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Abstract
Contextual bandit algorithms have become popular tools in online recommendation and advertising
systems. Offline evaluation of the effectiveness of new algorithms in these applications is critical
for protecting online user experiences but very challenging due to their “partial-label” nature. A
common practice is to create a simulator which simulates the online environment for the problem
at hand and then run an algorithm against this simulator. However, creating the simulator itself is
often difficult and modeling bias is usually unavoidably introduced.

The purpose of this paper is two-fold. First, we review a recently proposed offline evaluation
technique. Different from simulator-based approaches, the method is completely data-driven, is
easy to adapt to different applications, and more importantly, provides provably unbiased evalu-
ations. We argue for the wide use of this technique as standard practice when comparing bandit
algorithms in real-life problems. Second, as an application of this technique, we compare and
validate a number of new algorithms based on generalized linear models. Experiments using real
Yahoo! data suggest substantial improvement over algorithms with linear models when the rewards
are binary.
Keywords: Multi-armed bandit, contextual bandit, offline evaluation, generalized linear model,
upper confidence bound
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1. Introduction

Web-based recommendation and advertising services such as the Yahoo! Today Module (at
http://www.yahoo.com) leverage user activities such as clicks to identify the most attrac-
tive contents. One inherent challenge is scoring newly generated content such as breaking news,
especially when the news first emerges and little data are available. A personalized service which
can tailor contents towards individual users is more desirable and challenging.

A distinct feature of these applications is their “partial-label” nature: we observe user feedback
(click or not) for an article only when this article is displayed. Such a key challenge, known as the ex-
ploration/exploitation tradeoff, is commonly studied in the contextual bandit framework (Langford
and Zhang, 2008) that has found successful applications; see, e.g., Agarwal et al. (2009), Graepel
et al. (2010), Li et al. (2010), and Moon et al. (2010).

To evaluate a contextual-bandit algorithm reliably, it is ideal to conduct a bucket test, in which
we run the algorithm to serve a fraction of live user traffic in the real recommendation system. How-
ever, not only is this method expensive, requiring substantial engineering efforts for deployment in
the real system, but it can also have a negative impact on user experience. Furthermore, it is not
easy to guarantee replicable comparison using bucket tests as online metrics vary significantly over
time. Offline evaluation of contextual-bandit algorithms thus becomes valuable.

Although benchmark datasets for supervised learning such as the UCI repository have proved
valuable for empirical comparison of algorithms, collecting benchmark data towards reliable offline
evaluation has been difficult in bandit problems, as explained later in Section 3. The first purpose of
the paper is to review a recently proposed evaluation method of Li et al. (2011), which enjoys valu-
able theoretical guarantees including unbiasedness and accuracy. The effectiveness of the method
has also been verified by comparing its evaluation results to online bucket results using a large vol-
ume of data recorded from Yahoo! Front Page. Such positive results not only encourage wide use
of the proposed method in other Web-based applications, but also suggest a promising solution to
create benchmark datasets from real-world applications for bandit algorithms.

As one application, the next focus of the paper is to use this offline evaluation technique to
validate a few new bandit algorithms based on generalized linear models or GLMs (McCullagh and
Nelder, 1989). We argue that GLMs provide a better way to model average reward when the reward
signal is binary, compared to the more widely studied linear models despite their strong theoretical
guarantees (Auer, 2002; Chu et al., 2011). Our experiments with real Yahoo! data provide empirical
evidence for the effectiveness of these new algorithms, and encourage future work on developing
regret bound for them or their variants.

The rest of the paper is organized as follows. After reviewing preliminaries in Section 2, we
review the offline evaluation technique in Section 3, including unbiasedness and sample complexity
results. Section 4 develops algorithms with GLM-based reward models. These algorithms are
inspired by existing ones for linear models, and are empirically validated in Section 5 using real
data collected from Yahoo! Front Page. Finally, Section 6 concludes the paper. Since our papers
consist of two major components, related work will be discussed in appropriate subsections.

2. Notation

The multi-armed bandit problem is a classic and popular model for studying the exploration-
exploitation tradeoff (Berry and Fristedt, 1985). This paper considers the problems with contextual
information. Following Langford and Zhang (2008), we call it a contextual bandit problem.
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AN UNBIASED OFFLINE EVALUATION OF CONTEXTUAL BANDIT ALGORITHMS WITH GENERALIZED LINEAR MODELS

Formally, we define by A = {1, 2, . . . ,K} a set of K arms, and a contextual-bandit algorithm
A interacts with the world in discrete trials t = 1, 2, 3, . . .. In trial t:

1. The world chooses a feature vector xt known as the context. Associated with each arm a is
a real-valued reward rt,a ∈ [0, 1] that can be related to the context xt in an arbitrary way.
We denote by X the (possibly infinite) set of contexts, and (rt,1, . . . , rt,K) the reward vector.
Furthermore, we assume (xt, rt,1, . . . , rt,K) is drawn i.i.d. from some unknown distribution
D.

2. Based on observed rewards in previous trials and the current context xt, A chooses an arm
at ∈ A, and receives reward rt,at . It is important to emphasize here that no feedback infor-
mation (namely, the reward rt,a) is observed for unchosen arms a 6= at.

3. The algorithm then improves its arm-selection strategy with all information it observes,
(xt,at , at, rt,at).

In this process, the total T -trial reward of A is defined as

GA(T )
def
=ED

[
T∑
t=1

rt,at

]
,

where the expectation ED[·] is defined w.r.t. the i.i.d. generation process of (xt, rt,1, . . . , rt,K)
according to distribution D (and the algorithm A as well if it is not deterministic). Similarly, given
a policy π that maps contexts to actions, π : X 7→ A, we define its total T -trial reward by

Gπ(T )
def
=ED

[
T∑
t=1

rt,π(xt)

]
= T ·ED

[
r1,π(x1)

]
,

where the second equality is due to our i.i.d. assumption. Given a reference set Π of policies, we
define the optimal expected T -trial reward with respect to Π as

G∗(T )
def
= max

π∈Π
Gπ(T ).

For convenience, we also define the per-trial reward of an algorithm or policy, which is defined,
respectively, by

gA
def
=

GA(T )

T

gπ
def
=

Gπ(T )

T
= ED

[
r1,π(x1)

]
.

In the example of news article recommendation, we may view articles in the pool as arms, and
for the t-th user visit (trial t), one article (arm) is chosen to serve the user. When the served article
is clicked on, a reward of 1 is incurred; otherwise, the reward is 0. With this definition of reward,
the expected reward of an article is precisely its click-through rate (CTR), and choosing an article
with maximum CTR is equivalent to maximizing the expected number of clicks from users, which
in turn is the same as maximizing the total expected reward in our bandit formulation.

3. Unbiased Offline Evaluation

Compared to machine learning in the more standard supervised learning setting, evaluation of meth-
ods in a contextual bandit setting is frustratingly difficult. In our application of news article recom-
mendation, for example, each user visit results in the following information stored in the log: user
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information, the displayed news article, and user feedback (click or not). When using data of this
form to evaluate a bandit algorithm offline, we will not have user feedback if the algorithm recom-
mends a different news article than the one stored in the log. In other words, data in bandit-style
applications only contain user feedback for recommended news articles that were actually displayed
to the user, but not undisplayed ones. This “partial-label” nature raises a difficulty that is the key
difference between evaluation of bandit algorithms and supervised learning ones.

Common practice for evaluating a bandit algorithm is to create a simulator and then run the
algorithm against it. With this approach, we can evaluate any bandit algorithm without having to run
it in a real system. Unfortunately, there are two major drawbacks with this approach. First, creating a
simulator can be challenging and time-consuming for practical problems. Second, evaluation results
based on artificial simulators may not reflect the actual performance since simulators are only rough
approximations of real problems and unavoidably contains modeling bias. In fact, building a high-
quality simulator can be strictly harder than building a high-quality policy (Strehl et al., 2006).

The goal here is to measure the total reward of a bandit algorithm A. Because of the interactive
nature of the problem, it would seem that the only way to do this unbiasedly is to actually run the
algorithm online on “live” data. However, in practice, this approach is likely to be infeasible due
to the serious logistical challenges that it presents. Rather, we may only have offline data available
that was collected at a previous time using an entirely different logging policy. Because rewards
are only observed for the arms chosen by the logging policy, which are likely to differ from those
chosen by the algorithm A being evaluated, it is not at all clear how to evaluate A based only on such
logged data. This evaluation problem may be viewed as a special case of the so-called “off-policy
evaluation problem” in the reinforcement-learning literature (Precup et al., 2000).

In this section, we summarize our previous work (Li et al., 2011) on a sound technique for
carrying out such an evaluation. Interested readers are referred to the original paper for more details.
The key assumption of the method is that the individual events are i.i.d., and that the logging policy
chose each arm at each time step uniformly at random. Although we omit the details, this latter
assumption can be weakened considerably so that any randomized logging policy is allowed and
the algorithm can be modified accordingly using rejection sampling, but at the cost of decreased
data efficiency. Furthermore, if A is a stationary policy that does not change over trials, data may be
used more efficiently via propensity scoring (Langford et al., 2008; Strehl et al., 2011) and related
techniques like doubly robust estimation (Dudı́k et al., 2011).

Formally, algorithm A is a (possibly randomized) mapping for selecting the arm at at time t
based on the history ht−1 of t− 1 preceding events together with the current context. Algorithms 1
and 2 give two versions of the evaluation technique, one assuming access to a sufficiently long
sequence of logged events resulting from the interaction of the logging policy with the world, the
other assuming a fixed set of logged interaction. The method takes as input a bandit algorithm A.
We then step through the stream of logged events one by one. If, given the current history ht−1, it
happens that the policy A chooses the same arm a as the one that was selected by the logging policy,
then the event is retained (that is, added to the history), and the total reward ĜA updated. Otherwise,
if the policy A selects a different arm from the one that was taken by the logging policy, then the
event is entirely ignored, and the algorithm proceeds to the next event without any change in its state.
The process repeats until hT is reached (Algorithm 1), or until data is exhausted (Algorithm 2).

Note that, because the logging policy chooses each arm uniformly at random, each event is re-
tained by this algorithm with probability exactly 1/K, independent of everything else. This means
that the events which are retained have the same distribution as if they were selected by D. The
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Algorithm 1 Policy Evaluator (with infinite data stream).
0: Inputs: T > 0; bandit algorithm A; stream of events S
1: h0 ← ∅ {An initially empty history}
2: ĜA ← 0 {An initially zero total reward}
3: for t = 1, 2, 3, . . . , T do
4: repeat
5: Get next event (x, a, ra) from S
6: until A(ht−1,x) = a
7: ht ← CONCATENATE(ht−1, (x, a, ra))
8: ĜA ← ĜA + ra
9: end for

10: Output: ĜA/T

Algorithm 2 Policy Evaluator (with finite data stream).
0: bandit algorithm A; stream of events S of length L
1: h0 ← ∅ {An initially empty history}
2: ĜA ← 0 {An initially zero total reward}
3: T ← 0 {An initially zero counter of valid events}
4: for t = 1, 2, 3, . . . , L do
5: Get the t-th event (x, a, ra) from S
6: if A(ht−1,x) = a then
7: ht ← CONCATENATE(ht−1, (x, a, ra))
8: ĜA ← ĜA + ra
9: T ← T + 1

10: else
11: ht ← ht−1

12: end if
13: end for
14: Output: ĜA/T

unbiasedness guarantee thus follows immediately. Hence, by repeating the evaluation procedure
multiple times and then averaging the returned per-trial rewards, we can accurately estimate the
total per-trial reward gA of any algorithm A and respective confidence intervals. Furthermore, as the
size of data L increases, the estimation error of Algorithm 2 decreases to 0 at the rate of O(1/

√
L).

This error bound improves a previous result (Langford et al., 2008) for a similar offline evaluation
algorithm and similarly provides a sharpened analysis for the T = 1 special case for policy evalua-
tion in reinforcement learning (Kearns et al., 2000). Details and empirical support of the evaluation
method are found in our full paper (Li et al., 2011).

In summary, the unbiased offline evaluation technique provides a reliable method for collecting
benchmark data so as to evaluate and compare different bandit algorithms, which is not available
before. The first such benchmark has been released to the public (Yahoo!, 2011). Moreover, the
technique is quite general; it has been successfully applied to domains like ranking (Moon et al.,
2010) as well as in bandit problems with multiple objectives (Agarwal et al., 2011).
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4. Algorithms based on Generalized Linear Models

As an application of the offline evaluation method, we will compare and validate a number of
bandit algorithms based on different reward models. This section describes the models and the
corresponding parameter-update and arm-selection rules.

Given context x, we predict the expected reward for arm a using a generalized linear model (Mc-
Cullagh and Nelder, 1989): r̂a(x,w) = g−1(x·wa), where g is a link function. Three instantiations
were tried that correspond to the linear, logistic, and probit models, respectively:

r̂a(x,wa) =


x ·wa linear
(1 + exp (−x ·wa))

−1 logistic
Φ(x ·wa) probit

(1)

where Φ(·) is the cumulative distribution function of the standard Gaussian distribution.

4.1. Model Fitting

A brief, unified review in a probabilistic framework for fitting these models is given as follows. We
specify as the prior a Gaussian distribution, N(µ0,Σ0), with mean µ0 and covariance Σ0 on the
weight vector wa of arm a. Each of the three instantiations of GLM in Equation (1) corresponds
to a specific likelihood function—the probability of observing a reward upon choosing action a,
conditioned on the current context x and a given value of wa. At each sample with observed
reward, we apply Bayes’ theorem to update the posterior distribution of wa. If the posterior cannot
be calculated exactly, a Gaussian approximation is used.

For the linear model, the likelihood function is Gaussian, so the posterior is exactly a Gaussian,
denoted by N(wa;µa,Σa). The Gaussian likelihood assumption is clearly a mismatch in applica-
tions where the reward signal is binary (for example, 1 for click and 0 for no-click). Such a drawback
is remedied by the logistic and probit models, whose likelihood function places probability mass to
only two possible outcomes, although the posterior distribution does not have a closed-form solu-
tion. To approximate the posterior distributions, we carry out the Laplace approximation for logistic
models, and the assumed density filtering or expectation propagation (Lawrence et al., 2002; Minka,
2001) for probit. Details of these approximations are given in Appendices A and B, respectively.

To summarize, in all three cases, we always maintain the posterior of wa as represented by a
Gaussian distribution, which will serve as the prior distribution for the next update. We next turn
to the questions of online exploration/exploitation with these posterior distributions. To simplify
notation, the expectation E[·] and variance Var[·] are both defined with respect to the posterior.

4.2. Exploitation

Given the (approximate) posterior distributions of all arms, {N(wa;µa,Σa)}a∈A, if one is inter-
ested in exploitation only, it is natural to choose a greedy arm; namely, the arm with maximum
expected reward:

arg max
a

Ewa [r̂a(x,wa)]
def
= arg max

a

∫
r̂a(x,wa)N(wa;µa,Σa)dwa. (2)
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For linear and probit models, the posterior mean above can be calculated in closed form:

Ewa [r̂a(x,wa)] =

{
m linear

Φ
(

m√
1+v

)
probit

where mdef
=x · µa and vdef

=x>Σax are the mean and variance of the quantity x ·wa.
For the logistic model, however, approximation is necessary. Using various approximation tech-

niques (see Appendix C), a few candidates are reasonable and will be compared against each other
in the next section:

Ewa [r̂a(x,wa)] ≈


(1 + exp(−m))−1 M0(

1 + exp
(
−m/

√
1 + πv/8

))−1
M1

(1 + exp (−m− v/2))−1 M2
exp (m+ v/2) M3

4.3. Balancing Exploration and Exploitation

Choosing arms according to the exploitation rule Equation (2) is desired for maximizing total re-
wards, but at the same time risky: the lack of exploration may prevent collection of data to correct
initial errors in parameter estimation. This section discusses a few candidates for online tradeoffs
of exploration and exploitation.

A generic heuristic is ε-greedy, in which one chooses a greedy arm (according to Equation (2))
with probability 1 − ε and a random arm otherwise. This heuristic is simple, completely general,
and can be combined with essentially with any reward models. Unfortunately, due to the unguided,
uniformly random selection of arms for exploration, it is often not the best one can do in practice.
For example, the closely related epoch-greedy algorithm (Langford and Zhang, 2008) can only
guarantee Õ(T 2/3) regret for stochastic bandits, while guided exploration can do significantly better
with Õ(

√
T ) even at the presence of an adversary (Auer et al., 2002b; Beygelzimer et al., 2011).

In contrast, UCB-based exploration techniques are explicitly guided towards arms with uncer-
tain reward predictions. They are found effective in previous studies (Auer, 2002; Auer et al., 2002a;
Dorard et al., 2009; Li et al., 2010; Chu et al., 2011). In the context of present work, calculating
the UCB is convenient since we maintain the posterior of each wa explicitly. Analogous to pre-
vious algorithms for linear models, a UCB exploration rule chooses arms with a maximum upper
confidence bound of the expected reward, given the parameter posterior N(· | µa,Σa) and context:

arg max
a

r̄a(x,wa, α)
def
= arg max

a
Ewa [r̂a(x,w)] + α

√
Varwa [r̂a(x,wa)] (3)

with a possibly slowing growing parameter α ∈ R+. We call this arm selection α-UCB.
For linear and probit models, the calculation of r̄a again can be done in closed form:

r̄a(x,wa) =

{
m+ α

√
v linear (Dorard et al., 2009; Li et al., 2010)

Φ (m+ α
√
v) probit

where mdef
=x · µa and vdef

=x>Σax are the mean and variance of the quantity x · wa. In the case
of probit, since Φ is monotonic, the greedy arm with respect to Φ(m + α

√
v) is thus the same as
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the greedy arm with respect to m + α
√
v, which coincides with the linear model. But it should be

emphasized that the posterior mean and covariance in these two models are different, since they are
updated using different likelihood functions.

For logistic models, calculating r̄a requires approximation. A few candidates are summarized
below; see Appendix C for details:

r̄a(x,wa) =


(1 + exp(−m− α

√
v))
−1 U0

(1 + exp(−m− α
√
v))
−1

+ α
√

max{0, V } U1

Ewa [r̂a(x,wa)]
(

1 + α
√

exp(v)− 1
)

U2

(1 + exp(−m))−1 + α
√
v U3

where Ewa [r̂a(x,wa)] is calculated using any of the approximations in the previous subsection, and

V
def
= Φ

(
πm/
√

8− 1√
π − 1 + π2v/8

)
−
(

1 + exp
(
−m/

√
1 + πv/8

))−2

5. Experiments

We provide an empirical comparison of the three CTR models described in the previous section.
The purpose is to validate the use of the generalized linear models and the respective algorithms
although their current theoretical guarantees are not as strong as those for linear models.

5.1. Setup

As required by the evaluation method in Section 3, we collected 34M data in the form of {(x, a, ra)}
from a random bucket in the Today Module of Yahoo! Front Page for a one-week period in 2009.
On average, each session has about K = 20 articles. A similar data set is available through the
Webscope program of Yahoo! (2011).

The context was defined as follows. Naturally, a context corresponded to the user in that partic-
ular visit. Each user was represented by a raw feature vector of over 1000 categorical components,
including demographic/geographic information as well as behavioral categories that summarize the
user’s consumption history within Yahoo! properties (Li et al., 2010). These features are highly
sparse, so direct use of them introduces difficulty in learning and also increases computation com-
plexity. Common approaches are to construct a lower dimensional subspace of features and then
work with the new feature representations; see Chu et al. (2009) for an example. Here, we used
the standard technique of principal component analysis to reduce features, which is simpler and did
not appear to affect online learning performance of bandit algorithms. In particular, we performed
a principal component analysis and identified x as the projection of the raw user feature onto the
first 20 principal components, together with a constant feature. We then ended up with context x of
dimension d = 21, which was used in the three models. Note that the constant feature serves as the
bias term and thus was useful.

Each of the models was combined with two schemes of exploration: ε-greedy and upper con-
fidence bound (UCB). Three values of ε were tried: ε ∈ {0, 0.02, 0.05, 0.1, 0.15}; the case ε = 0
corresponded to a purely greedy scheme.1 The UCB schemes all chose an arm with the largest

1. We did not try ε-greedy with decaying ε mainly because the set of arms is dynamic—new articles may be added to
the pool while old ones may retire. The change of the arm set is completely asynchronous, so a global decaying
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upper-confidence-bound score as defined in Equation (3), where α ∈ {0.2, 0.5, 1, 2, 5} is kept con-
stant.2 For each algorithm, we subsampled from all data with ratio 50%, and repeated the evaluation
process 5 times so that statistics like mean and standard deviation could be obtained.

To evaluate a bandit algorithm, we are interested in two CTRs, following Li et al. (2010). When
deploying a bandit algorithm in a large-scale real system like Yahoo! Front Page, one reasonable
way is to randomly split all traffic into two buckets (Agarwal et al., 2009): the “learning bucket” usu-
ally consists of a small fraction of traffic on which various bandit algorithms are run to learn/estimate
article CTRs; the “deployment bucket” is where users are served by articles with highest CTR esti-
mates. The separation of two buckets ensures overall stability and hence is desirable for user expe-
rience purposes. Obviously, the learning bucket is where a normal bandit algorithm is run to select
arms, so a higher CTR in this bucket implies a better tradeoff between exploration and exploitation;
the deployment bucket is where a greedy (or exploit-only) algorithm is run with exploration turned
off, so a higher CTR in this bucket indicates a better greedy policy can be derived. Related to our
two-bucket metric is a model studied by Grünewälder et al. (2010), where the regret of algorithm in
a “learning” phrase is ignored, and the algorithm strives to find the optimal policy at the end of the
learning phrase. However, our “learning” and “deployment” buckets occur simultaneously.

In practice, completely real-time updates are not possible due to communication delays in large-
scale software and network systems. We simulated this delay by updating the CTR models every
5 minutes (based on the recorded timestamp of the random traffic log on Today Module). Finally,
to protect business-sensitive information, we have multiplied all absolute CTRs by a constant; the
resulting number is called a normalized CTR, or nCTR for short.

5.2. A Comparison of Three Models

This subsection gives a first comparison of the three generalized linear models, each combined with
ε-greedy and UCB exploration. We found it helpful to set the prior distribution adaptively: when
a new article appears, its weight’s prior is set so that µ0 and Σ0 are the average and empirical
covariance of the posterior means of previously seen articles. Priors set this way can better capture
common weight vectors and thus provide better performance. Figure 1 summarizes the normalized
CTR in both the learning and deployment buckets. A few interesting observations are in order.

First, the nCTR in the learning bucket clearly demonstrates the need for active exploration.
Purely exploiting strategies, those with ε = 0 in ε-greedy exploration, all suffered significantly lower
total rewards. On the other hand, increased amount of exploration (as ensured by higher values of ε
and α) accelerates model parameter learning, as indicated by the monotonically increasing nCTR in
the deployment bucket. However, too much exploration can decrease nCTR in the learning bucket,
as seen for UCB exploration with large α values, although it does not necessarily hurt nCTR in the
deployment bucket. Intermediate amount of exploration provides best tradeoff.

Second, all three models demonstrated nontrivial performance, suggesting appropriateness of
generalized linear models in capturing CTR in Web applications. In contrast, the traditional, non-
contextual ε-greedy and UCB algorithms do not consider user features. On the same data set,

scheme for ε is not straightforward. Furthermore, because of the constantly added new arms, the exploration rate
cannot decay to 0, so the more complicated rule with decaying ε does not seem to differ much from the fixed ε one;
on the other hand, each arm has a not-too-long life time before retiring, so the asymptotic advantage of adaptive ε
may not apply.

2. For similar reasons in Footnote 1, we compared the simpler choice of fixed α, although most theoretical analysis
requires a slowly decreasing value of α (e.g., Auer et al. (2002a)).

27



LI CHU LANGFORD MOON WANG

(a) (b)

(c) (d)

Figure 1: A comparison of three generalized linear models with 50% subsamples of data. The plots
contain nCTR for the learning bucket (left column) and the deployment bucket (right col-
umn) using ε-greedy (top row) and UCB (bottom row) combined. Numbers are averaged
over 5 runs on random subsamples.

they can, at the best, achieve nCTR of 1.509 and 1.584 in the learning and deployment buckets,
respectively. The results were consistent with our previous work (Li et al., 2010) although a different
set of features were used.

Third, the logistic and probit models clearly outperform linear models, which is expected as
their likelihood models better capture the binary reward signals. Since binary rewards are common
in Web-based applications (like clicks, conversions, etc.), we anticipate the logistic and probit model
to be more effective in general than linear models. That being said, with a large amount of data,
the linear model may still be effective (Li et al., 2010; Moon et al., 2010), and remains a reasonable
algorithmic choice given the simplicity of their closed-form update rules.
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Fourth, UCB exploration remains effective and works better than ε-greedy, despite the lack of
general theoretical guarantees and the necessity for numerical approximation. It is conjectured that
the UCB heuristic is a generally effective exploration technique (when used appropriately), and
encourage regret analysis beyond linear models.

Finally, our implementation maintained diagonal posterior covariance matrices of the parame-
ters mainly because of computation reasons—manipulating full covariance matrices is usually too
expensive in large-scale serving systems, even if closed-form updates exist for linear models (c.f.,
Section 4). We also tried full covariance matrix in logistic models, but did not find much improve-
ment compared to the diagonal version. Precise descriptions of our implementation for the logistic
and probit models are found in Sections A and B. For the linear model, diagonalized approximation
works naturally in a similar way as in the logistic and probit models: when the reward for an arm a is
observed in a context x, the posterior variance for wa is updated by Σa ←

(
Σ−1
a + diag

(
xx>

))−1;
clearly, this approximate update takes Θ(‖x‖0) time and remains efficient.

5.3. On the Effectiveness of Optimistic Initialization

(a) (b)

Figure 2: A comparison of three generalized linear models using optimistic priors with 50% sub-
samples of data. The plots contain nCTR for the learning bucket using ε-greedy (left) and
UCB (right). Numbers are averaged over 5 runs on random subsamples.

In addition to the popular ε-greedy and UCB exploration, optimistic initialization (Sutton and
Barto, 1998) is a simple alternative that sometimes works well in practice. This subsection demon-
strates the simplicity and effectiveness of this heuristic when combined with generalized linear
models. Our solution was to use an optimistic prior — instead of setting the prior using poste-
rior means of previously observed articles, we set the prior to a fixed one that always led to an
over-estimate of the article CTR.

For logistic and probit models, the simple prior N(0, I) suffices,3 since the prior CTR of a new
article has a lot of probability mass around g−1(x ·0) = g−1(0) = 0.5, which is consistently bigger

3. The use of I as the prior covariance is somewhat arbitrary, and may be improved with a more carefully chosen one.
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(a) (b)

Figure 3: A comparison of different approximations for the posterior mean and posterior UCB in
logistic models: (a) learning bucket nCTR with various UCB approximations; (b) deploy-
ment bucket nCTR with various poster mean approximations and with U0 for exploration.

than the (unnormalized) CTRs in our problem. But this prior is not optimistic for linear models
since the probability mass centers around 0. To fix this problem, we changed the prior mean and
variance for the constant feature’s weight to 0.5 and 0.01, respectively.

Figure 2 plots the nCTR in the learning bucket when the optimistic initialization is used. We
omit the deployment bucket’s nCTR since they are all similar to the leftmost ones in Figure 1 (b,d).
The results show that optimistic initialization alone is effective enough without explicit exploration
like ε-greedy or UCB. Indeed, the nCTR was highest when such explicit exploration was turned off,
that is, when ε = α = 0.

In contrast, explicit exploration was still necessary for linear models if the non-optimistic prior
N(0, I) was used: when ε = α = 0, mean nCTR in the learning bucket was as low as 1.258 (with
standard deviation 0.061), compared to 1.535 (with standard deviation 0.018) in Figure 2. Hence,
we conclude that non-optimistic initialization without explicit exploration may result in convergence
to suboptimal policies, and that optimistic initialization can indeed be effective in practice.

5.4. Approximations in the Logistic Model

Given the highly promising performance of logistic models, we next investigate how effective the
various approximations are. Figure 3 (a) compares the learning bucket’s nCTR with different ap-
proximations of the UCB score. Here, the formula for exploitation is irrelevant, so we do not show
deployment nCTR. The results show that U0, U2, and U3 can be effective with appropriately tuned
parameter α, but U1 is not as satisfactory. It also suggests the UCB rule (U3) given by Filippi
et al. (2011) is too conservative, and consequently the best α value is very small.

Figure 3 (b) compares the deployment bucket’s nCTR with different approximations of the pos-
terior mean; the UCB formula was fixed to U0. Here, the learning bucket performance is irrelevant
as we are comparing ways to compute the posterior mean while following the same exploration
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strategy of U0. No clear pattern is observed; all four approximation seemed to work equally well.
An explanation is that the different approximations do not affect the arg max result even if their
approximation errors differ slightly.

6. Conclusions and Future Work

This paper reviews an offline evaluation method of bandit algorithms that relies on log data directly
without building a reward simulator. The only requirement is that the log data is generated i.i.d.
with arms chosen by an (ideally uniformly) random policy. The evaluation method gives unbiased
estimates of quantities like total rewards. Extensions to non-random data are also possibly, making
use of techniques like propensity scoring (Langford et al., 2008; Strehl et al., 2011) and doubly
robust estimation (Dudı́k et al., 2011). The first benchmark is now available through the Webscope
program of Yahoo! (2011).

Armed with such reliable evaluation methodology, we provide an extensive empirical compari-
son of several contextual bandit algorithms using a large volume of real data collected from Yahoo!
Front Page. The algorithms are based on generalized linear models that can provide better mod-
eling capability than linear models in many important applications. Our experiments validate this
conjecture, illustrate how to combine popular exploration heuristics with GLMs, and suggest the
possibility to tighten the state-of-the-art regret analysis of Filippi et al. (2011). These findings also
corroborate the usefulness of our evaluation methodology, which we believe should be adopted as
standard practice when comparing bandit algorithms with real-life data.
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Appendix A. Approximate Inference in Logistic Regression

In logistic regression, the posterior distribution of the weight vector w is proportional to the product
of the logistic likelihood and the Gaussian prior distribution:

p(w) ∝
(

1 + exp(−yx>w)
)−1
·N(w;µt,Σt), (4)

where x denotes a training sample with label y ∈ {±1}. In our experiments, a click signal c ∈
{0, 1} has to be converted to a binary label through 2c− 1.

Instead of obtaining Equation (4) directly, we first approximate the posterior distribution of
w>x, then obtain the posterior mean and variance of w. That is, we first consider

p(w>x) ∝
(

1 + exp(−yx>w)
)−1
· exp

(
−(w>x−m)2/v

)
, (5)

where m = µ>t x and v = x>Σtx. By changing the variable to ξ = (w>x−m)/
√
v, and applying

Laplace approximation on (5), we obtain the posterior mean and variance of ξ by computing the
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mode and the Hessian at the mode:

Et+1[ξ] = ξ̂t+1 ≈ arg max
ξ

(
1 + exp(−y(ξ

√
v +m))

)−1 · exp
(
−ξ2

)
(6)

Vart+1 [ξ] = σ2
ξ̂t+1

≈

(
v + v2 exp(vξ̂t+1 + µ)

(1 + exp(vξ̂t+1 + µ))2

)−1

(7)

Once we have the above, we then use the joint Gaussian assumption of w and ξ and have

E

[
w
ξ

]
=

[
µt
0

]
and Cov

[
w
ξ

]
=

[
Σt Σtx

x>Σt 1

]
,

where Σt is assumed to be diagonal. Then, from the iterated expectation formula, we obtain

µt+1 = µt + x>Σtξ̂t+1 (8)

Σt+1 = Σt +
(
σ2
ξ̂t+1
− 1

σ2

)
· Σtxx

>Σt (9)

For diagonal covariance matrix Σt, the above updates can be done efficiently in linear time.

Appendix B. Approximate Inference in Probit Regression

In probit regression, the posterior distribution of the weight vector w is proportional to the product
of the probit likelihood and the Gaussian prior distribution, i.e.

p(w) ∝ Φ(yx>w)N(w;µt,Σt),

where x denote a training sample with label y ∈ {±1}. In our experiments, a click signal c ∈ {0, 1}
has to be converted to a binary label through 2c− 1. We take a variational approach to approximate
the posterior distribution p(w) by a Gaussian distribution. The approximate Bayesian inference
technique is known as Assumed Density Filter (ADF) or Expectation Propagation (EP) (Lawrence
et al., 2002; Minka, 2001). Specifically, letN(w;µt+1,Σt+1) be the target Gaussian, whose param-
eters {µt+1,Σt+1} are determined by the minimizer of the following Kullback-Leibler divergence:

arg min
µ,Σ

KL
(

Φ(yx>w)N(w;µt,Σt)‖N(w;µ,Σ)
)
.

This optimization problem can be solved analytically by moment matching up to the second order,
yielding:

µt+1 = µt + α (Σtx) (10)

Σt+1 = Σt − δ (Σtx)(Σtx)> (11)

where

α =
y√

x>Σt x + 1

N(z)

Φ(z)
,

δ =
1√

x>Σt x + 1

N(z)

Φ(z)

(
N(z)

Φ(z)
+ z

)
,
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and z = yx>µt√
x>Σtx+1

. Interested readers are referred to Minka (2001) for a detailed derivation. If the

dimension of x is high, the covariance matrix Σt can be restricted to be diagonal. This restriction
also corresponds to the idea of mean-field approximation; see Graepel et al. (2010) for a successful
application of this method in a search engine setting. Then, the parameter update above takes only
O(d) time on average, where d is the average number of non-zero features.

Appendix C. Numerical Approximation for the Logistic Model

Since our posterior of the GLM parameter is a Gaussian, N(µa,Σa), the linear combination of
features, x ·wa, is also a Gaussian with mean m = x · µa and variance v = x>Σax. Denote by ĉ
the estimate (1 + exp(x ·wa))

−1.

Normal Approximation. Since the logistic link function is monotonic, finding an upper confi-
dence bound for the CTR estimate can be reduced to finding an upper confidence bound for x>wa.
Hence, we may work with the normally distributed quantity x>wa. Its UCB is given by

U0:
(
1 + exp(−µ− α

√
v)
)
.

The posterior mean is approximated by the posterior median:

M0:
1

1 + exp(−µ)
.

Logistic Distribution Approximation Equation (2) is in fact a convolution between a Gaussian
density function and the logistic likelihood function. Very effective approximations have been pro-
posed, an example being the one suggested by MacKay (1992):

M1:
∫

(1 + exp(−x))−1N(x|m, v)dx ≈

(
1 + exp

(
− m√

1 + πv/8

))−1

. (12)

The formula above can be derived by approximating standard logistic distribution by a Gaussian
distribution with zero mean and variance 8/π. More precisely,

d

dx

(
1

1 + exp(−x)

)
≈ N(x | 0, 8/π).

Taking advantage of this same powerful approximation, we may estimate the second moment of the
CTR estimate:

E[ĉ2] =

∫
(1 + exp(−x))−2N(x|m, v)dx ≈ Φ

(
πµ/
√

8− 1√
π − 1 + π2v/8

)
.

The posterior variance, E[ĉ2]−E[ĉ]2, can then be estimated immediately:

U1: Φ

(
πµ/
√

8− 1√
π − 1 + π2v/8

)
−

(
1 + exp

(
− m√

1 + πv/8

))−2

.
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Log-normal Approximation. The logistic model assumption is that log ĉ
1−ĉ = x>wa is normally

distributed. In other words, ĉ
1−ĉ follows the log-normal distribution, lnN(m, v). Hence,

E

[
ĉ

1− ĉ

]
= exp (µ+ v/2) , Var

[
ĉ

1− ĉ

]
=

(
E

[
ĉ

1− ĉ

])2

(exp(v)− 1) .

If ĉ� 1 (which is the case in most Web applications), we may approximate ĉ
1−ĉ by ĉ. The variance

can be estimated by

U2: Var[ĉ] ≈ Var

[
ĉ

1− ĉ

]
≈ (E [ĉ])2 (exp(v)− 1) .

Similarly, the posterior mean is approximated by

M3: E[ĉ] ≈ E

[
ĉ

1− ĉ

]
= exp (µ+ v/2) .

Approximation M3 may be problematic since exp (µ+ v/2) may be larger than 1. It may be useful
to correct the mean estimate by applying the logistic function, yielding a slightly different formula:

M2: E[ĉ] ≈ (1 + exp (−µ− v/2))−1 .

Conservative Approximation. Lipschitz continuity of the logistic link function motivates another
UCB formula proposed by Filippi et al. (2011):

U3:
1

1 + exp(−µ)
+ ασ.
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