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Abstract

Computational Biology provides a wide range of applications for Multitask Learning (MTL)
methods. As the generation of labels often is very costly in the biomedical domain, com-
bining data from different related problems or tasks is a promising strategy to reduce label
cost. In this paper, we present two problems from sequence biology, where MTL was suc-
cessfully applied. For this, we use regularization-based MTL methods, with a special focus
on the case of a hierarchical relationship between tasks. Furthermore, we propose strategies
to refine the measure of task relatedness, which is of central importance in MTL and finally
give some practical guidelines, when MTL strategies are likely to pay off.

Keywords: Transfer Learning, Multitask Learning, Domain Adaptation, Computational
Biology, Bioinformatics, Sequences, Support Vector Machines, Kernel Methods

1. Introduction

In Computational Biology, supervised learning methods are often used to model biological
mechanisms in order to describe and ultimately understand them. These models have to be
rich enough to capture the often considerable complexity of these mechanisms. Having a
complex model in turn requires a reasonably sized training set, which is often not available
for many applications. Especially in the biomedical domain, obtaining additional labeled
training examples can be very costly in terms of time and money. Thus, it may often pay
off to combine information from several related tasks as a way of obtaining more accurate
models and reducing label cost.

In this paper, we will present several problems where MTL was successfully applied.
We will take a closer look at a common special case, where different tasks correspond to
different organisms. Examples of such a setting are splice-site recognition and promoter
prediction for different organisms. Because these basic mechanisms tend to be relatively
well conserved throughout evolution, we can benefit from combining data from several
species. This special case is interesting because we are given a tree structure that relates
the tasks at hand. For most parts of the tree of life, we have a good understanding of how
closely related two organisms are and can use that information in the context of Multitask
Learning. To illustrate that the relevance of MTL to Computational Biology goes beyond
the organisms-as-tasks scenario, we present a problem from a setting, where different tasks
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Widmer Rätsch

correspond to different related protein variants, namely Major Histocompatibility Complex
(MHC)-I binding prediction.

Clearly, there exists an abundance of problems in Bioformatics that could be approached
from the MTL point of view (e.g. Qi et al. (2010)). For instance, different tasks could
correspond to different cell lines, pathways (Park et al., 2010), tissues, genes (Mordelet and
Vert, 2011), proteins (Heckerman et al., 2007), technology platforms such as microarrays,
experimental conditions, individuals, tumor subtypes, just to name a few. This illustrates
that MTL methods are of interest to many applications in Computational Biology.

2. Methods

Our methods strongly rely on regularization based supervised learning methods, such as
the Support Vector Machine (SVM) (Boser et al., 1992) or Logistic Regression. In its most
general form, it consists of a loss-term that captures the error with respect to the training
data and a regularizer that penalizes model complexity

J(Θ) = L(Θ|X,Y ) +R(Θ).

This formulation can easily be generalized to the MTL setting, where we are interested in
obtaining several models parameterized by Θ1, ...,ΘM , where M is the number of tasks.
The above formulation can be extended by introducing an additional regularization term
RMTL that penalizes the discrepancy between the individual models (Evgeniou et al., 2005;
Agarwal et al., 2010).

J(Θ1, ...,ΘM ) =
M∑
i=1

L(Θi|X,Y ) +
M∑
i=1

R(Θi) +RMTL(Θ1, ...,ΘM ).

2.1. Taxonomy-based transfer learning: Top-down

In this section, we present a regularization-based method that is applicable when tasks are
related by a taxonomy (Widmer et al., 2010a). Hierarchical relations between tasks are
particularly relevant to Computational Biology where different tasks may correspond to
different organisms. In this context, we expect that the longer the common evolutionary
history between two organisms, the more beneficial it is to share information between these
organisms. In the given taxonomy, tasks correspond to leaves (i.e. taxons) and are related
by its inner nodes. The basic idea of the training procedure is to mimic biological evolution
by obtaining a more specialized classifier with each step from root to leaf. This specializa-
tion is achieved by minimizing the training error with respect to training examples from the
current subtree (i.e. the tasks below the current node), while similarity to parent classifier
is enforced through regularization.

The primal of the Top-down formulation is given by

min
w,b

B

2
||w||2 +

1−B
2
||w −wp||2 + C

∑
(x,y)∈S

` (〈x,w〉+ b, y) , (1)
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where ` is the hinge loss `(z, y) = max{1−yz, 0}, wp is the parameter vector from the parent
model and B ∈ [0, 1] is the hyper-parameter that controls the degree of MTL regularization.
The dual of the above formulation is given by (Widmer et al., 2010a)):

max
α
− 1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj)−
n∑
i=1

αi

B
 m∑
j=1

α′jyiy
′
jk(xi,x

′
j)

− 1

︸ ︷︷ ︸
pi


s.t. αTy = 0, 0 ≤ αi ≤ C ∀i ∈ {1, n},

where n and m are the number of training examples at the current level and the level of
the parent model, respectively.

The αi represent the dual variables of the current learning problem, whereas the α′j
represent the dual variables obtained from the parent model wp; in the case of the linear
kernel, it is described as wp =

∑m
j=1 α

′
jy
′
jx
′
j . The resulting predictor is given by

f(x) =
n∑
i=1

αiyik(x,xi) +
m∑
j=1

α′jy
′
jk(x,xj) + b.

To clarify the algorithm, an illustration of the training procedure is given in Figure 1.
If the nodes in the taxonomy represent species, then interior nodes correspond to extant
species. Thus, interior nodes are trained on the union of training data from descendant
leaves (see Figure 1). In the dual of the standard SVM, the term p (corresponding to the
pi in the equation above) is set to p = (−1, . . . ,−1)T (i.e. there is no parent model). In our
extended formulation, the pi is pre-computed and passed to the SVM-solver as the linear
term of the corresponding quadratic program (QP). Therefore, the solution of the above
optimization problem can be efficiently computed using well established SVM solvers. We
have extended LibSVM, SVMLight and LibLinear to handle a custom linear term p and
provide the implementations as part of the SHOGUN-toolbox (Sonnenburg et al., 2010).

2.2. Graph-based transfer learning

Following Evgeniou et al. (2005) we use the following formulation

min
w1,...,wM

1

2

M∑
s=1

M∑
t=1

Ast ||ws −wt||2 + C

M∑
s=1

∑
(x,y)∈S

` (〈x,ws〉+ b, y) , (2)

where ` is the hinge loss `(z, y) = max{1− yz, 0} and Ast captures the externally provided
task similarity between task s and task t. Intuitively speaking, we want to penalize differ-
ences between parameter vectors more strongly, if we know a-priori that tasks are closely
related. Following Evgeniou et al. (2005), we rewrite the above formulation using the graph
Laplacian L

min
w1,...,wM

M∑
s=1

M∑
t=1

Lstw
T
s wt + C

M∑
s=1

∑
(x,y)∈S

` (〈x,ws〉+ b, y) , (3)
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(a) Given taxonomy (b) Root training (c) Inner training (d) Taxon training

Figure 1: Illustration of the Top-down training procedure. In this example, we consider four tasks re-
lated via the tree structure in 1(a). Each leaf is associated with a task t and its training sample
St = {(x1, y1), ..., (xn, yn)}. In 1(b), training begins by obtaining the predictor at the root node. Next, we
move down one level and train a classifier at an inner node, as shown in 1(c). Here, the training error is
computed with respect to S1∪S2, while the classifier pulled towards to the parent model wp using the newly
introduced regularization term, as indicated by the red arrow. Lastly, in 1(d), we obtain the final classifier
of task 1 by only taking into account S1 to compute the loss, while again regularizing against the parent
predictor. The procedure is applied in a top-down manner to the remaining nodes until we have obtained a
predictor for each leaf.

where L = D−A, where Ds,t = δs,t
∑

k As,k. Finally, it can be shown that this gives rise to
the following multitask kernel to be used in the corresponding dual (Evgeniou et al., 2005):

K((x, s), (z, t)) = L+
st ·KB(x, z), (4)

where KB is a kernel defined on examples and L+ is the pseudo-inverse of the graph Lapla-
cian. A closely related formulation was successfully used in the context of Computational
Biology by Jacob and Vert (2008), where a kernel on tasks KT was used instead of L+,
giving rise to

K((x, s), (z, t)) = KT (s, t) ·KB(x, z). (5)

The corresponding joint feature space between task t and feature vector x can be written
as a tensor product φ(t, x) = φT (t) · φB(x) (Jacob and Vert, 2008). Note that a special
case of this was presented by Daumé (2007) in the context of Domain Adaptation, where
φT (t) = (1, 1, 0) was used as the source task descriptor and φT (t) = (1, 0, 1) for the target
task, corresponding to KT (s, t) = (1 + δs,t).

2.3. Learning Task Similarity

An essential component of MTL is finding measure of task similarity that represents the
improvement we expect from the information transfer between two tasks. Often, we are
provided with external information on task relatedness (e.g. evolutionary history of organ-
isms). However, the given similarity often only roughly corresponds to the task similarity
relevant for the MTL algorithm and therefore one may need to find a suitable transforma-
tion to convert one into the other. For this, we propose several approaches, starting with
a very simple parameterization of task similarities up to a sophisticated Multiple Kernel
Learning (MKL) based formulation that learns task similarity along with the classifiers.
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2.3.1. A simple approach: Cross-validation

The most general approach to refine a given task-similarity matrix As,t is to introduce a
mapping function ψ, parameterized by a vector Θ. The goal is to choose Θ such that
the empirical loss is minimized. For example, we could choose a linear transformation
ψΘ(s, t) = Θ1 + As,tΘ2 or non-linear transformation ψΘ(s, t) = Θ1 · exp(As,t

Θ2
). A straight-

forward way of finding a good mapping is using cross-validation to choose an optimal value
for Θ.

A cross-validation based strategy may also be used in the context of the Top-down
method. In principle, each edge e in the taxonomy could carry its own weight Be. Because
tuning a grid of all Be in cross-validation would be quite costly, we propose to perform a local
cross-validation and optimize the current Be at each step from top to bottom independently.
This can be interpreted as using the taxonomy to reduce the parameter search space.

2.3.2. Multitask Multiple Kernel Learning

In the following section, we present a more sophisticated technique to learn task similarity
based on MKL. To be able to use MKL for Multitask Learning, we need to reformulate the
Multitask Learning problem as a weighted linear combination of kernels (Widmer et al.,
2010c). In contrast to Equation 5, the basic idea of our decomposition is to define task-
based block masks on the kernel matrix of KB. Given a list of tasks T = {t1, ..., tT }, we
define a kernel KS on a subset of tasks S ⊆ T as follows:

KS(x, y) =

{
KB(x, y), if t(x) ∈ S ∧ t(y) ∈ S

0, else

where t(x) denotes the task of example x. Here, each S corresponds to a subset of tasks.
In the most general formulation, we define a collection I = {S1, ..., Sp} of an arbitrary
number p of task sets Si, which defines the latent structure over tasks. This collection leads
to the following linear combination of kernels, which is positive semi-definite for βi ≥ 0:

K̂(x, z) =
∑
Si∈I

βiKSi(x, z).

Using K̂, we can readily utilize existing MKL methods to learn the weights βi. This
corresponds to identifying the groups of tasks Si for which sharing information leads to
improved performance. We use the following formulation of q-norm MKL by Kloft et al.
(2011):

min
β

max
α

1Tα− 1

2

∑
i,j

αiαjyiyj

|I|∑
t=1

βtKSt(xi, xj)

s.t. ||β||qq ≤ 1,β ≥ 0

YTα = 0, 0 ≤ α ≤ C

To solve the above optimization problem, we follow ideas presented by Kloft et al. (2011)
to iteratively solve a convex optimization problem involving only the β’s and then to solve
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for α only. This method is known to converge fast even for a relatively large number of
kernels (Kloft et al., 2011).

After training using MKL, a classifier ft for each task t is given by:

ft(z) =
N∑
i=0

αiyi
∑

Sj∈I;t∈Sj

βjKSj (xi, z),

where N is the total number of training examples of all tasks combined. What remains to be
discussed is how to define the collection I of candidate subsets Si, which are subsequently
to be weighted by MKL.

Powerset MT-MKL With no prior information given, a natural choice is to take into
account all possible subsets of tasks. Given a set of tasks T , this corresponds to the power
set P of T (excluding the empty set) IP = {S|S ∈ P(T ) ∧ S 6= Ø}. Clearly, this gives
us an exponential number (i.e. 2T ) of task sets Si of which only a few will be relevant.
To identify the relevant task sets, we propose to use an L1-regularized MKL approach to
obtain a sparse solution. Most subset weights will be set to zero, leaving us with only a few
relevant subsets with non-zero weights. By summing the weights of the groups containing
a particular pair of tasks (s, t), we can recover the similarity As,t. As we do not assume
prior information on task structure, this approach may be used to learn the task similarity
matrix de novo (only for a small number of tasks due to computational complexity of the
näıve implementation).

Hierarchical MT-MKL Next, we assume that we are given a tree structure G that
relates our tasks at hand (see Figure 2). In this context, a task ti corresponds to a leaf in
G. We can exploit the hierarchical structure G to determine which subsets potentially play
a role for Multitask Learning. In other words, we use the hierarchy to restrict the space of
possible task sets. Let leaves(n) = {l|l is descendant of n} be the set of leaves below the
sub-tree rooted at node n. Then, we can give the following definition for the hierarchically
decomposed kernel function

K̂(x, y) =
∑
ni∈G

βiKleaves(ni).

As an example, consider the kernel defined by a hierarchical decomposition according
to Figure 2. In contrast to Power-set MT-MKL, we seek a non-sparse weighting of the task
sets defined by the hierarchy and will therefore use L2-norm MKL (Kloft et al., 2011).

Figure 2: Example of a hierarchical decomposition. According to a simple binary tree, it is shown that
each node defines a subset of tasks (a block in the corresponding kernel matrix on the left). Here, the
decomposition is shown for only one path: The subset defined by the root node contains all tasks, the subset
defined by the left inner node contains t1 and t2 and the subset defined by the leftmost leaf only contains
t1. Accordingly, each of the remaining nodes defines a subset Si that contains all descendant tasks.
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Alternatively, one can use a variation of the approach provided above and use boosting
algorithms instead of MKL, as similarly done by Gehler and Nowozin (2009) and Widmer
et al. (2010b).

2.4. When does MTL pay off?

In this section, we give some practical guide lines about when it is promising to use MTL
algorithms. First, the tasks should neither be too similar nor too different (Widmer et al.,
2010a). If the tasks are too different one will not be able to transfer information, or even
end up with negative transfer (Pan and Yang, 2009). On the other hand, if tasks are almost
identical, it might suffice to pool the training examples and train a single combined classifier.
Another integral factor that needs to be considered is whether the problem is easy or hard
with respect to the available training data. In this context, the problem can be considered
easy if the performance of a classifier saturates as a function of the available training data. In
that case using more out-of-domain information will not improve classification performance,
assuming that none of the out-of-domain datasets are a better match for the in-domain test
set than the in-domain training set.

In order to control problem difficulty in the sense defined above, we can compute a
learning curve (i.e. number of examples vs. auROC) and check whether we observe sat-
uration. If this is the case, we do not expect transfer learning to be beneficial as model
performance is most likely limited only by label noise. The same idea can be applied to em-
pirically checking similarity between two tasks. For this, we compute pair-wise saturation
curves (i.e. train on data from one task, test on the other) between tasks, giving us a useful
measure to check whether transferring information between two tasks may be beneficial.

3. Applications

In this section, we give a two examples of applications in Computational Biology, where we
have successfully employed Multitask Learning.

3.1. Splice-site prediction

The recognition of splice sites is an important problem in genome biology. By now it is
fairly well understood and there exist experimentally confirmed labels for a broad range of
organisms. In previous work, we have investigated how well information can be transfered
between source and target organisms in different evolutionary distances (i.e. one-to-many)
and training set sizes (Schweikert et al., 2009). We identified TL algorithms that are par-
ticularly well suited for this task. In a follow-up project we investigated how our results
generalize to the MTL scenario (i.e. many-to-many) and showed that exploiting prior in-
formation about task similarity provided by taxonomy can be very valuable (Widmer et al.,
2010a). An example how MTL can improve performance compared to baseline methods
plain (i.e. learn a classifier for each task independently) and union (i.e. pool examples
from all tasks and obtain a global classifier) is given in Figure 3(a). For an elaborate
discussion of our experiments with splice-site prediction, please consider the original publi-
cations (Schweikert et al., 2009; Widmer et al., 2010a).
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(a) Splicing Results (b) MHC Results

Figure 3: In 3(a), we show results for 6 out of 15 organisms for baseline methods plain and union and
three multitask learning algorithms. The mean performance is shown in the last column. For each task,
we obtained 10000 training examples and an additional test set of 5000 examples. We normalized the
data sets such that there are 100 negative examples per positive example. We report the area under the
precision recall curve (auPRC), which is an appropriate measure for unbalanced classification problems (i.e.
detection problems). In 3(b), we report the average performance over the MHC-I alleles (tasks) as auROC
for two baseline methods and three variants of MTL algorithms. Here, auROC was used to keep the results
comparable to previously published results (Jacob and Vert, 2008).

3.2. MHC-I binding prediction

The second application we want to mention is MHC-I binding prediction. MHC class I
molecules are key players in the human immune system. They bind small peptides derived
from intracellular proteins and present them on the cell surface for surveillance by the
immune system. Prediction of such MHC class I binding peptides is a vital step in the
design of peptide-based vaccines and therefore one of the major problems in computational
immunology. Thousands of different types of MHC class I molecules exist, each displaying a
distinct binding specificity. We consider these different MHC types to be different tasks in
a MTL setting. Clearly, we expect information sharing between tasks to be fruitful, if the
binding pockets of the molecules exhibit similar properties. These properties are encoded
in the protein sequence of the MHC proteins. Thus, we can use the externally provided
similarity between MHC proteins to estimate task relatedness. In agreement with previous
reports (Jacob and Vert, 2008), we observed that using the approach provided in Equation
5 with KT defined on the externally provided sequences considerably boosts prediction
accuracy compared to baseline methods, as can be seen in Figure 3(b). Lastly, we present
an experiment, where we investigated how well a learned task-similarity (using Powerset
MT-MKL) matches an externally provided one (i.e. based on sequence similarity). This
externally provided task similarity is based on the Hamming-distance between the amino
acids contained in the binding pockets of the MHC-I molecules. As can be seen in Figure
4, there is considerable agreement between the two similarity measures (i.e. an overall
Spearman correlation coefficient of 0.67). From this, we conclude that MT-MKL may be
of value in MTL settings, where relevant external information on the relatedness of tasks is
absent.
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Figure 4: Comparison of the task structure as identified by Powerset MKL with an externally provided one.

4. Conclusion

We have presented an overview of applications for MTL methods in the field of Compu-
tational Biology. Especially in the context of biomedical data, where generating training
labels can be very expensive, MTL can be viewed as a means of obtaining more cost-effective
predictors. We have presented several regularization-based MTL methods centered around
the SVM, amongst them an approach for the special case of hierarchical task structure.
Furthermore, we have outlined several strategies how to learn or refine the degree of task
relatedness, which is of central importance when applying MTL methods. Lastly, we gave
some practical guidelines to quickly check for a given dataset if one can expect MTL strate-
gies to boost performance over straight-forward baseline methods.
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C. Widmer, J. Leiva, Y. Altun, and G. Rätsch. Leveraging Sequence Classification by
Taxonomy-based Multitask Learning. In B. Berger, editor, Research in Computational
Molecular Biology, pages 522–534. Springer, 2010a.

C. Widmer, N.C. Toussaint, Y. Altun, O. Kohlbacher, and G. Rätsch. Novel machine
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