of which divergence measure to use with which data set is still
a question of model selection, the metric properties of divergence measures are important
aspects to consider for the sought learning algorithm, and for the task under consideration.
(ii) Based on the above observation, we would like to show that the proposed measures dJR
and dBR can consistently outperform other divergence measures in a nontrivial and rather
challenging task such as human motion clustering in video data.

5. For n = 3, A is PSD is equivalent to satisfying the triangle inequality between three points (Young and
Householder, 1938).
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Second, our specific objectives should not be confounded with research work on action
and event recognition in the computer vision literature (Schüldt et al., 2004; Laptev et al.,
2008; Saleemi et al., 2010; Natarajan and Others, Dec. 2011). In this literature, the main
objective is to design sophisticated systems that can solve the problem of event and/or
human action/behaviour recognition, with the highest recognition rates, and by means of
supervised learning. Hence, these systems are based on sophisticated spatio-temporal in-
terest point detectors, low/high level feature descriptors, and powerful classifiers such as
support vector machines. Altogether, this is completely different from our objectives ex-
plained above. While our approach can be incorporated in such systems, we leave exploring
this research venue for future work.

For the purpose of our experiments, we use the KTH data set for human action recogni-
tion6 shown in Figure (1). The data set consists of video clips for 6 types of human actions
(boxing, hand clapping, hand waving, jogging, running, and walking) performed by 25 sub-
jects in 4 different scenarios (outdoors, outdoors with scale variation, outdoor with different
clothes, and indoors), resulting in a total number of video clips n = 6× 25× 4 = 600. All
sequences were taken over homogeneous backgrounds with a static camera with a frame
rate of 25 fps. The spatial resolution of the videos is 160× 120, and each clip has a length
of 20 seconds on average.

4.1. Representing Motion as Sets of Vectors

In these experiments, a long video sequence V = {Ft}τt=1 with intensity frames Ft is divided
into very short video clips VClip of equal length k where it is assumed that an apparent
smallest human action can occur; i.e. V = {VClipi}ni=1. Depending on the video sampling
rate, k = {20, 25, 30, 35} frames/clip. This is the first column in Tables in (1) and (2).

To extract the motion information, a dense optical flow is computed for each video
clip using the Lucas-Kanade algorithm (Lucas and Kanade, 1981)7, resulting in a large set
of spatio-temporal gradients vectors describing the motion of pixels in each frame. The
gradient vector is normal to the local spatio-temporal surface generated by the motion in
the space–time volume. The gradient direction captures the local surface orientation which
depends on the local behavioural properties of the moving object, while its magnitude
depends mainly on the photometric properties of the moving object, and it is affected by
its spatial appearance (color, texture, etc.) (Zelnik-Manor and Irani, 2001).

To capture the motion information encoded in the gradient direction, first we apply
an adaptive threshold based on the norm of the gradient vectors to eliminate all vectors
resulting from slight illumination changes and camera jitter. Second, each video frame is
divided into h × w blocks – typically 3 × 3 and 4 × 4 – and the motion in each block is
encoded by an m–bins histogram of gradient orientations. In all our experiments, m is set
to 4 and 8 bins. The histograms of all blocks for one frame are concatenated to form one
vector of dimensionality p = m × h × w. Therefore, a video clip VClipi with k frames is
finally represented as a set Si = {xi1, . . . ,xik}, where xij is a p-dimensional vector of the
concatenated histograms of frame j. Last, for each subject, the video clips for the 6 actions

6. http://www.nada.kth.se/cvap/actions/

7. Implemented in Piotr’s Image and Video Toolbox for Matlab
http://vision.ucsd.edu/∼pdollar/toolbox
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Figure 1: Sample frames for the 6 different types of actions in the 4 different scenarios from
the KTH data set for human action recognition.

from one scenario were concatenated to form one long video sequence. This resulted in
25 × 4 = 100 long video sequences that were used in our experiments. To validate the
accuracy of clustering, each video frame was labeled with the type of action it contains.

4.2. Experimental Setting

Once the motion information in video V is represented as a family of sets {Si}ni=1, motion
clustering tries to group together video clips (or sets) with similar motion vectors. To
this end, we use a recently proposed framework for learning over sets of vectors (Abou-
Moustafa and Ferrie, 2011) to obtain such a clustering for the Si’s. In this framework, each
Si = {xij}

ni
j=1 is modelled as a Gaussian distribution Gi with mean vector µ̂i = 1

ni

∑ni
j=1 xij ,

and a covariance matrix Σ̂i = 1
ni−1

∑ni
j=1(x

i
j − µ̂i)(x

i
j − µ̂i)

> + γI, where γ is a necessary

regularization parameter to avoid over fitting8. This forms the family of Gaussians {Gi}ni=1

which represents the motion in V .
Using cMDS and LEM together with the divergence measures discussed here, dJ , dB,

dH , dJR and dBR, we obtain a low dimensional embedding for the family of Gaussians as the
set {yi}ni=1, where yi ∈ Rp0 , and p0 � p. Finally, the k-Means clustering is run on the data
set {yi}ni=1. To summarize, a video sequence goes through the following transformations:
V 7−→ {VClipi}ni=1 7−→ {Si}ni=1 7−→ {Gi}ni=1 7−→ {yi}ni=1.

The dimensionality p0 of the embedding space is a hyperparameter for cMDS and LEM.
For cMDS this is allowed to change from 2 up to 100 dimensions, while for LEM it is usually
set equal to the number of clusters which is 6 in this case (Luxburg, 2007). This is due to our
a priori knowledge that there are 6 types of motion in each video. Another hyperparameter
to optimize for LEM is the kernel width σ which was allowed to take 4 different values from
all the pairwise divergences; the median, 0.25, 0.75, and 0.9 of the quantile.

For the k-Means algorithm, the number of clusters k was set to 6, and to avoid local
minima, the algorithm was run with 30 different initializations and the run with the mini-

8. In all our experiments γ = 1.
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Table 1: Average clustering accuracy (with standard deviations) over 100 video sequences
in 4 different embedding spaces obtained using cMDS+dJ , cMDS+dB, cMDS+dH ,
and cMDS+dJR. The average accuracies for cMDS+dJR are statistically signifi-
cant than the all other average accuracies.

p = m× h× w = 8× 3× 3

frames/clip cMDS+dJ cMDS+dB cMDS+dH cMDS+dJR

20 70.9 (11.9) 71.0 (12.0) 75.5 (12.1) 80.3 (10.9)
25 62.8 (10.9) 62.8 (11.0) 68.2 (12.3) 75.5 (13.1)
30 66.7 (11.7) 66.7 (11.8) 71.5 (12.7) 77.4 (12.7)
35 62.8 (10.9) 62.8 (11.1) 68.2 (12.3) 75.3 (13.1)

p = m× h× w = 8× 4× 4

frames/clip cMDS+dJ cMDS+dB cMDS+dH cMDS+dJR

20 68.3 (12.1) 68.9 (11.6) 74.2 (12.0) 79.5 (11.7)
25 66.5 (12.0) 66.5 (12.4) 72.5 (12.2) 78.6 (12.1)
30 61.9 (10.9) 63.0 (10.6) 68.9 (11.4) 75.5 (12.3)
35 71.3 (12.1) 71.8 (12.3) 76.5 (11.8) 80.7 (10.1)

mum sum of squared distances was selected as the final result for clustering. The clustering
accuracy here is measured using the Hungarian score used in (Zha et al., 2001) which finds
the maximum matching between the true labeling of each video clip and the labeling pro-
duced by the clustering algorithm. Note that this is the accuracy for clustering one and
only one long video sequence. The values recorded in Columns 2, 3, 4, and 5 in Tables (1)
and (2) are the average accuracies (with standard deviations) over the 100 video sequences
created for these experiments (§4.2). During these experiments, it was noted that the per-
formance for dJR and dBR are very similar under both algorithms, and hence, due to space
limitations, we show the results of cMDS+dJR in Table (1) and the results for LEM+dBR
in Table (2).

4.3. Analysis of the Results

Our hypothesis, before running the experiments, is that clustering accuracy in the embed-
ding space obtained through the modified divergences dJR and dBR will be higher than the
clustering accuracy in the embedding spaces obtained by other divergence measures. Note
that the k-Means accuracy here is a quantitative indicator on the quality of the embedding
and its capability to define clusters, or regions of high density (manifolds), which corre-
spond to clusters of different motion types. Therefore, each embedding space is optimized
to maximize the clustering accuracy, and then the highest accuracy obtained is compared
against all other highest accuracies of other embedding spaces.

Tables (1) and (2) show that, under the embeddings of cMDS and LEM with dJR and
dBR, the clustering accuracy is consistently superior to the accuracy of both algorithms
with other divergence measures. Note that the average accuracies for the proposed metrics

10
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Table 2: Average clustering accuracy (with standard deviations) over 100 video sequences
in 4 different embedding spaces obtained using LEM+dJ , LEM+dB, LEM+dH ,
and LEM+dBR. The average accuracies for LEM+dBR are statistically significant
than the all other average accuracies.

p = m× h× w = 8× 3× 3

frames/clip LEM+dJ LEM+dB LEM+dH LEM+dBR

20 55.7 (11.2) 56.0 (10.9) 60.1 (11.5) 65.1 (13.2)
25 58.2 (12.0) 58.1 (11.9) 63.6 (13.1) 69.6 (13.6)
30 60.0 (12.7) 59.9 (12.6) 64.8 (12.9) 70.3 (13.4)
35 63.0 (13.3) 62.9 (13.3) 67.4 (13.1) 71.8 (13.6)

p = m× h× w = 8× 4× 4

frames/clip LEM+dJ LEM+dB LEM+dH LEM+dBR

20 54.0 (12.5) 54.6 (12.7) 60.8 (12.2) 66.3 (12.7)
25 57.7 (14.0) 57.7 (13.9) 64.7 (13.2) 69.5 (13.2)
30 59.5 (13.4) 59.5 (13.2) 66.3 (12.5) 70.5 (12.6)
35 59.5 (13.4) 59.5 (13.2) 66.3 (12.5) 70.5 (12.6)

are statistically significant than the average accuracies of other measures9. This implies
that the embedding spaces obtained via the new proposed measures can better characterize
the cluster structure in the data, and hence the high clustering accuracies in Tables (1) and
(2). Another observation to note from Tables (1) and (2) is that the clustering accuracies
under the embedding of cMDS and LEM with dH (which is a metric) are higher than the
accuracies obtained with the same algorithms but using dJ and dB. Again, this implies
that the obtained embedding space via dH can better characterize the cluster structure in
the data. However, when comparing dH on one hand, versus dJR and dBR on the other, we
note that the embeddings obtained via dH yield consistently lower performance than dJR
and dBR do. In our understanding, this is due to its measure for the difference between
covariance matrices in Equation (10) which is not a metric on Sp×p++ and hence it violates its
geometry.

The low performance for dJ and dB with both algorithms when compared to the other
divergence measures is again due to their lack of metric properties (in particular the triangle
inequality), which in turn impacts the characteristics preserved (or relinquished) by the
embedding procedure. Note that the difference in performance is more clear for the cMDS
case in Table (1). None of dJ and dB is a true metric, and hence, they can result in
embeddings that do not preserve the relative dissimilarities among all objects assigned to
the graph’s vertices. This can easily collapse a group of objects to be very close to each
other in the embedding space thereby misleading the k–Means clustering algorithm. This is
particularly true for cMDS as explained in the previous section. While LEM is more flexible
than cMDS since it only requires a symmetric PSD kernel, in this particular application, the
metric properties for dH and dBR significantly improved the performance of the algorithm.

9. The results are statically significant at the 1% level using a paired t-test.
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Figure 2: Tails of eigenspectrums for the affinity matrices defined by cMDS (a,b) and LEM
(c,d) using dJ , dB, dH , dJR, and dBR, and using both sets of features defined
earlier. Note that the affinity matrices are for the 600 original video clips after
transforming each VClipi into a set of vectors Si (§4.1).

In other words, the metric properties can be important for the algorithm as well as for the
data under consideration.

Last, to validate the metric properties of each divergence measure, we investigate the
eigenspectrum for the affinity matrix defined by each algorithm using the divergence measure
studied so far. Figure (2) depicts the tails of eigenspectrums for the affinity matrices defined
by cMDS and LEM using the different divergence measures, and on both feature sets defined
earlier. Note that the affinity matrices are for the 600 original video clips after transforming
each VClipi into a set of vectors Si (§4.1). For cMDS in Figures (2.a) and (2.b), it can be
seen that the smallest eigenvalues are strictly greater than zero for dJR, exactly zero for
dH , slightly less than zero for dB, and strictly less than zero for dJ . This implies that the
affinity matrix defined by dJR is PD, PSD for dH , and negative definite for dJ and dB.
Note that all the covariance matrices were identically regularized for dJ(G1,G2), dB(G1,G2),
dH(G1,G2), dJR(G1,G2), and dBR(G1,G2). For LEM in Figures (2.c) and (2.d), the smallest
eigenvalues are strictly greater than zero for dBR and dH (i.e PD affinity matrices), and
exactly zero for dJ and dB (i.e. PSD affinity matrices). That is, for LEM, any symmetric
PSD divergence measure can define a symmetric PSD (or PD) affinity matrix. Although
satisfying the triangle inequality is not necessary for LEM, as shown in the application
above, it might be necessary for the data under consideration.

In summary, on the same data sets, and despite the differences between cMDS and LEM,
both algorithms showed consistent and identical behaviour in terms of relative responses
to the different divergence measures discussed here which validates our hypothesis with
regards to the proposed metrics dJR and dBR.
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5. Concluding Remarks

Our research presented here is motivated by the following question: Do metric properties
of divergence measures have an impact on the output hypothesis of a learning algorithm,
and hence on its performance? In this paper, we tried to answer this question through the
following: First, we analyzed some well known divergence measures for the particular case
of multivariate Gaussian densities since they are pervasive in machine learning and pattern
recognition. Second, based on our analysis, we proposed a simple modification to two well
known divergence measures for Gaussian densities. The modification led to two new dis-
tance metrics between Gaussian densities in which their constituting elements respect the
geometry of their corresponding spaces. Next, we showed how the metric properties can
impact the graph embedding process of manifold learning algorithms, and demonstrated
empirically how the proposed new metrics yield better embedding spaces in a totally unsu-
pervised manner.

Our study suggests that metric properties of divergence measures constitute an im-
portant aspect of the model selection question for divergence based learning algorithms.
Further, the proposed metrics developed here are not restricted to manifold learning al-
gorithm, and they can be used in various contexts, such as metric learning, discriminant
analysis, and feature selection. For instance, in (Abou-Moustafa et al., 2010), we carried
preliminary experiments on linear discriminative dimensionality reduction using dJR and it
showed some promising results on two-class problems.

The research presented here has strong links to information geometry and its affiliated
literature, both in statistics and information theory. Although the information geometry
perspective was not involved in this work, we believe it can give different and further insights
into the questions addressed here, and hence it is an important research direction that
is worth to follow. Another interesting direction is the computational burden involved in
evaluating the JSD, and in particular for Gaussian densities. It is worth noting that the JSD
is a metric between any two densities, and it is one of many other divergence measures that
has similar metric properties (Briët and Harremoës, 2009). Investigating these measures,
their computational complexities, and their interplay with machine learning algorithms is
also an interesting research direction to pursue.
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