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Abstract

Online algorithms allow data instances to be processed in a sequential way, which is im-
portant for large-scale and real-time applications. In this paper, we propose a novel online
clustering approach based on a Dirichlet process mixture of generalized Dirichlet (GD)
distributions, which can be considered as an extension of the finite GD mixture model
to the infinite case. Our approach is built on nonparametric Bayesian analysis where the
determination of the number of clusters is sidestepped by assuming an infinite number
of mixture components. Moreover, an unsupervised localized feature selection scheme is
integrated with the proposed nonparametric framework to improve the clustering perfor-
mance. By learning the proposed model in an online manner using a variational approach,
all the involved parameters and features saliencies are estimated simultaneously and ef-
fectively in closed forms. The proposed online infinite mixture model is validated through
both synthetic data sets and two challenging real-world applications namely text document
clustering and online human face detection.

Keywords: online learning; clustering; Dirichlet process; nonparametric Bayesian; varia-
tional Bayes; generalized Dirichlet mixtures; localized feature selection.

1. Introduction

Many data mining, computer vision, pattern recognition and machine learning applications
involve high-dimensional data. A crucial step to deal with high-dimensional data is dimen-
sionality reduction (Kaski, 1998; Engebretsen et al., 2002) via extraction (e.g. principal
components analysis, random projection (Achlioptas, 2001; Bingham and Mannila, 2001;
Fradkin and Madigan, 2003)) or selection of features (filters or wrappers). In this paper
we will focus on feature selection which has been the topic of extensive research in the
past. This is mainly du to the importance of selecting relevant features to control model’s
complexity and then avoid over-fitting the data and improve generalization capabilities.
Recently the use of mixture models has emerged as a principled method for simultaneous
clustering and feature selection. The major advantage of mixture model is that it offers a
formal approach to unsupervised learning. This fact has been widely detailed in the lit-
erature (see, for instance, (McLachlan and Peel, 2000)). Among various mixture models,
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the Gaussian mixture has been a popular choice due to its simplicity and maturity (Con-
stantinopoulos et al., 2006). The Gaussian assumption, however, is not realistic when the
data clearly appear with a non-Gaussian structure. Several works have shown that other
models such as the finite generalized Dirichlet (GD) mixture can be a better alternative to
the Gaussian mixture in several applications, especially those involving proportional data,
such as text and image modeling (Bouguila et al., 2007, 2009; Bouguila and Ziou, 2004,
2005, 2010). Thus, motivated by its flexibility and good performance obtained in these
previous works, we shall focus in this paper on the GD mixture model for feature selection.
Selecting the number of clusters that best describes the data without overfitting or underfit-
ting it is one of the most challenging problems in finite mixture modeling. Traditionally, this
problem is solved using maximum likelihood method in conjunction with model selection
criteria (ex. MDL, BIC, MML, AIC, etc). However, this approach requires the evaluation
of a given selection criterion for several numbers of mixture components which is highly
computationally demanding. An alternative way to deal with the model selection problem
is through a nonparametric Bayesian technique namely Dirichlet process (DP) (Korwar and
Hollander, 1973; Ferguson, 1983) by assuming that there are an infinite number of mix-
ture components. Indeed, the DP mixture model can be also viewed as an infinite mixture
model, such that its complexity increases as the data set grows. As a result, the problem of
underfitting is avoided by using a model with an unlimited complexity, and the trouble of
overfiiting is tackled by adopting the Bayesian approach to compute or approximate the full
posterior distributions of parameters. Thanks to the recent development of Markov chain
Monte Carlo (MCMC) techniques (Robert and Casella, 1999), infinite mixture models based
on Dirichlet processes have been widely used in various applications (Neal, 2000; Teh et al.,
2004). The use of MCMC techniques, however, is often limited to small-scale problems in
practice because of its high computational cost. A good alternative to the MCMC tech-
nique is a deterministic approximation technique known as variational inference (Attias,
1999; Jordan et al., 1999; Bishop, 2006), which only requires a modest amount of com-
putational power and has provided promising performance in many applications involving
mixture models. However, all these foregoing approaches work in a batch mode in which all
the data instances need to be available in advance. Compared to batch algorithms, online
learning algorithms are more efficient when dealing with massive and streaming data.
The main purpose of this paper is to develop a novel online unsupervised clustering approach
based on a nonparametric Bayesian model learned in a variational way. Our contributions
are listed as the following: First, we extend the finite GD mixture model to the infinite
case using a stick-breaking construction such that the difficulty of choosing the appropriate
number of clusters can be solved elegantly. Second, rather than using a global (i.e. produce
a common feature subset for all the mixture components) unsupervised feature selection
method as commonly used in many works (Law et al., 2004; Constantinopoulos et al., 2006;
Boutemedjet et al., 2009), we integrate a localized feature selection scheme (Li et al., 2009)
into our infinite mixture model where different feature subsets are associated with different
mixture components. The motivation of this particular choice is based on the fact that
recent works have shown that global feature selection may not be realistic in real life appli-
cations and that localized feature selection can generally provide better results (Li et al.,
2009; Fan et al., 2011; Guan et al., 2011). Third, we develop an online learning algorithm
for our model based on a natural gradient method. This is important for real-time applica-
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tions, and also where large scale data sets are involved so that batch processing of all data
points at once becomes infeasible. Finally, we propose a variational inference framework
for learning the proposed model, such that the model parameters and the local features
saliencies are estimated simultaneously in a closed form.
The rest of this paper is organized as follows: In Section 2, we present the infinite GD
mixture model with localized feature selection scheme. In Section 3, an online variational
framework is developed for learning the proposed model. Section 4 is devoted to the exper-
imental results. Finally, conclusion is provided in Section 5.

2. Model Specification

2.1. Finite GD Mixture with Localized Feature Selection

Suppose that we have a D-dimensional random vector Y = (Y1, . . . , YD) which is drawn
from a finite mixture of generalized Dirichlet (GD) distributions with M components, such
that (Bouguila et al., 2009):

p(Y |π,α,β) =
M∑
j=1

πjGD(Y |αj ,βj) (1)

where αj and βj are the parameters of the GD distribution representing component j
with αj = {αj1, . . . , αjD} and βj = {βj1, . . . , βjD}. π = {π1, . . . , πM} denotes the mixing

coefficients, subject to the following constraints: 0 ≤ πj ≤ 1,
∑M

j=1 πj = 1. The GD
distribution of Y with parameters αj and βj is given by

GD(Y |αj ,βj) =
D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
Y
αjl−1
l

(
1−

l∑
k=1

Yk
)γjl (2)

where
∑D

l=1 Yl < 1 and 0 < Yd < 1 for l = 1, . . . , D, αjl > 0, βjl > 0, γjl = βjl−αjl+1−βjl+1

for l = 1, . . . , D − 1, and γjD = βjD − 1. Based on an interesting mathematical property
of the GD distribution which is thoroughly discussed in Boutemedjet et al. (2009), we
can transform the original data points into another D-dimensional space with independent
features and rewrite the finite GD mixture model in the following form

p(X|π,α,β) =

M∑
j=1

πj

D∏
l=1

Beta(Xl|αjl, βjl) (3)

whereX = (X1, . . . , XD), X1 = Y1 andXl = Yl/(1−
∑l−1

k=1 Yk) for l > 1, and Beta(Xl|αjl, βjl)
is a Beta distribution defined with parameters (αjl, βjl). Indeed, this property is important
since the independence between the features now becomes a fact rather than an assumption
as considered in previous unsupervised feature selection Gaussian mixture-based approaches
(Law et al., 2004; Constantinopoulos et al., 2006) 1. Next, we deploy a localized feature

1. It is well-known that the independence assumption rarely holds in real world applications and problems
despite the fact that it achieves sometimes surprisingly good results (Keogh and Pazzani, 1999).
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selection scheme (Li et al., 2009) which has been shown to outperform the global one. Thus,
the distribution of each feature Xil can be approximated by

p(Xil) ' Beta(Xil|αjl, βjl)φijlBeta(Xil|σjl, τjl)1−φijl (4)

where φijl is a binary latent variable and known as the feature relevance indicator, such that
φijl = 0 if feature d of component j is irrelevant (i.e. noise) and follows a Beta distribution:
Beta(Xil|σjl, τjl). The prior distribution of φ is defined as:

p(φ|ε) =

N∏
i=1

M∏
j=1

D∏
l=1

ε
φijl
jl1

ε
1−φijl
jl2

(5)

where each φijl is a Bernoulli variable such that p(φijl = 1) = εjl1 and p(φijl = 0) = εjl2 .
The vector ε represents the features saliencies (i.e. the probabilities that the features are
relevant) where εjl = (εjl1 , εjl2) and εjl1 +εjl2 = 1. In addition, a Dirichlet prior distribution
is placed over ε with positive parameter ς:

p(ε) =

M∏
j=1

D∏
l=1

Dir(εjl|ς) (6)

2.2. Infinite GD Mixture Models

In this subsection, we extent the finite GD mixture model to the infinite case by adopting a
Dirichlet process (DP) mixture model, such that the obstacle of estimating the number of
components can be circumvented. In this paper, the DP process is constructed by using a
stick-breaking framework (Sethuraman, 1994; Blei and Jordan, 2005). That is, G is Dirichlet
process distributed with a base distribution H and concentration parameter ψ (denoted as
G ∼ DP(ψ,H)), if the following requirements are met:

λj ∼ Beta(1, ψ) Ωj ∼ H πj = λj

j−1∏
s=1

(1− λs) G =

∞∑
j=1

πjδΩj (7)

where δΩj represents the Dirac delta measure centered at Ωj . The mixing weights πj are
defined by recursively breaking an unit length stick into an infinite number of pieces.
Assuming now that we have an infinite number of clusters and an observed data set X =
(X1, . . . ,XN ). First, a binary latent variable Zi = (Zi1, Zi2, . . .) is placed over each vector
Xi, such that Zij ∈ {0, 1} and Zij = 1 if Xi belongs to component j and 0, otherwise.
Then, the likelihood function of the infinite GD mixture with localized feature selection can
be written as

p(X ) =
N∏
i=1

∞∏
j=1

[ D∏
l=1

Beta(Xil|αjl, βjl)φijlBeta(Xil|σjl, τjl)1−φijl
]Zij

(8)

The prior distribution of latent variables Z = (Z1, . . . ,ZN ) is given by

p(Z|π) =
N∏
i=1

∞∏
j=1

π
Zij

j (9)
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According to the stick-breaking construction of DP as stated in (7), π is a function of λ,
then we have

p(Z|λ) =
N∏
i=1

∞∏
j=1

[
λj

j−1∏
s=1

(1− λs)
]Zij (10)

The prior distribution of λ is the specific Beta distribution given in (7):

p(λ|ψ) =
∞∏
j=1

Beta(1, ψj) =
∞∏
j=1

ψj(1− λj)ψj−1 (11)

Last, we need to introduce conjugate priors over parameters α, β, σ and τ of Beta distribu-
tions. Here, as proposed by Ma and Leijon (2011), we assume that these Beta parameters
are statistically independent and Gamma priors G(·) are adopted to approximate the con-
jugate priors. Thus, the prior distribution for parameter α is given by

p(α) = G(α|u,v) =

∞∏
j=1

D∏
l=1

v
ujl
jl

Γ(ujl)
α
ujl−1
jl e−vjlαjl (12)

Similarly, we have p(β) = G(β|p, q), p(σ) = G(σ|g,h) and p(τ ) = G(τ |s,k).

3. Online Variational Model Learning

In this section, following the online learning framework proposed by Sato (2001), we de-
velop an online variational inference framework for learning the infinite GD mixture model
with localized feature selection. To simplify the notation, we define Θ = {W,Λ}, where
W = {Z,φ} and Λ = {λ, ε,α,β,σ, τ}. In variational inference, the idea is to find an
approximation Q(Θ) for the posterior distribution p(Θ|X ). This is done by maximizing the
lower bound of ln p(X ), which is defined by

L(Q) =

∫
Q(Θ) ln[p(X ,Θ)/Q(Θ)]dΘ (13)

In this work, we adopt the factorial approximation for the variational inference to factorize
Q(Θ) into disjoint tractable distributions. In online learning, let t denotes the actual amount
of observed data. Then, the current lower bound for the observed data is given by

L(t)(Q) =
N

t

t∑
i=1

∫
Q(Λ)dΛ

∑
W i

Q(W i) ln

[
p(Xi,W i|Λ)

Q(W i)

]
+

∫
Q(Λ) ln

[
p(Λ)

Q(Λ)

]
dΛ (14)

where W = (W 1, . . . ,WN ) with W i = {Zi,φi}.
The core idea of the online variational algorithm is to successively maximize the cur-
rent variational lower bound (14). Assume that we have already observed the data set
{X1, . . . X(t−1)}. For a new observation Xt, we can maximize the current lower bound

L(t)(Q) with respect toQ(φt), while other variational factors are fixed toQ(Z(t−1)), Q
(t−1)(λ),

Q(t−1)(ε), Q(t−1)(α), Q(t−1)(β), Q(t−1)(σ) and Q(t−1)(τ ). Moreover, we adopt a truncation
technique proposed by Blei and Jordan (2005) to truncate the variational distributions at
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a value M , such that λM = 1,
∑M

j=1 πj = 1, and πj = 0 when j > M . Notice that, the
truncation level M is a variational parameter which can be freely initialized and will be op-
timized automatically during the learning process. Thus, the variational solution to Q(φt)
can be obtained by

Q(φt) =
M∏
j=1

D∏
l=1

f
φtjl
tjl (1− ftjl)(1−φtjl) (15)

where

ftjl =
f̃tjl

f̃tjl + f̂tjl
, f̃tjl = exp

[
r(t−1)jϑ+ 〈ln ε(t−1)

jl1
〉
]

f̂tjl = exp
[
r(t−1)jξ + 〈ln ε(t−1)

jl2
〉
]

ϑ = R̃(t−1)
jl + (ᾱ

(t−1)
jl − 1) lnXtl + (β̄

(t−1)
jl − 1) ln(1−Xtl)

ξ = F̃ (t−1)
jl + (σ̄

(t−1)
jl − 1) lnXtl + (τ̄

(t−1)
jl − 1) ln(1−Xtl)

〈ln εjl1〉 = Ψ(ς∗1 )−Ψ(ς∗1 + ς∗2 ), 〈ln εjl2〉 = Ψ(ς∗2 )−Ψ(ς∗1 + ς∗2 )

In the above equations, Ψ(·) is the digamma function, ᾱjl = 〈αjl〉 =
u∗jl
v∗jl

, β̄jl =
p∗jl
q∗jl

, σ̄jl =
g∗jl
h∗jl

and τ̄jl =
s∗jl
k∗jl

. Notice that, R̃ and F̃ are the lower bounds of R =
〈
ln Γ(α+β)

Γ(α)Γ(β)

〉
and

F =
〈
ln Γ(σ+τ)

Γ(σ)Γ(τ)

〉
, respectively. Since these expectations are intractable, we use the second-

order Taylor series expansion to find their lower bounds as proposed by Ma and Leijon
(2011). Next, the current lower bound L(t)(Q) is maximized with respect to Q(Zt), while
Q(φt) is fixed and other variational factors remain to their (t− 1)th values. Therefore, we
can obtain

Q(Zt) =

M∏
j=1

r
Ztj

tj (16)

where
rtj =

r̃tj∑M
j=1 r̃tj

r̃tj = exp

{ D∑
l=1

ftjlϑ+

D∑
l=1

(1− ftjl)ξ + 〈lnλ(t−1)
j 〉+

j−1∑
s=1

〈ln(1− λ(t−1)
s )〉

}
〈lnλj〉 = Ψ(cj)−Ψ(cj + dj), 〈ln(1− λj)〉 = Ψ(dj)−Ψ(cj + dj)

In the following step, we maximize the current lower bound L(t)(Q) with respect to Q(t)(λ)
and Q(t)(ε) while holding other variational factors fixed. Then, the variational solutions to
Q(t)(λ) and Q(t)(ε) can be given by

Q(t)(λ) =
M∏
j=1

Beta(λ
(t)
j |c

(t)
j , d

(t)
j ) (17)

Q(t)(ε) =
M∏
j=1

D∏
l=1

Dir(ε
(t)
jl |ς

∗(t)) (18)
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where the hyperparameters are defined by

c
(t)
j = c

(t−1)
j +ρt∆c

(t)
j , d

(t)
j = d

(t−1)
j +ρt∆d

(t)
j , ς

∗(t)
1 = ς

∗(t−1)
1 +ρt∆ς

∗(t)
1 , ς

∗(t)
2 = ς

∗(t−1)
2 +ρt∆ς

∗(t)
2

where ρt is the learning rate and is defined by ρt = (η0+t)−a with the constraints: a ∈ (0.5, 1]
and η0 ≥ 0 (Hoffman et al., 2010; Wang et al., 2011). The role of ρt is to forget the
earlier inaccurate estimation effects that contributed to the lower bound and accelerate the
convergence of the learning process. In the above equations, ∆c

(t)
j , ∆d

(t)
j , ∆ς

∗(t)
1 and ∆ς

∗(t)
2

are the natural gradients of the corresponding hyperparameters. This is motivated by the
fact that variational algorithm can be performed as a natural gradient method (Amari,
1998) which can then be easily adapted to online inference. The natural gradient of a
parameter is obtained by multiplying the gradient by the inverse of Riemannian metric,
which cancels the coefficient matrix for the posterior parameter distribution. Thus, the
following natural gradients can be obtained

∆c
(t)
j = c

(t)
j − c

(t−1)
j = 1 +Nrtj − c(t−1)

j (19)

∆d
(t)
j = d

(t)
j − d

(t−1)
j = ψj +N

M∑
s=j+1

rts − d(t−1)
j (20)

∆ς
∗(t)
1 = ς

∗(t)
1 − ς∗(t−1)

1 = ς1 +Nftjl − ς
∗(t−1)
1 (21)

∆ς
∗(t)
2 = ς

∗(t)
2 − ς∗(t−1)

2 = ς2 +N(1− ftjl)− ς
∗(t−1)
2 (22)

Last, the current lower bound L(t)(Q) is maximized with respect to Q(t)(α), Q(t)(β), Q(t)(σ)
and Q(t)(τ ) while other variational factors remain to their current values. By applying the
natural gradient method again, the variational solution to Q(t)(α) is obtained by

Q(t)(α) =

M∏
j=1

D∏
l=1

G(α
(t)
jl |u

∗(t)
jl , v

∗(t)
jl ) (23)

where u
∗(t)
jl = u

∗(t−1)
jl + ρt∆u

∗(t)
jl and v

∗(t)
jl = v

∗(t−1)
jl + ρt∆v

∗(t)
jl . The corresponding natural

gradients are given by

∆u
∗(t)
jl = u

∗(t)
jl − u

∗(t−1)
jl = ujl +Nrtjftjlᾱjl

[
Ψ(ᾱjl + β̄jl)−Ψ(ᾱjl)

+β̄jlΨ
′(ᾱjl + β̄jl)(

〈
lnβjl

〉
− ln β̄jl)

]
− u∗(t−1)

jl (24)

∆v
∗(t)
jl = v

∗(t)
jl − v

∗(t−1)
jl = vjl −Nrtjftjl lnXtl − v

∗(t−1)
jl (25)

where
〈
lnβjl

〉
= Ψ(pjl) − ln qjl. The solutions to the hyperparameters of Q(t)(β), Q(t)(σ)

and Q(t)(τ ) can be computed similarly as for u
∗(t)
jl and v

∗(t)
jl .

It is worth mentioning that the online variational algorithm can be defined as a stochastic
approximation method (Kushner and Yin, 1997) for estimating the expected lower bound
and the convergence is guaranteed if the learning rate satisfies the following conditions (Sato,
2001):

∑∞
t=1 ρt = ∞, and

∑∞
t=1 ρ

2
t < ∞. The algorithm of online variational inference for

infinite GD mixture model with localized feature selection is summarized in Algorithm 1.
After convergence, we can compute 〈λj〉 =

cj
cj+dj

and substitute it into (7) to obtain the

estimated values of mixing coefficients πj . The number of components is determined by
removing the components with small mixing coefficients close to 0 after convergence.
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Algorithm 1

1: Choose the initial truncation level M and the initial values for hyperparameters ujl, vjl,
pjl, qjl, gjl, hjl, sjl, kjl, ψj , ς1 and ς2.

2: for t = 1→ N do
3: The variational E-step:
4: Update the variational solutions to Q(φt) and Q(Zt) using (15) and (16).
5: The variational M-step:
6: Compute learning rate ρt = (η0 + t)−a.

7: Calculate the following natural gradients: ∆u
∗(t)
jl , ∆v

∗(t)
jl , ∆p

∗(t)
jl , ∆q

∗(t)
jl , ∆g

∗(t)
jl ,

∆h
∗(t)
jl , ∆s

∗(t)
jl and ∆k

∗(t)
jl , ∆c

(t)
j , ∆d

(t)
j , ∆ς

∗(t)
1 and ∆ς

∗(t)
2 .

8: Update the variational solutions to Q(t)(λ), Q(t)(ε), Q(t)(α), Q(t)(β), Q(t)(σ) and
Q(t)(τ ).

9: Repeat the variational E-step and M-step until new data is observed.
10: end for

4. Experimental Results

In this section, we evaluate the effectiveness of the proposed online infinite GD mixture
model with localized feature selection (noted as OIGDLFs) using both synthetic data and
two challenging applications involving online text document clustering and online human
face detection. In our experiments, the initial truncation level M is set to 15. Initial values
of hyperparameters u, p, g and s of the Gamma priors are set to 1, and v, q, h, k are set
to 0.01. The hyperparameters ψ, ς1 and ς2 are set to 0.1. The parameters a and η0 of
the learning rate are set to 0.8 and 64, respectively. Our simulations have supported these
specific choices.

4.1. Synthetic Data

The goal of synthetic data is to evaluate the performance of the proposed OIGDLFs in terms
of estimation (estimating the model’s parameters) and selection (selecting the number of
components of the mixture model), on two 10-dimensional synthetic data sets (two relevant
features and eight irrelevant features). We ran the proposed algorithm 10 times, the actual
and average estimated parameters of the distributions representing the relevant features for
each data set using the proposed online algorithm are shown in Table 1. According to this
table, the parameters of the model, representing relevant features, and its mixing coefficients
are accurately estimated by the OIGDLFs. Although we do not show the estimated values
of the parameters of the irrelevant features (the eight remaining features), accurate results
(in terms of parameters estimation) were obtained by adopting the proposed algorithm as
well. Figure 1 gives the feature saliencies of all the 10 features for each data set. It
obviously shows that features 1 and 2 have been assigned a high degree of relevance, which
matches the ground-truth. Furthermore, we have also investigated the learning time of
OIGDLFs and compared it to its batch version (denoted as IGDLFs) on the same data
sets using a computer with Intel’s Core2 Duo processor 2.00 GHz. As we can see from
Table 2, OIGDLFs is more than three times faster than IGDLFs for each data set. This
phenomenon becomes more obvious as the amount of data increases.
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Table 1: Parameters of the synthetic data. N denotes the total number of elements, Nj

denotes the number of elements in cluster j. αj1, αj2, βj1, βj2 and πj are the real

parameters. α̂j1, α̂j2, β̂j1, β̂j2 and π̂j are the average estimated parameters using
the proposed algorithm.

Nj j αj1 βj1 αj2 βj2 πj α̂j1 β̂j1 α̂j2 β̂j2 π̂j

Data set 1 200 1 10 15 23 12 0.50 10.38 15.46 22.04 11.58 0.503

(N = 400) 200 2 20 27 30 25 0.50 21.15 28.29 31.52 24.37 0.497

Data set 2 200 1 10 15 23 12 0.25 9.26 14.51 24.23 11.64 0.247

(N = 800) 200 2 20 27 30 25 0.25 20.98 26.17 28.96 24.39 0.255

400 3 18 35 8 22 0.50 17.45 33.38 7.69 21.58 0.498

Data set 3 250 1 10 15 23 12 0.25 9.31 15.82 24.55 12.73 0.252

(N = 1000) 250 2 20 27 30 25 0.25 19.41 27.68 31.72 26.25 0.246

250 3 18 35 8 22 0.25 18.56 36.19 8.49 22.81 0.257

250 4 37 18 43 10 0.25 38.22 17.73 41.96 10.18 0.259

Data set 4 400 1 10 15 23 12 0.20 10.45 14.33 23.72 12.51 0.198

(N = 2000) 400 2 20 27 30 25 0.20 19.26 26.53 29.40 25.87 0.203

400 3 18 35 8 22 0.20 17.85 34.06 7.28 23.19 0.205

400 4 37 18 43 10 0.20 36.54 18.67 44.31 9.49 0.196

400 5 16 25 40 33 0.20 16.95 24.18 39.05 34.34 0.198

Table 2: Runtime (in seconds) comparison for different data sets using the online and the
batch algorithms.

Method OIGDLFs IGDLFs

Data set 1 5.76 17.13

Data set 2 11.52 39.86

Data set 3 14.28 47.18

Data set 4 32.64 121.01

4.2. Online Text Document Clustering

Text Document clustering is the process of grouping similar unlabeled documents together
into a set of categories. During the last decade, the problem of text clustering has been
the topic of extensive research (Lewis et al., 2004; Kim et al., 2005). It is a crucial step in
various applications such as text retrieval, news filtering, e-mails classification, and brows-
ing document collections. In this experiment, we focus on online text clustering. We test
the performance of the proposed approach on five well-known data sets that are exten-
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Figure 1: Feature saliency for synthetic data sets with one standard deviation over ten runs.
(a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4.

sively used in the information retrieval literature: CSTR, WebKB2, WebKB4, Reuters10
and 20Newsgroups3. The CSTR data set contains 476 abstracts of technical reports pub-
lished by the computer science department of university of Rochester from year 1991 to
2002. These documents are divided into four research areas: Natural Language Process-
ing(NLP), Robotics/Vision, Systems, and Theory. The WebKB data set consists of 8300
web pages collected from university computer science departments. These documents are
divided into seven categories: student, faculty, staff, course, project, department and other.
The WebKB4 data set, which is a subset of the WebKB data set, containing 4,199 web
pages and limited to the four most common categories: Course, Faculty, Project, and Stu-
dent. The well-known corpus Reuters-21578, which contains 135 categories, is composed of
documents collected from the Reuters newswire in 1987. In our work, we use a subset of
the Reuters-21578 which includes the 10 most frequent categories among the 135 topics and
we call it Reuters10. The 20Newsgroups data set contains approximately 20,000 newsgroup
documents that are evenly partitioned across 20 different newsgroups. The characteristics
of these data sets are summarized in Table 3.
The methodology of our online text clustering approach can be described as following:
First, the Rainbow package4 is used in a preprocessing step to select the top 500 words
by removing the rare (occurred less than 30 times) and stop words (such as “the”, “and”,
“or”, etc.). Next, each document is represented by a vector of counts (i.e. a histogram
that containing the frequency of occurrence of each word in its vocabulary). After apply-

2. Available at: http://www.cs.cmu.edu/∼textlearning/
3. Available at: http://qwone.com/∼jason/20Newsgroups/
4. http://www.cs.cmu.edu/∼mccallum/bow/

122



Online Infinite Generalized Dirichlet Mixtures

Table 3: The description of text data sets

Data sets No. of documents No. of classes

CSTR 476 4

WebKB4 4199 4

WebKB 8280 7

Reuters10 2900 10

20Newsgroups 20000 20

ing the geometric transformation presented in Section 2, these vectors are then modeled
by our online infinite mixture model using the algorithm proposed in the previous section.
Finally, the classification is performed by applying Bayes’ decision rule. We run the algo-
rithm 20 times to investigate its performance. Moreover, we investigate the advantages of
the proposed OIGDLFs approach by comparing it to: the online infinite GD mixture model
with global feature selection (OIGDGFs), the online infinite GD mixture model without
feature selection (OIGD), the online finite GD mixture model with localized feature se-
lection (OFGDLFs) and the online infinite Gaussian mixture model with localized feature
selection (OIGMLFs). To make a fair comparison, all of these methods are learned by
variational inference. Since our target is to obtain a low misclassification error and high
discrimination among different classes in a data set and the document data sets used in
our experiments are relatively balanced, we use classification accuracy as the evaluation
measure. The average performance of text clustering is illustrated in Table 4 and Figure 2

Table 4: Text clustering results (average and standard deviation over 20 runs)

Method CSTR WebKB4 WebKB Reuters10 20Newsgroups

OIGDLFs 86.28 (1.33) 83.27 (0.96) 76.38 (1.07) 79.51 (1.19) 89.79 (0.89)

OIGDGFs 84.13 (1.52) 81.45 (1.21) 73.82 (1.28) 76.67 (1.14) 87.11 (0.96)

OIGD 81.57 (1.89) 79.37 (1.43) 71.29 (1.21) 74.35 (1.31) 85.36 (0.85)

OFGDLFs 79.62 (1.77) 78.20 (1.37) 68.59 (1.45) 73.41 (1.29) 83.72 (1.15)

OIGMLFs 81.97 (1.65) 80.25 (1.19) 70.95 (1.33) 73.89 (1.22) 84.13 (0.92)

using different approaches. We have also shown the estimated number of classes for each
data sets in Table 5. As we can see from these results, the proposed OIGDLFs obtains
the best performance in terms of the highest average classification accuracy rate and the
most accurate estimated number of classes for all the data sets. Clearly, the approach with
local feature selection (OIGDLFs) performs better than both the one with global feature
selection (OIGDGFs) and the one without feature selection (OIGD). We may also notice
that, the finite mixture model approach OFGDLFs performs the worst in comparison with
infinite approaches, especially in detecting the correct number of components as shown in
Table 5, which demonstrates the advantage of using infinite mixture models. In addition,
in Table 4, we can observe that OIGDLFs outperforms OIGMLFs approach, which verifies
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the fact that GD mixture models have better modeling capability than Gaussian mixtures
for proportional data.

Table 5: Estimated number of classes (average and standard deviation over 20 runs)

Method CSTR WebKB4 WebKB Reuters10 20Newsgroups

OIGDLFs 3.31 (0.61) 3.43 (0.53) 6.21 (0.59) 8.77 (0.72) 18.12 (0.64)

OIGDGFs 3.14 (0.55) 3.23 (0.62) 6.15 (0.62) 8.69 (0.77) 17.37 (0.79)

OIGD 3.05 (0.69) 3.18 (0.68) 6.06 (0.54) 8.61 (0.68) 17.15 (0.57)

OFGDLFs 2.97 (0.58) 2.91 (0.72) 5.98 (0.71) 8.43 (0.82) 16.83 (0.83)

OIGMLFs 3.23 (0.66) 3.26 (0.55) 6.11 (0.56) 8.65 (0.76) 17.67 (0.59)

CSTR WebKB4 WebKB Reuters10 20Newsgroups
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Figure 2: Performance comparison on text data sets using different approaches.

Figure 3: Sample images of the Caltech face and the Caltech background data sets: the
first row contains face samples, the second row represents background samples.

124



Online Infinite Generalized Dirichlet Mixtures

4.3. Online Human Face Detection

Face detection is a important task in computer vision and has been applied in various ap-
plications such as video surveillance, image database management and human-computer
interfaces. The goal of face detection is to distinguish the images that contain human faces
from non-face ones. It is also a common preprocessing step for a facial recognition system
(see, for instance, (Li et al., 2002; Amit and Trouvé, 2007)). In order to develop an effective
face detection system, two important aspects have to be considered: facial representation
and classifier design. The aim of facial representation is to extract discriminative low level
features from raw face images. In our work, we adopt the local binary patterns (LBP)5

feature proposed by Hadid et al. (2004) which has shown promising results in the filed of
face detection. The proposed OIGDLFs is employed as the classifier in this experiment for
discriminating face images from non-face ones.
The data set that we have used for face detection is the Caltech face data set6. It contains
450 front human face images which are recorded under natural conditions (i.e. varying
illumination, expressions and complex background). The Caltech background data set (450
images) was adopted for non-face images 7. Sample images from the Caltech face and
the Caltech background data sets are displayed in Figure 3. The first step in this experi-
ment is to extract LBP features from raw images by encoding both local and global facial
characteristics into a compact feature histogram. As a result, each image was represented
by a 203-dimensional histogram vector. Then, we perform our approach directly (i.e., we
do not separate the data set into training and test sets) as a classifier to detect human
faces by assigning the sequential arriving image to the group (face or non-face) that most
likely generated it. We evaluated the detection performance of the proposed algorithm by
running it 20 times. Moreover, we compare our approach with the following approaches:
OIGDGFs, OIGD, OFGDLFs and OIGMLFs. The average performance of images cate-
gorization is illustrated in Table 6 for different approaches. According to this table, the
proposed OIGDLFs outperforms the other four approaches in terms of the highest average
classification rate (91.69%). The corresponding feature saliencies of the 203-dimensional

Table 6: The average classification accuracy rate (%) and the corresponding standard de-
viation obtained over 20 runs using different methods.

Methods OIGDLFs OIGDGFs OIGD OFGDLFs OIGMLFs

Accuracy (%) 91.69 (1.08) 89.72 (1.26) 87.04 (1.17) 86.35 (1.34) 88.51 (1.29)

histogram vector obtained by OIGDLFs are illustrated in Figure 4. According to this figure,
it is clear that the different features do not contribute equally in the classification, since
they have different relevance degrees.

5. Source code available at: http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
6. http://www.robots.ox.ac.uk/∼vgg/data.html.
7. http://www.vision.caltech.edu/html-files/archive.html.
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Figure 4: Feature saliencies obtained using OIGDLFs over 20 runs.

5. Conclusion

In this paper, we have proposed a novel online approach for simultaneous clustering and
localized feature selection based on variational learning of infinite GD mixture models.
Within this framework, the model parameters and features saliencies are estimated simul-
taneously and effectively while the difficulty of determining the number of clusters is solved
in an elegant way. The effectiveness of the proposed approach has been evaluated on both
synthetic data sets and two real applications regarding online text clustering and online
face detection.
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