
JMLR: Workshop and Conference Proceedings 27:81–95, 2012 Workshop on Unsupervised and Transfer Learning

Transfer Learning by Kernel Meta-Learning

Fabio Aiolli aiolli@math.unipd.it

Dept. of Mathematics, University of Padova, Via Trieste 63, 35121 Padova, Italy

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

A crucial issue in machine learning is how to learn appropriate representations for data.
Recently, much work has been devoted to kernel learning, that is, the problem of finding a
good kernel matrix for a given task. This can be done in a semi-supervised learning setting
by using a large set of unlabeled data and a (typically small) set of i.i.d. labeled data.
Another, even more challenging problem, is how one can exploit partially labeled data of
a source task to learn good representations for a different, but related, target task. This is
the main subject of transfer learning.

In this paper, we present a novel approach to transfer learning based on kernel learning.
Specifically, we propose a kernel meta-learning algorithm which, starting from a basic
kernel, tries to learn chains of kernel transforms that are able to produce good kernel
matrices for the source tasks. The same sequence of transformations can be then applied
to compute the kernel matrix for new related target tasks. We report on the application of
this method to the five datasets of the Unsupervised and Transfer Learning (UTL) challenge
benchmark1, where we won the first phase of the competition.

Keywords: transfer learning, kernel meta-learning, unsupervised learning, UTL challenge

1. Introduction

Transfer learning (Pan and Yang (2010), Caruana (1997)) shares some properties with
semi-supervised learning: in both cases a large set of unlabeled data and a (generally far
smaller) set of labeled data are available. However, in transfer learning, labeled data are
only provided for a set of source tasks that are related, but different than the target task.
In this paper, we assume all tasks are defined within a single domain, e.g. face recognition
data, handwritten character recognition data, or textual data, just to name a few.

Kernel learning is a state-of-the-art paradigm for semi-supervised learning (Chapelle
et al. (2006); Zhu and Goldberg (2009)). The goal of kernel learning is to learn a kernel
matrix using available data (labeled and unlabeled) that optimizes an objective function
that enforces the agreement between the kernel and the set of i.i.d. labeled data, e.g., by
maximizing their alignment (Lanckriet et al. (2004)). On the other hand, unlabeled data
are used to regularize the generated models by constraining the discriminant function to
be smooth (that is, it should not vary too much on similar examples). However, in trans-
fer learning, the distribution over the training/validation datasets (on examples and their
labels) are generally different from the distribution over the target dataset, thus standard
kernel learning methods do not directly apply.

1. http://clopinet.com/ul

c© 2012 F. Aiolli.

http://clopinet.com/ul

Aiolli

In this paper, we explore kernel-based transfer learning and show we can indeed learn
something for a task by exploiting other related tasks. In particular, rather than direct
learning a kernel for a particular target task, we use source tasks to learn how a good
kernel can be (algorithmically) generated for any task defined over the same domain. In a
sense, we propose a kernel meta-learner (a learner which learns how to learn kernels from
data). To the best of our knowledge this is a novel approach to kernel learning that seems
promising for learning kernels and transferring knowledge in multi-task settings. Related
work can be found in Pan and Yang (2010) and in the papers cited therein.

Using the technique presented in this paper, we won the first phase of the Unsupervised
and Transfer Learning (UTL) challenge. Our algorithm was the best performing on three of
five final competition datasets. Although we did not participate in the second phase of the
challenge, experiments are presented in this paper demonstrating that the same approach
can naturally be adapted to a pure transfer learning setting with competitive results.

Notation We first introduce notation used throughout the paper. Unless otherwise
stated, we assume that a dataset is given as an m × n matrix X ∈ Rm×n formed by m
rows Xi, i = 1, . . . ,m, representing n-dimensional examples. We use the symbol ◦ as the
Hadamard product (entry-wise) matrix multiplication. We also denote by 1 the column
vector where each entry is set to 1, and 0 the null column vector, the dimensionality of
which should be clear from the context they appear in.

Background In this paper, we mainly focus on positive semi-definite (PSD) matrices,
that is the class of real matrices K ∈ Rm×m such that v>Kv ≥ 0 for any real vector v ∈ Rm.
Given any representation {xi}i=1,...,m for the examples, it is well known that the kernel
matrix K ∈ Rm×m formed by the dot products between examples, that is K(i, j) = x>i xj ,
is a PSD matrix. Additionally, for PSD matrices, it is always possible to perform the
spectrum decomposition, K = UDU>, where U is an orthogonal matrix formed by the
eigenvectors of K, and D is the diagonal matrix with the diagonal formed by the associated
(non negative and decreasing) eigenvalues. So, we can always write K = HH> where

H = UD
1
2 . As a result, any PSD matrix of order m can be seen as a kernel matrix for

a dataset of m examples with the examples represented according to the matrix H. This
highlights an important aspect of kernels, that any kernel matrix induces a representation
of examples (e.g. by the matrix H) which only considers similarity relations between pairs
of examples in the dataset. Furthermore, given a kernel matrix K, there can be infinitely
many representations for the set of examples that have K as their kernel matrix.

Synopsis We briefly describe the UTL competition setting in Section 2. An algorithm
for kernel meta-learning is described in Section 3 and the set of kernel transforms we have
used for the challenge is described in Section 4. In Section 5, we discuss an adaptation
of the basic algorithm for its use on the UTL challenge as well as some tricks that reduce
the risk of overfitting. Additional post-challenge results are also reported. In Section 6,
we propose a general strategy to learn the optimal sequence of transforms and present the
results obtained on the UTL benchmark. Finally, in Section 7, we conclude the paper with
some final considerations and subjective ideas concerning future work.

82

Transfer Learning by Kernel Meta-learning

2. The UTL Challenge

The UTL challenge benchmark2 contains data related to five different real-world, multiclass
problems. For each of these domains, three datasets (development, valid, final) have been
prepared using different subsets of the original problem classes. Thus, each dataset contains
a sample of a subset of classes of the original domain. Multiple binary tasks were also defined
on each of these datasets by splitting the classes in two parts in a number of different ways
(obtaining positive and negative labels for the tasks). Here, we briefly describe the UTL
challenge setting. Please, refer to (Guyon et al. (2011)) for more details.

2.1. The Competition

For each dataset, a data matrix represented as feature vectors (m examples in rows and
n features in columns) was provided to the participants. The goal of the challenge was
to produce a new kernel matrix K ∈ Rm×m between examples such that the transformed
representation would lead to good performance on supervised learning tasks defined over the
valid and final datasets. The actual labels of the supervised tasks used by the organizers
were unknown to the participants. The evaluation was made using cross validation by
partitioning data several times into training and test sets. On each run, a simple (Hebbian)
linear classifier defined on the training data (and the associated kernel matrix) is used to
build the scoring function. The ranking produced is then evaluated in terms of the Area
Under the ROC curve (AUC) and averaged over the random splits. The size of training
data varies between 1 and 64 examples and the AUC is plotted on a log scale against the
number of examples. Finally, the area under the learning curve (ALC) is used as the overall
evaluation metric.

Note that the labels of the supervised tasks used for the evaluation were not available in
the first or second phase. Additional labels (from the development set) were made available
for transfer learning in the second phase only.

2.2. The Hebbian classifier

In this section, we give a brief description of the classifier used in the challenge. Let X be
the matrix containing the vectorial representation of the examples (i.e. dataset as rows).
For a given task defined over the set of examples X, the (Hebbian) linear classifier, or linear
scoring function, f = Xw ∈ Rm is constructed by setting w = X>y, y ∈ Rm, yi = + 1

m+

(resp. yi = − 1
m−

) if the point Xi is positive (resp. negative) for the task, and yi = 0 if
the point does not belong to the training set of the given task. The values m− and m+

represent the number of negative and positive training points, respectively.
Note that, the scoring function on the set of points X can be written as

f = Xw = XX>y = Ky = Ktrytr,

where K = XX> is the kernel matrix, Ktr is the subset of kernel rows/columns corre-
sponding to the training data of the task, and ytr are the corresponding entries in y. In
other words, for any example Xi, fi represents the difference between the average of ker-
nels K(i,+) across positive examples minus the average of kernels K(i,−) across negative

2. http://www.causality.inf.ethz.ch/ul_data/DatasetsUTLChallenge.pdf

83

http://www.causality.inf.ethz.ch/ul_data/DatasetsUTLChallenge.pdf

Aiolli

examples of the training set for the task. Thus, given a task, the score simply represents
the algebraic difference of the similarities of an example with the centroids of positive and
negative examples of the task.

This type of classifier has a number of nice properties. Firstly, the ranking of examples
induced by the classifier does not depend on the scaling of the kernel matrix, that is,
defining K ′ = αK, with α > 0 a scalar, does not change the ranking produced by the
corresponding scoring function. Secondly, if we add a constant value to every entry of
a kernel matrix, K ′ = K + β11>, the values of the scoring function do not change. In
fact, f = K ′y = Ky + β11>y = Ky = Ktrytr, since 1>y = 0 by construction. These
two properties make it possible to standardize the kernel without changing the ranking
produced. Thus, an equivalent kernel taking values in [0, 1] can be obtained by using the
linear transformation K ′ = (max(K)−min(K))−1(K −min(K)11>). We found this type
of standardization useful as a preliminary step prior to discretization of the kernel matrix,
a step that was required before the submission to the challenge server.

Finally, this linear classifier can also be seen as a strongly regularized version of an SVM
variant (see for example Aiolli et al. (2008) for details) and it makes this kind of classifiers
suitable when very few training data are used.

3. The Kernel Meta Learning (KML) Algorithm

The basic idea of this paper is to learn a chain of kernel transformations that, starting from
an initial kernel matrix, leads to a better kernel for a target dataset. For this, a set of
available validation (or source) supervised tasks are used to train the learner. The expected
output of this procedure is an unsupervised “algorithm”, or a sequence of operations, to
perform on a given dataset and related kernel matrix. It is important to stress that we
are not interested in the kernel matrices computed by this algorithm (in fact those kernel
matrices cannot be used over different tasks and data) but we mainly focus on the sequence
of operations used to obtain them from data.

We propose a greedy algorithm starting with a seed kernel on the available source data,
and iteratively transforming it so that each transform results in a kernel with improved
performance on the available source tasks. Labeled data is used to find the optimal trans-
formation parameters during each step. Our intuition is that, by keeping the number of
parameters involved in this optimization small, the method should generalize well on new
tasks. It should produce chains of kernel transformations that are suitable for other related
tasks as well.

Many strategies can be used to implement the idea above and optimize the parameters
of these kernel transformations, and in Section 6 we propose a general strategy that finds an
optimal sequence of such transformations. In this section, we describe the initial strategy
we used in the first phase of the UTL challenge.

Assume an initial set of m examples (a dataset) as rows in a matrix X ∈ Rm×n. Starting
from a linear kernel matrix K(1) = XX> computed on this dataset, each step t = 1, . . . , t̄
of the algorithm computes a new kernel matrix K ′(t) by transforming the kernel K(t) using
one of a set of given operators (possible sets of operators will be described in detail in the
following section). The next (perturbed) kernel K(t + 1) will be produced as a convex
combination of K(t) and K ′(t), i.e. K(t+ 1) = (1− a) ∗K(t) + a ∗K ′(t). The combination

84

Transfer Learning by Kernel Meta-learning

coefficient 0 ≤ a ≤ 1 is determined by validating over the set of labeled examples. Once
a good kernel has been obtained for the validation tasks, or a predefined number of steps
is reached, the algorithm stops and outputs the optimal sequence of transformations along
with their combination parameters. Then, when the computation of a kernel matrix for
another (related) task is needed, the same (unsupervised) sequence of transformations can
be applied on the new set of unlabeled data.

Note that, since in the UTL challenge the labeled examples for the validation set were
not directly available, a raw (in fact manual) validation was performed on each step (i.e.
by submitting kernels and looking at the validation set results). In addition to the general
algorithm we have given here, its real application to the challenge and methods to reduce
the risk of overfitting on validation tasks will be explained in detail in Section 5.

4. Kernel Transforms

For the algorithm in Section 3 to work we must use kernel transforms that do not require
direct access to feature vectors. Fortunately, we can exploit the kernel trick (Schölkopf
et al. (1999)), where pattern-pattern similarities can indirectly represent examples. An
additional contribution of the present work is to characterize some types of data transfor-
mations that have this characteristic. Below, we describe in detail the four classes of kernel
transformations we used in the UTL challenge. In particular, we consider: a subset of affine
transformations, transformations of the kernel spectrum, polynomial transformations, and
an algorithmic transformation based on Hierarchical Agglomerative Clustering (HAC). All
the proposed transforms will produce PSD matrices when they are applied to PSD matrices.

4.1. Affine Transformations: Centering and Normalization in Feature Space

Consider a kernel matrix K ∈ Rm×m and any matrix X ∈ Rm×n, such that K = XX>.
Here, we show how a set of affine transformations on the rows {Xi}i=1,...,m of X can directly
be performed by transforming the kernel matrix and hence they are suitable for use by our
algorithm. Specifically, if we take any transformation of the form:

X ′i = βiXi + γ>X (1)

with β ∈ Rm, γ ∈ Rm, then it can be shown that the following holds:

K ′ = X ′X ′
>

= (β1>) ◦K ◦ (1β>) + 1γ>K +Kγ1> + (γ>Kγ)11>.

Hence, every linear transformation like this can be given as a kernel transformation. Well-
known instances of this class of transformations are briefly described next.

A first simple transformation is the centering of examples in feature space. In this case,
we have X ′i = Xi − 1

m

∑m
j=1Xj , which corresponds to the setting in Eq. 1 when β = 1

and γ = − 1
m1. By applying the formula above, we get the well known centering kernel

transformation (see Shawe-Taylor and Cristianini (2004)),

Kc = K − 1

m
11>K − 1

m
K11> +

1

m2
(1>K1)11>. (Tc)

Similar transforms exist for other kinds of data processing. Pattern normalization, for
example, corresponds to the same class of transformations given above with βi = 1/

√
K(i, i)

85

Aiolli

and γ = 0. In this case, K ′(i, i) = X ′iX
′>
i = ||X ′i||2 = 1 and trace(K ′) = m, the number of

examples in the set.
We notice some interesting facts about kernel centering. If K = XX> is centered,

then for every α ∈ R+ we have αK = αXX> = (
√
αX)(

√
αX)>, which is also centered.

Furthermore, the sum of centered kernels K ′ =
∑s

j=1Kj is also a centered kernel since it can
be seen as the kernel obtained by concatenating the individual feature space representations,
X ′i = [Xi,1, Xi,2, . . . , Xi,s] and is clearly centered. From these two facts, it follows that any
linear combination of centered kernels is also a centered kernel.

Similar results can be given for the trace of kernel matrices. For instance, any matrix
obtained as a convex combination of matrices with the same trace t, will have trace t. Also,
any convex combination of normalized kernels is a normalized kernel.

4.2. Kernel Spectrum Transformation

Another variety of valid kernels can be computed by modifying the spectrum of a given
kernel matrix through a function with codomain in R+. Considering a positive semi-definite
matrix (a kernel) K, this can always be written as K =

∑m
i=1 λiuiu

>
i where {λ1, .., λm|λi ≥

0, λi ≥ λi+1} are the eigenvalues (in decreasing order) and {u1, ..,um} the corresponding
eigenvectors of K. Our proposal here is to transform the eigenvalues via a function σ(λ)
taking values in R+, i.e.

Kσ =
m∑
i=1

σ(λi)uiu
>
i . (Tσ)

Different types of spectrum transformation functions can be defined on the spectrum of the
eigen-decomposition of a kernel matrix. The two we have used for the UTL challenge3 are:

Step: σ(λ) = 1 when λ ≥ ελ1, 0 ≤ ε ≤ 1, and σ(λ) = 0 otherwise. This transformation
corresponds to the principal directions.

Power: σ(λ) = λq where q ≥ 0. This transformation corresponds to exponentiating the
kernel matrix, i.e. K ′ = Kq.

Interestingly, the effect obtained when using Power as the spectrum transformation func-
tion is related to a softer version of the (kernel) PCA on the features of the kernel K. In
fact, after performing an orthogonalization of the features, the weight of components having
small eigenvalues are relatively reduced (when q > 1) or increased (when q < 1). Note that
the complexity of the obtained kernel decreases with q, as the higher we set q, the smaller
will be the number of significant directions we are using. Viceversa, when q tends to 0, the
transformed matrix tends to the identity matrix and the data has orthogonal representa-
tions. This transform also has interesting connections with diffusion maps (Coifman and
Lafon (2006)).

In order to better analyze the effect of this transform, we consider the spectral de-
composition of the matrix K = UDU>, where U contains the eigenvectors {uj}j=1,...,m as

3. Note that, since the kernel obtained after this transformation is not normalized, consistently with other
transformations presented in this paper, a subsequent normalization of the obtained kernel can be per-
formed. In fact, this is what we did in the challenge.

86

Transfer Learning by Kernel Meta-learning

columns and D is a diagonal matrix with the eigenvalues of K in decreasing order. This
decomposition exposes the new representations of the examples. Specifically, we have

x′i = [
√
σ(λ1)u1i; . . . ;

√
σ(λm)umi].

It is apparent that the above corresponds to a reweighting of the components. When q
is large, more emphasis is given to the most important components and when q is small, all
the components have more equal importance.

Note that when this transformation is used on a centered kernel matrix, the transformed
matrix is also centered since all features are scaled by the same amount, while the trace
changes according to trace(K’) =

∑m
i=1 σ(λi).

4.3. Polynomial-Cosine Kernel Transformation

So far, the proposed transformations do not modify the original feature space, rather they
perform only linear transformations of the feature vectors. An alternate, non linear, way to
transform the feature vectors is to apply a polynomial transformation. For this, we propose
the following kernel transformation:

Kπ(i, j) =
(cos(xi,xj) + u)p

(1 + u)p
=

1

(1 + u)p

(
K(i, j)√

K(i, i)
√
K(j, j)

+ u

)p
(Tπ)

where p ∈ N and u ≥ 0. Specifically, with this transformation, the original kernel is used to
compute cosine similarity in feature space, and a polynomial transformation is computed on
the result. Finally, the normalization term makes Kπ(i, i) = 1 for every i. It is easy to show
that this is a valid kernel using the closure properties of kernels (see e.g. Shawe-Taylor
and Cristianini (2004)). One effect of the polynomial kernel, and this transformation in
particular, is to further deemphasize similarities of dissimilar examples.

4.4. Algorithmic Transformations: a Kernel based on HAC

A clustering resulting from an unsupervised algorithm can be used to define a kernel. This is
another way to exploit a similarity or kernel function to generate a new kernel. Hierarchical
Agglomerative Clustering (HAC) is a popular method for clustering data. It starts by
treating each pattern as a singleton cluster, subsequently, merging pairs of clusters until a
single cluster contains all patterns. To do this, it requires (i) a pattern-pattern similarity
function and (ii) a merge strategy that decides which pair of clusters to merge based on
a cluster-cluster similarity function. In our case, the kernel to be transformed is used
as the pattern-pattern similarity matrix. Popular cluster-cluster similarity measures are
often based on single-linkage, complete-linkage, or average-linkage strategies. In the single-
linkage (resp. complete-linkage) strategy, the similarity between two clusters is defined as
the similarity of the most (resp. least) similar members. In the average-linkage strategy, the
similarity between two clusters is defined as the average of similarities between all members
of the two clusters.

A generalization of these measures can be defined as:

S(c1, c2) =

∑
xi∈c1,xj∈c2 K(i, j) · eηK(i,j)∑

xi∈c1,xj∈c2 e
ηK(i,j)

, (2)

87

Aiolli

where η ∈ R. The single-linkage strategy corresponds to η = +∞, the complete-linkage
strategy corresponds to η = −∞, and the average-linkage strategy is obtained by setting
η = 0.

We now propose a kernel defined on the basis of agglomerative clustering. Let Ct ∈
Rm×m, t ∈ {1, . . . ,m}, be the matrix with binary entries such that Ct(i, j) = 1 whenever
the examples i and j are in the same cluster at the t-th agglomerative step, and 0 otherwise.
Clearly, C1 = I, as this refers to the initial clustering where each example represents a
different cluster, and Cm = 11> is the matrix with all entries set to 1, as in this case there
is a single cluster. Finally, the HAC kernel can be defined by:

Kh =
1

m

m∑
t=1

Ct. (Th)

In this way Kh(i, j) represents the fraction of times the examples i and j are as-
signed to the same cluster in the HAC agglomerative process. It is a valid kernel since
Kh(i, j) = 1

mx>i xj , where xi is one possible representation of the i-th example consisting
of a binary vector having a component for each node of the dendrogram generated through
the agglomerative process. Specifically, we have xis = 1 whenever the node s belongs to
the dendrogram path starting from the root and ending on the leaf corresponding to the
example i. It is also possible to show this kernel is proportional to the depth in the HAC
dendrogram of the Lowest Common Ancestor (LCA) of the two examples.

4.5. Other kernel transforms

We conclude this section with additional examples of classes of transformations that were
not used in the challenge but could be studied and added in the future.

A first interesting transform that can be used is K ′ = KAK with A an opportune
PSD matrix. It is possible to show that KPCA (Schölkopf et al. (1998)) is an instance of
this transformation obtained by setting A = UkD

−1
k U>k , where Uk are the first k columns

of the spectral decomposition of K, and Dk ∈ Rk×k is the associated submatrix of D.
Moreover, for any n > 0 and C ∈ Rm×n, the matrix C>KC is positive definite and thus,
this transformation can be used by our algorithm. Another easy transform can be obtained
by using the RBF kernel K(i, j) = exp(−β(K(i, i) +K(j, j)− 2K(i, j))) with β > 0.

5. Adaptation of the KML algorithm to the UTL challenge and Results

In the first phase of the UTL challenge, labeled examples were not directly available and the
algorithm described in Section 3 was not applicable as it is. So, we adapted the algorithm
by simplifying the validation procedure to make it practical to be performed manually. As a
side effect, this simplification reduced the effective hypothesis space and also the danger of
overfitting. More specifically, we fixed the order of application of the transforms (based on
their “complexity”, from low to high complexity transforms) and limited the set of possible
parameter choices. Moreover, a transformation was only accepted (i.e. a > 0) if it improved
the ALC on validation significantly. In this way we avoided overtuning parameters. In this
section we give additional details about the above-mentioned criteria.

88

Transfer Learning by Kernel Meta-learning

The kernel centering transform, Tc, was only performed at the very beginning (i.e. data
preprocessing) and only when its application improved the ALC on validation over a raw
linear kernel. After that, the other transforms were validated one by one, starting from
Tσ, then Tπ, and finishing with Th. This procedure was then iterated until there was no
significant ALC improvement.

The Tσ transformation was validated with parameter q = 0.2 · q0, q0 ∈ {1, . . . , 10}. In
order to decrease the actual number of values to try, we assumed a convex behavior of the
ALC(q) curve and limited ourselves by performing a binary search for the best q. The
combination coefficient assigned to this type of transform was always a binary value, i.e.
a ∈ {0, 1}, meaning the transform was simply accepted or not. This choice was made
depending on whether the resulting improvement was considered significant.

The Tπ transformation was validated with parameters p ∈ {1, . . . , 6}, and u ∈ {0, 1}.
We started with p = 1 and increased the value until the ALC on validation could not be
further improved. Even in this case, the combination coefficient was chosen to be binary,
depending on the significance of the real ALC improvement on the validation set.

Finally, the Th transformation was validated with parameter η ∈ {−10, 0,+10}. How-
ever, we noticed that η = 0 was almost always the best choice. Moreover, since in this case
the transformed kernel is expected to be fairly different than the original, the combination
coefficient has been more accurately validated by doing a binary search on the set of values
a = 0.05 · a0, a0 ∈ {0, . . . , 20}.

In Table 1, detailed results obtained at post-challenge time are reported. In particular,
we used the same validation performed during the challenge in order to investigate possible
overfitting. Notice that in some (very few) cases, the obtained results can slightly differ from
the official results reported for the challenge due to minor differences4. The results confirm
that the method is quite robust to overfitting. Although this behavior was absolutely
expected, it could not be given as granted during the challenge.

6. A general strategy for Transfer Learning

As described in previous sections, kernel validation was performed manually for the chal-
lenge. In this section, we propose a general (and automatic) strategy for use when binary
labels for the source tasks are available. Specifically, validation performs a greedy search
over the space of transform sequences. We assume access to a predefined and finite set of
transforms.

6.1. The TKML strategy: The Algorithm

The pseudo-code in Algorithm 1 describes a general strategy to find the optimal set of
transformations according to a given notion of accuracy on source tasks. This procedure
will be provided with a set of source datasets, X , and a set of binary tasks, L, defined over
the source data. Solely to simplify notation, we assume each source dataset has the same
number of binary tasks defined over it. However, it is trivial to adapt it to the case where

4. In particular, during the challenge some transforms were (erroneously) applied to the integer matrix used
for submission instead of applying them to the correct real valued kernel matrix to transform.

89

Aiolli

Table 1: Details of the validation procedure performed by the KML algorithm on the five
datasets of the UTL challenge (Phase 1). RawVal is the ALC result obtained by
the linear kernel on the validation set. BestFin is the ALC result obtained by the
best scoring competitor algorithm (its final rank in parenthesis). For each dataset,
the ALC on validation and the ALC on the final datasets are presented. Note that
only those transformations accepted by the algorithm (a > 0) are reported with
their optimal parameters.

AVICENNA RawVal: 0.1034 BestFin: 0.217428(2) Val ALC Fin ALC

Tc k.s1.t0c1n0 0.124559 0.172279
Tσ(q = 0.4), a = 1 k.s1.t0c1n0.q04n 0.155804 0.214540
Tπ(p = 6, u = 1), a = 1 k.s1.t0c1n0.q04n.p6u1 0.165728 0.216307
Th(η = 0), a = 0.2 k.s1.t0c1n0.q04n.p6u1.d0.a02 0.167324 0.216075
Tσ(q = 1.4), a = 1 k.s1.t0c1n0.q04n.p6u1.d0.a02.q1 4n 0.173641 0.223646(1)

HARRY RawVal: 0.6264 BestFin: 0.806196(1) Val ALC Fin ALC

Tc k.s2.t0c1n0 0.627298 0.609275
Tπ(p = 1, u = 0), a = 1 k.s2.t0c1n0.p1u0 0.604191 0.678578
Th(η = 10), a = 1 k.s2.t0c1n0.p1u0.d10 0.861293 0.716070
Tσ(q = 2), a = 1 k.s2.t0c1n0.p1u0.d10.q2n 0.863983 0.704331(6)

RITA RawVal: 0.2504 BestFin: 0.489439(2) Val ALC Fin ALC

Tc k.s3.t0c1n0 0.281439 0.462083
Tπ(p = 5, u = 1), a = 1 k.s3.t0c1n0.p5u1 0.293303 0.478940
Th(η = 0), a = 0.4 k.s3.t0c1n0.p5u1.d0.a04 0.309428 0.495082(1)

SYLVESTER RawVal: 0.2167 BestFin: 0.582790(1) Val ALC Fin ALC

Tσ(ε = 0.00003), a = 1 k.s4.t0c0n0.e000003n 0.643296 0.456948(6)

TERRY RawVal: 0.6969 BestFin: 0.843724(2) Val ALC Fin ALC

Tc k.s5.t0c1n0 0.712477 0.769590
Tσ(q = 2), a = 1 k.s5.t0c1n0.q2n 0.795218 0.826365
Th(η = 0), a = 0.95 k.s5.t0c1n0.q2n.d0.a095 0.821622 0.846407(1)

the number of tasks per dataset varies. Finally, we assume the existence and access to a
finite set of predefined transformations in T .

The algorithm maintains a priority queue of transformed kernels and additional informa-
tion about them: the sequence of transformations that have already been applied, and the
evaluation of the kernel produced (e.g. the ALC observed on the associated source tasks).
The priority of an element of the queue is defined as a function of the ALCs obtained on
the associated tasks (e.g. their average). On each iteration, an element of the queue (i.e. a
kernel set, the list of applied transforms, and the evaluation of the transformed kernels) is
extracted and all transformations available in the set T are applied, in turn, to the current
kernels. After each transform has been applied, the obtained kernels are evaluated and
inserted into the queue if it increases the relative performance.

At this point, it is important to note that the effectiveness of this algorithm depends
very much on the type, and number, of transforms. In general, we can have up to |T |v

90

Transfer Learning by Kernel Meta-learning

Input : X = {X1, . . . , Xs}: A set of source data matrices Xi ∈ Rm×n
L = {L1, . . . , Ls}: A set of source binary tasks Li ∈ Rm×q
T = {T1, . . . , Tk}: A set of k transforms

K = {Ki = XiX
>
i }i=1,...,s (current set of kernel matrices)

BestEval = Evaluate(K,L) (best evaluation so far)
Q = [(K, [], BestEval)] (priority queue)
W ∗ = [] (optimal list of transforms so far)

while not empty Q do
(K,W,E) = Q.Dequeue()
if E > BestEval then

BestEval = E
W ∗ = W

end
foreach Ti ∈ T do
K′ = Transform(K, Ti)
Eval = Evaluate(K′,L)
if AcceptTransform(Eval, E) then

Q.Enqueue((K′, [W |Ti], Eval))
end

end

end

Output: W ∗ : Optimal list of transforms
Algorithm 1: General Search Strategy for Transfer kernel Meta-learning (TKML).

91

Aiolli

different sequences of length v. This dimension represents the size of the hypothesis space.
As hypothesis space size increases, we can expect higher accuracies of the optimal sequence
generated by the algorithm. However, there is also the danger of overfitting the source data,
producing sequences that will not generalize well to other data and tasks.

One way to keep the size of the hypothesis space small, while maintaining good per-
formance, is to utilize the granularity of the available transformations. In particular, we
can use a coarse-grained set T containing more complex transformations (i.e. transforma-
tions which are composition of other simpler transformations). We will give an example of
application of this criterium in the following experiments.

6.2. TKML strategy: Experimental Setting

At the end of the challenge, we were provided with labels for both the validation datasets
and for the transfer datasets for all problems. We now present additional experiments
based on these new datasets. Specifically, we were curious to see if adding transfer labels
to the validation process could improve results. For each challenge problem, we used only
a subsample of the transfer set and corresponding labels, with size equal to the validation
and final datasets.

We applied the general strategy described earlier to find the optimal set of transfor-
mations. The evaluation of a sequence of transforms (function Evaluate() in Algorithm
1) is performed by averaging the ALCs obtained on the tasks defined on the two source
datasets. The acceptance condition (function AcceptTransform() in Algorithm 1) verifies
whether adding a new kernel transform improves the performance of the sequence.

As already stated, a crucial factor is the choice of transforms, T . After preliminary
experiments performed on validation datasets and considering the criteria presented in
Section 6.1, we have chosen the small set of transforms given in Table 2. Note that most of
these transforms actually consist of sequences of simpler transforms. We also have performed
experiments using a larger set of transforms and a finer selection of the transformations.
As expected, the algorithm tended to overfit some source tasks in this case.

6.3. TKML strategy: Results

The initial seed kernel for all five challenge datasets is the linear kernel K = XX>, centered
and scaled to trace m, the number of examples of the set (i.e. trace standardization). The
validation and transfer datasets have been used as source datasets. The results for the five
datasets are as follows (refer to Table 2 for a detailed description):

• AVICENNA: T2, T3, T1, T3 for 3 times;

• HARRY: T2 for 3 times, T3, T2, T3 for 3 times;

• RITA: T3 for 4 times, T1, T3 for 6 times, T1, T3;

• SYLVESTER: T5, T3 for 10 times;

• TERRY: T1 for 2 times, T3 for 3 times, T4.

92

Transfer Learning by Kernel Meta-learning

Table 2: The five transforms (the set T of the TKML strategy) used in our experiments.

1 Spectral σ(λ) = λ
√
2

(a) Centering (Tc) and trace standardization

(b) Spectral Transform with σ(λ) = λ
√
2

(c) Normalization

2 Spectral σ(λ) = λ1/
√
2

(a) Centering (Tc) and trace standardization

(b) Spectral Transform with σ(λ) = λ1/
√
2

(c) Normalization

3 Polynomial Transform with p = 2

4 HAC Transform with d = 0

5 Step Spectral
(a) Centering (Tc) and trace standardization
(b) Spectral Transform with σ(λi) = 1 whenever i ≤ 5, 0 otherwise
(c) Normalization

Table 3: Results obtained with the TKML strategy of Section 6 and comparison with Phase
1 and Phase 2 challenge results. All the results refer to the final datasets. ALC(T0)
corresponds to the ALC obtained by the algorithm we used in the challenge and
described in Section 5. ALC(T1) corresponds to the ALC obtained by the TKML
strategy with the set of transformations in Table 2. In parenthesis the rank we
would have obtained in final challenge results for Phase 1 and 2. Finally, the last
two columns report the best ALC obtained by our competitors in Phase 1 and 2.

DATASET ALC(T0) ALC(T1) BestALC Phase 1 BestALC Phase 2

AVICENNA 0.223646 0.221256 (1,2) 0.218265 0.227307
HARRY 0.704331 0.815374 (1,2) 0.806196 0.861933
RITA 0.495082 0.507535 (1,1) 0.489439 0.502948
SYLVESTER 0.456948 0.547636 (3,4) 0.582790 0.593283
TERRY 0.846407 0.849543 (1,1) 0.843724 0.843724

In Table 3, the results on the final datasets are reported. Interestingly, there is a
clear improvement when additional source tasks are used. Sometimes this improvement is
dramatic, as in HARRY and SYLVESTER, two datasets where the strategy used in the
challenge particularly suffered from overfitting. The new strategy is very competitive with
other challenge participant entries as it gives the best results on the RITA and TERRY
datasets, and the second best results for AVICENNA and HARRY datasets.

7. Final remarks

We conclude the paper with some final considerations about the proposed paradigm and
future work.

93

Aiolli

Suitability of the method for Transfer Learning. The method proposed in this paper
seems particularly well suited for transfer learning tasks, as it tries to learn a set of (unsu-
pervised) kernel transformations. On the other hand, standard methods for semi-supervised
learning typically optimize an objective function which needs of i.i.d. labeled data. We ad-
vocate that learning a sequence of data transformations should make the obtained solution
depend more on the domain and less on the particular tasks used for optimization.

Needs of few labeled data. The method is expected to require very few labeled examples,
since the labels are used only for validation. Although the ALC measure clearly depends
on particular tasks for which it is computed, in the UTL challenge, the ALC measure is
computed averaging over several binary tasks. This characteristic is important to prevent
possible overfitting with respect to each particular task.

Generality of the method. The method is able to combine very different kinds of kernels
that individually perform well on varied domains. For example, the HAC based kernel
seems to be suited for data with some structure. In particular, this transform has been
crucial to obtain the best result on TERRY, a dataset related to textual data. Another
example, exponentiating the kernel matrix (via the eigenvalues obtained by its spectral
decomposition) produces an orthogonalization of the features together with a reweighting
of its components. This transform turned out to be very useful for all the challenge datasets.
Specifically, its contribution is apparent when data lay on a subspace of reduced dimensions,
or when a decorrelation of the features, as whitening (Duda et al. (2000)) for example, can
be beneficial. Finally, as briefly discussed in this paper, additional kernel transforms can
be plugged into the algorithm proposed.

Low computational burden. The computational requirements mainly depends on SVD
computations needed for the Tσ transform. Interestingly, note that computing the Tσ
transform with different parameters requires only a single SVD. In fact, let K = UDU>

be the SVD decomposition of K, then, any different transform with exponent q can be
obtained by a matrix multiplication K ′ = HH> where H = UD

q
2 (since D is diagonal,

this last computation does not affect the computational complexity of the transform and
it is fast to compute). We used Scilab5 for the linear algebra routines, such as the SVD
computation and matrix manipulation. C++ has been used for the computation of the
HAC based kernel and for combining kernels.

Future works on Transfer Learning. A study about the connection between ours and
other paradigms, such as deep learning, will be the subject of future work. In fact, our
method can be considered a sort of ‘deep kernel learning’ similar in principle to a deep
learning architecture where kernel transformations correspond to the different levels of a
deep neural network. However, unlike deep learning, we do not use explicit representation
of data as examples are represented on the basis of similarities with other examples. In
the near future, we plan to investigate whether this method can be extended to transfer
knowledge across varied domains. It would be interesting to define a metric between chains
of transformations obtained in such a setting. This metric can be used to decide what type
of knowledge could be transferred from one domain to another based on domain similarity.

5. http://www.scilab.org/

94

Transfer Learning by Kernel Meta-learning

Acknowledgments

This work was supported by ATENEO 2009/2011 “Methods for the integration of back-
ground knowledge in kernel-based learning algorithms for the robust identification of biomark-
ers in genomics”. We warmly thank the challenge organizers, and Isabelle Guyon in partic-
ular, for their support, Dav Zimak and the anonymous reviewers for their useful comments
and suggestions.

References

Fabio Aiolli, Giovanni Da San Martino, and Alessandro Sperduti. A kernel method for the
optimization of the margin distribution. In International Conference on Artificial Neural
Networks (ICANN), pages 305–314, 2008.

Rich Caruana. Multitask learning. In Machine Learning, pages 41–75, 1997.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press,
Cambridge, MA, 2006. URL http://www.kyb.tuebingen.mpg.de/ssl-book.

R.R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Anal-
ysis: Special issue on Diffusion Maps and Wavelets, 21:5–30, 2006.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000. ISBN 0471056693.

I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D.W. Aha. Unsupervised and transfer
learning challenge. In International Joint Conference on Neural Networks (IJCNN),
pages 793–800, 2011.

Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, and Michael I.
Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research, 5:27–72, 2004.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knoweledge and Data Engineering, 22(10):1345–1359, October 2010.

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods—
Support Vector Learning. MIT Press, Cambridge, MA, 1999.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, July 1998.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004. ISBN 0521813972.

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
2009.

95

http://www.kyb.tuebingen.mpg.de/ssl-book

	Introduction
	The UTL Challenge
	The Competition
	The Hebbian classifier

	The Kernel Meta Learning (KML) Algorithm
	Kernel Transforms
	Affine Transformations: Centering and Normalization in Feature Space
	Kernel Spectrum Transformation
	Polynomial-Cosine Kernel Transformation
	Algorithmic Transformations: a Kernel based on HAC
	Other kernel transforms

	Adaptation of the KML algorithm to the UTL challenge and Results
	A general strategy for Transfer Learning
	The TKML strategy: The Algorithm
	TKML strategy: Experimental Setting
	TKML strategy: Results

	Final remarks

