
Supplementary material to the paper

Selective sampling algorithms for cost-sensitive multiclass prediction

A. Numerical simulation details

We have displayed enlarged versions of our earlier results in Figures 2 and 3 for an easier visualization of the
results. See Figures 4 and 5 for these plots.

We will now describe the details of our data generating procedure. As mentioned earlier, we used synthetic
data generated according to a mixture of Gaussians. Our intuition was to have each cluster roughly correspond
to one group, but with enough overlap so that there is adequate noise in the problem. We started by picking
Gaussian random vectors in R

1000 as our cluster means. However, due to concentration of measure, this gives
rise to means that are far apart, and nearly orthogonal. The resulting classification problems from such means
tended to be relatively noiseless and easy to solve with extremely few queries. To avoid this, we started by
generating Gaussian random vectors in 10 dimensions, with mean 0 and standard deviation I10×10/

√
10, so that

the means have roughly unit norm. We then apply a random rotation to these weights in order to embed them
into 1000 dimensions. For each sample, we first picked a mean vector uniformly at random from 1, 2, . . . ,K.
We then picked a random Gaussian vector with the mean as the selected cluster mean and standard deviation
(10/

√
1000)I1000×1000. We tried other multipliers on the variance as well, but the results were stable within a

reasonable range. As another robustness test, we added a certain fraction of random x vectors centered around
the origin with the same variance. Again, the results were found to be fairly stable to such changes. For each x,
we picked the label based on our generative model (1). As mentioned before, Figure 2 uses the exponential link
function for the multinomial logit model while Figure 3 uses P(Y = i | x) ∝ (xTW ∗

i )
2. It might appear curious

that the regret ratio has not gone up by much despite the model mismatch. While the ratio does seem fairly
stable, the actual regret was substantially higher in this case, both for active and passive learning.

B. Proofs of main results

We start by giving a high-level outline of our proof. As remarked earlier, our proofs rely on conditional probability
estimation. We start by formalizing this claim. Specifically, we provide two results in Proposition 1 and Lemma 2,
which capture the rate at which our weights and our predicted probabilities correspond to their true versions under
W ∗. At a high level, our Assumption 1 regarding the strong convexity of the link function is crucial for this part,
because otherwise we do not get good estimates of the weight matrix W ∗. Qualitatively, our estimation rates are
Õ(1/Nt) after we have made Nt queries. The next step is to relate the error in conditional probability estimation
with the regret under our cost-sensitive loss (14). While this cannot be done in general, we use our generative
model (1) to make this link. Specifically, following similar intuition in earlier works (Cesa-Bianchi et al., 2009;
Dekel et al., 2010), we discard all the Tǫ points which are too hard to resolve. On the remaining points, it is
rather easy to control the regret of the points where we query the labels by using properties of our update rule.
This intuition is formalized in Lemma 4. Everything up until this point is a property of the update rule (9) and
applies for all query criteria. The remaining step is to control the regret on the points where we issue no queries,
and this is where the query rule comes in. By design, it will turn out that we pay no regret on the points where
we do not query, and this part heavily exploits the small error in our conditional probability estimates. We also
provide bounds on the number of queries we make for our rules. The important intuition here is that all our
rules involve the quantity ‖xt‖M−1

t

, which decays suitably over time. By understanding how the decay of this

quantity relates with the tolerance ǫ below which we do not account for regret, we obtain bounds on our query
complexity.
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Figure 4. Plots showing the ratio of active to passive regret, as a function of the number of queries. Left panel shows
K = 5 and right panel shows K = 10.
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Figure 5. Plot showing the ratio of active to passive regret, as a function of the number of queries in a model mismatch
scenario. K = 10 in this experiment.
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We start with a proposition regarding the convergence of the weight matrix learned by Algorithm 1 to the
optimal weight matrix. Then we will state some important lemmas that will be used to establish our main
results, followed by the proofs of our theorems.

B.1. Convergence of weight matrices

In order to describe the results succinctly, we introduce the following notation for a positive definite matrix M

‖W‖2M =
K∑

i=1

‖Wi‖2M ,

as an extension of the Mahalanobis norm to matrices. It is clear that with this definition, for any vector x ∈ R
d

we have

‖Wx‖22 =

K∑

i=1

〈Wi, x〉2 ≤
K∑

i=1

‖Wi‖2M‖x‖2M−1 = ‖W‖2M‖x‖2M−1 . (19)

Proposition 1. Under Assumptions 1 and 2, the iterates of Algorithm 1 satisfy with probability 1− δ

‖Wt −W ∗‖Mt
≤ 2

γℓ

√
3 + 2 log

(
1 +

2R2γℓ
γ

)√
dK log t

√
log(dKt/δ) +

√
2γω2

γℓ
,

uniformly for all t = 1, 2, . . . , T .

Proposition 1 is a property of the update rule (9) and does not rely on the query conditions. The proof uses
standard techniques for the analysis of online convex optimization algorithms along with martingale concentra-
tion.

Proof of Proposition 1 By the definition of Wt, first-order optimality conditions for convex optimization
guarantee that

〈
γWt +

t−1∑

s=1

Zs∇ℓ(Wtxs, ys),W −Wt

〉
≥ 0, for all W ∈ W.

Recalling the definition (4) and using the optimality condition with W =W ∗, we obtain the condition

γ 〈Wt,W
∗ −Wt〉+

t−1∑

s=1

Zs
〈
∇Φ(Wtxs)x

T
s − ysx

T
s ,W

∗ −Wt

〉
≥ 0.

Let us define the shorthand ξs = ys −∇Φ(W ∗xs). Recall the definition of the sigma-field Fs which is generated
by x1 through xs, along with the observed y values up to round s − 1. Then it is clear that ξs is measurable
with respect to Fs+1. Furthermore, the definition (1) of our probabilistic model guarantees that E[ξs | Fs] = 0,
meaning that ξs is a martingale difference sequence adapted to the filtration {Fs+1}. In terms of this shorthand,
we can now rewrite the optimality condition as

γ 〈Wt,W
∗ −Wt〉+

t−1∑

s=1

Zs
〈
∇Φ(Wtxs)x

T
s −∇Φ(W ∗xs)x

T
s + ξsx

T
s ,W

∗ −Wt

〉
≥ 0.

Rearranging terms, we obtain
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t−1∑

s=1

Zs
〈
ξsx

T
s ,W

∗ −Wt

〉
≥

t−1∑

s=1

Zs
〈
∇Φ(Wtxs)x

T
s −∇Φ(W ∗xs)x

T
s ,Wt −W ∗

〉
+ γ 〈Wt,Wt −W ∗〉

=

t−1∑

s=1

Zs 〈∇Φ(Wtxs)−∇Φ(W ∗xs),Wtxs −W ∗xs〉+ γ 〈Wt,Wt −W ∗〉

≥ γℓ

t−1∑

s=1

Zs‖Wtxs −W ∗xs‖22 + γ‖Wt −W ∗‖22 + γ 〈W ∗,Wt −W ∗〉 ,

where the last inequality follows from the strong convexity Assumption 1. Recalling the definition of the matrix
Mt (7) as well as our boundedness Assumption 3, we can further simplify the above inequality to

t−1∑

s=1

Zs 〈ξs,W ∗xs −Wtxs〉 ≥ γℓ‖Wt −W ∗‖2Mt
− 2γω2. (20)

We now focus on the right hand side of the inequality. Observe that

t−1∑

s=1

Zs 〈ξs,W ∗xs −Wtxs〉 =
K∑

i=1

t−1∑

s=1

Zsξs,i
〈
W ∗
t,i −W i

t , xs
〉

≤
K∑

i=1

‖
t−1∑

s=1

Zsξs,ixs‖M−1
t

‖W ∗
t,i −W i

t ‖Mt
.

To control each term in the sum, we use a tail inequality for vector-valued martingales from Fillipi et
al. (Filippi et al., 2010). In particular, invoking Lemma 1 in the Appendix A.1 of the paper with constants
cm = R, λ0 = γ/γℓ and R = 2 yields for any 0 < δ < 1/e and t ≥ 2 the following bound with probability at least
1− δ/K

‖
t−1∑

s=1

Zsξs,ixs‖M−1
t

≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
d log t

√
log(dK/δ),

for all i = 1, 2, . . . ,K. Taking a union bound over all the classes yields with probability at least 1− δ

t−1∑

s=1

Zs 〈ξs,W ∗xs −Wtxs〉 ≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
d log t

√
log(dK/δ)

K∑

i=1

‖W ∗
t,i −W i

t ‖Mt

≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
dK log t

√
log(dK/δ)‖W ∗ −Wt‖Mt

,

where the final inequality follows from the definition of ‖W ∗ −Wt‖Mt
and the fact

∑K
i=1 ai ≤

√
K
√∑K

i=1 a
2
i for

ai ≥ 0. Plugging the above inequality in our earlier bound (20), we have shown that with probability at least
1− δ

γℓ‖Wt −W ∗‖2Mt
≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
dK log t

√
log(dK/δ)‖W ∗ −Wt‖Mt

+ 2γω2.

We can now solve the quadratic inequality to obtain a high probability upper bound on ‖Wt−W ∗‖. Rearranging
terms, and taking another union bound over the rounds t = 1, 2, . . . , T completes the proof.
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We conclude the section with a technical lemma which is in a similar vein as Proposition 1, and will be needed
for some of our following proofs.

Lemma 2. Under conditions of Theorem 1, with probability at least 1− 4δ log T for some 0 < δ < 1/e and for
T ≥ 3, we have

T∑

t=1

Zt‖Wtxt −W ∗xt‖22 ≤ 8d(γℓ + γ)

γ2ℓ γ
log

(
R2γℓT

γ
+ 1

)
+

112Rω

γ2ℓ
log

1

δ
.

The key difference between the lemma and Proposition 1 is that the proposition gives a bound on the error
in weight matrices, which immediately allows us to bound the error in predictions on any future data point.
In contrast, Lemma 2 only concerns with bounding the sums of errors in predictions over the data points the
algorithm actually queries. However, doing so allows us to get bounds that are sharper in factors of d and K in
some applications of the result. The proof of this lemma is somewhat involved, and is deferred until the end.
For now, we proceed with proving our main theorems, which requires a better understanding of the regret (14).

B.2. A useful regret decomposition

In the following results, we assume that both the above high-probability upper bounds hold deterministically,
and bound the probability of error at the very end. We will now present a series of lemmas that provide
a decomposition for the multiclass classification loss. The results can be seen as analogues of previous such
decompositions in the binary case (Cesa-Bianchi et al., 2009; Dekel et al., 2010), but the techniques involved are
somewhat different in the multiclass setting. Before stating the results, we recall our earlier definitions (10). We
also recall the definition of the σ-field Ft = σ{x1, . . . , xt, ys : 1 ≤ s < t, Zs = 1}. Our results will involve the
previously definition notation Tǫ (15).

Lemma 3. For any ǫ ∈ [0, 1], we have the following

T∑

t=1

(E[C(y, ŷt) | Ft]− E[C(y, y∗t ) | Ft]) = ǫTǫ + T 1
T,ǫ + T 2

T,ǫ,

where

T 1
T,ǫ =

T∑

t=1

(1− Zt)11 {Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} (Sxt

W∗(y
∗
t )− Sxr

W∗(ŷt)), and

T 2
T,ǫ =

T∑

t=1

Zt11 {Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} (Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt)) (21)

Proof. From the definition (6), we see that the regret in the expected costs is directly linked with the score
function since

T∑

t=1

(E[C(y, ŷt) | Ft]− E[C(y, y∗t ) | Ft]) =
T∑

t=1

Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt).

Here we used the fact that
∑K
i=1(∇Φ(W ∗x))i = 1, so that the additive term Cmax in the definition of

score function cancels in the definition of the regret. We now break up our analysis over the rounds where
0 < Sxt

W∗(y∗t )− Sxt

W∗(ŷt) ≤ ǫ and where it is greater than ǫ. On the first case, the expected regret is clearly at
most ǫ. Furthermore, the number of such rounds is at most Tǫ. This is because either we have S

xt

W∗(ŷt) = Sxt

W∗(y∗t ),
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in which case we incur no regret or we should have Sxt

W∗(ŷt) ≥ Sxt

W∗(y
′

t). Hence, we are guaranteed to have the

scores of y
′

t and y
∗
t within ǫ if the scores of ŷt and y

∗
t are unequal but within ǫ. Recalling the definition (15), this

yields the first term in our decomposition.

The second and third terms result simply from further breaking our analysis over rounds where we do not query
and query respectively. This completes the proof of the lemma.

We next tackle T 2
T,ǫ in our decomposition above. This term is incurred on the rounds where we make queries,

and will be identical for all of our query rules. The impact of the specific query rules is only on T 1
T,ǫ, that is on

guaranteeing small regret on rounds where we do not query. Recall that we are still assuming that the bound of
Lemma 2 holds deterministically in this lemma.

Lemma 4.

T 2
T,ǫ ≤

32σ2(C)γ2u(γℓ + γ)

γ2ℓ γǫ
d log

(
R2γℓT

γ
+ 1

)
+

448γ2uσ
2(C)

γ2ℓ ǫ
log

1

δ
.

Proof. We begin by observing that under the conditions of the decomposition, we have that

T 2
T,ǫ =

T∑

t=1

Zt11 {Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} (Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt))

≤
T∑

t=1

Zt
(Sxt

W∗(y∗t )− Sxt

W∗(ŷt))
2

ǫ
.

Furthermore, by the definitions (10), we have that

Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t ) ≥ 0.

Hence, we can conclude that

0 ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) + Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t ).

Since both sides are non-negative, we can square to futher obtain

(Sxt

W∗(y∗t )− Sxt

W∗(ŷt))
2

ǫ

≤

(
Sxt

W∗(y∗t )− Sxt

W∗(ŷt) + Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t )
)2

ǫ

≤ 2
(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
+ 2

(Sxt

W∗(ŷt)− Sxt

W
t

(ŷt))
2

ǫ
. (22)

We focus on the first term above, since the treatment for the second is identical. To do so, we now unwrap the
definition of the score function and observe that

(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
=

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)(Cmax − C(j, y∗t ))

)2

ǫ

=

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)(−C(j, y∗t ))

)2

ǫ
,
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where the second equality follows since
∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j) = 0. To proceed further, we recall

our earlier notation C̄i =
∑K
j=1 C(j, i)/K. Since the above inequality is invariant to any translation of the costs

involving class y∗t by a constant independent, of j, we further obtain

(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
=

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)(C̄y∗t − C(j, y∗t ))

)2

ǫ

≤

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)

2
)(∑K

j=1(C̄y∗t − C(j, y∗t ))
2
)

ǫ
,

where the inequality is a consequence of Cauchy-Shwartz inequality. We can further use Lipschitz continuity of
∇Φ to obtain

(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
≤ γ2u

ǫ
‖W ∗xt −Wtxt‖22‖C̄y∗t − Cy∗

t
‖22

≤ γ2u
ǫ

‖W ∗xt −Wtxt‖22σ2(C),

where we obtain the last step by recalling the definition (16) of σ2(C). Since the same bound also holds for the
differences in scores on ŷt, we can plug the above bound into our earlier inequality (22) and obtain

(Sxt

W∗(y∗t )− Sxt

W∗(ŷt))
2

ǫ
≤ 4

γ2uσ
2(C)

ǫ
‖W ∗xt −Wtxt‖22.

Summing the bound over all the queried rounds and invoking Lemma 2 completes the proof.

B.3. Proofs of Theorems 1 and 2

We are now in a position to prove our main results. In both the theorems, it only remains to control the term
T 1
T,ǫ given our work so far. As we will see, both the query criteria BBQǫ and DGS are designed so that this term

will actually be zero. The second part of the proof consists of bounding the number of queries. This turns out
to be rather straightforward for the BBQǫ rule, but significantly more involved for the DGS rule.

Proof of Theorem 1 We focus on the regret, which requires us to understand T 1
T,ǫ. To this end, we note

that from the proof of Lemma 4, we have

Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt)− Sxt

W
t

(y∗t ) + Sxt

W
t

(ŷt)

=

K∑

j=1

(C̄y∗
t
− C(j, y∗t ))((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)

−
K∑

j=1

(C̄ŷt − C(j, ŷt))((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)

≤ 2σ(C) γu‖Wtxt −W ∗xt‖2.

For the BBQǫ query criterion, the above term is at most ǫ when we do not query the label yt. Consequently, we
incur regret only if Sxt

W∗(y∗t )− Sxt

W∗(ŷt) ≤ ǫ. Since this quantity is guaranteed to be at least ǫ on the summands
in T 1

T,ǫ, we see that either Zt = 0 or the indicator of the event in T 1
T,ǫ is zero. As a result, T 1

T,ǫ = 0, which
completes the proof of the regret bound.
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As for the bound on the number of queries, proceed similarly as the earlier analysis of Cesa-Bianchi et
al. (Cesa-Bianchi et al., 2009). We observe that by the query condition, we have

NT =
∑

t : 4σ2(C)γ2
u
θ2
t
‖xt‖2

M
−1
t

≥ǫ2

1 ≤
∑

t : 4σ2(C)γ2
u
θ2
t
‖xt‖2

M
−1
t

≥ǫ2

4σ2(C)γ2uθ
2
t ‖xt‖2M−1

t

ǫ2

≤ 4σ2(C)γ2uθ
2
T

ǫ2

T∑

t=1

Zt‖xt‖2M−1
t

.

Further applying Lemma 5 from the appendix completes the proof of the theorem.

We now establish the result for the DGS selection rule

Proof of Theorem 2 The proof relies on the following observation which is a consequence of the definition (6)
and the Lipschitz continuity of the mapping ∇Φ from Assumption 2

|Sxt

W∗(i)− Sxt

W
t

(i)| ≤ σ(C)γu ‖Wtxt −W ∗xt‖2 ≤ σ(C)γu ‖Wt −W ∗‖Mt
‖xt‖M−1

t

, (23)

for all i = 1, 2, . . . ,K. Now let us suppose that on a round t, we have that Sxt

W∗(ŷt) < Sxt

W∗(y∗t ). Then using the
above bound, we see that

0 > Sxt

W∗(ŷt)− Sxt

W∗(y
∗
t ) ≥ Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t )− 2σ(C)γu ‖Wt −W ∗‖Mt
‖xt‖M−1

t

≥ Sxt

W
t

(ŷt)− Sxt

W
t

(y
′′

t )− 2σ(C)γu ‖Wt −W ∗‖Mt
‖xt‖M−1

t

≥ 0,

on the rounds where we do not query. Hence, we have a contradiction unless Sxt

W∗(ŷt) − Sxt

W∗(y∗t ) ≤ 0 on the
rounds where we do not query, meaning that T 1

T,ǫ is zero once again. This completes the proof of the regret
bound.

The proof of the query bound is a little more involved in this case. We break up our analysis over the cases
where ŷt = y∗t and the ones where they disagree. Starting with the latter, we see that for any ǫ > 0 we have

T∑

t=1

Zt11 {ŷt 6= y∗t } =

T∑

t=1

Zt (11 {ŷt 6= y∗t , (S
xt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≤ ǫ}

+ 11 {ŷt 6= y∗t , S
xt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ})

≤
T∑

t=1

Zt11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}

+

T∑

t=1

Zt11 {ŷt 6= y∗t , S
xt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} . (24)

We focus on controlling the second sum, which can be done by invoking Equation 23 twice, once with i = y∗t and
once with i = ŷt. Since S

xt

W
t

(ŷt) ≥ Sxt

W
t

(y∗t ), we obtain the upper bound

Sxt

W∗(ŷt) ≤ Sxt

W∗(y
∗
t ) ≤ Sxt

W∗(ŷt) + 2σ(C)γuθt‖xt‖M−1
t

. (25)

Combining this with our earlier upper bound (24), we further obtain
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T∑

t=1

Zt11 {ŷt 6= y∗t } ≤
T∑

t=1

11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11
{
ŷt 6= y∗t , 2σ(C)γuθt‖xt‖M−1

t

≥ ǫ
}

≤
T∑

t=1

11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt 6= y∗t }
4σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2
. (26)

We now analyze the other case where ŷt = y∗t . In this case, our query condition guarantees that

T∑

t=1

Zt11 {ŷt = y∗t } =

T∑

t=1

11
{
ŷt = y∗t , S

xt

W
t

(ŷt)− Sxt

W
t

(y
′′

t ) ≤ 2σ(C)γu θt‖xt‖M−1
t

}

=

T∑

t=1

Zt11
{
ŷt = y∗t , S

xt

W
t

(y∗t )− Sxt

W
t

(y
′′

t ) ≤ 2σ(C)γu θt‖xt‖M−1
t

}

(∗)

≤
T∑

t=1

Zt11
{
ŷt = y∗t , S

xt

W
t

(y∗t )− Sxt

W
t

(y
′′

t ) ≤ 4σ(C)γu θt‖xt‖M−1
t

}

≤
T∑

t=1

Zt11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ 4σ(C)γu θt‖xt‖M−1
t

}

≤
T∑

t=1

11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}

+

T∑

t=1

Zt11
{
ŷt = y∗t , ǫ ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ 4σ(C)γu θt‖xt‖M−1
t

}

≤
T∑

t=1

11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− St

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt = y∗t }
16σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2
.

In the above display, the inequality (∗) follows from using Proposition 1 to establish the closeness of Sxt

W
t

(i) and

Sxt

W∗(i) for i = y∗t and i = y
′

t. Adding this to our earlier bound (26), we obtain the bound on the number of
queries as

NT =
T∑

t=1

Zt =
T∑

t=1

Zt11 {ŷt 6= y∗t }+
T∑

t=1

Zt11 {ŷt = y∗t }

≤
T∑

t=1

11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt 6= y∗t }
4σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2

+
T∑

t=1

11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt = y∗t }
16σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2

≤ Tǫ +

T∑

t=1

Zt
16γ2uθ

2
t ‖xt‖2M−1

t

ǫ2
.

Finally, invoking Lemma 5 completes the proof.



Selective sampling algorithms for cost-sensitive multiclass prediction

C. Proof of Lemma 1

Proof of Lemma 1

The proof follows almost directly from the definitions. Suppose we were to predict a class i for a given data
point i. Recalling our notation Cmax = maxa,b C(a, b), the expected loss incurred is

K∑

j=1

P(Y = j | x)C(j, i) =
K∑

j=1

(∇Φ(W ∗x))jC(j, i) =

K∑

j=1

(∇Φ(W ∗x))j(C(j, i)− Cmax) + Cmax,

where the last equality follows since
∑
j(∇Φ(W ∗x))j = 1. The above quantity is easily seen to be Cmax−SxW∗(i).

Hence, picking the class maximizing SxW∗ minimizes the expected loss pointwise, meaning that it is the Bayes
optimal prediction.

D. Auxiliary results for Theorems 1 and 2

In this appendix, we collect many auxiliary technical results and proofs that are used throughout the paper in
our proofs.

D.1. Sums of quadratic forms

We start with a simple lemma. The lemma is an adaptation of Lemma 11 in Hazan et al. (2007). Our statement
is slightly different since our matrices are off by one time index, as opposed to theirs.

Lemma 5.
T∑

t=1

Zt‖xt‖2M−1
t

≤ γℓ + γ

γ
d log

(
R2γℓT

γ
+ 1

)

Proof. The proof is a slight adaptation of Lemma 11 from Hazan et al. (2007). Note that invoking Lemma 11
from that paper, we can conclude that

T∑

t=1

Zt‖xt‖2M−1
t+1

≤ d log

(
R2γℓT

γ
+ 1

)
.

Also observe that using the Sherman-Morrison-Woodbury matrix identity, we have that

Zt‖xt‖2M−1
t+1

= Ztx
T
t M

−1
t+1xt

= (Ztxt)
T (Mt + Ztxtx

T
t )

−1(Ztxt)

= Zt‖xt‖2M−1
t

− Ztx
T
t

(
M−1
t xtx

T
t M

−1
t

1 + xTt M
−1
t xt

)
xt

= Zt

(
‖xt‖2M−1

t

−
‖xt‖4M−1

t

1 + ‖xt‖2M−1
t

)

= Zt
‖xt‖2M−1

t

1 + ‖xt‖2M−1
t

.

Rearranging terms, we obtain
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Zt‖xt‖2M−1
t

= Zt

‖xt‖2M−1
t+1

1− ‖xt‖2M−1
t+1

≤ Zt
γℓ + γ

γ
‖xt‖2M−1

t+1

.

Here the last inequality follows since Zt‖xt‖2M−1
t+1

≤ 1
1+γ/γℓ

. Combining these facts yields the statement of the

lemma.

D.2. Proof of Lemma 2

In order to prove the lemma, we will need a couple of additional technical results that we state next. The first
is a martingale convergence result, which will allow us to relate the LHS of Lemma 2 with the surrogate loss 4
incurred by our algorithm. The next result bounds precisely this surrogate loss. We begin with the martingale
result.

Lemma 6. Suppose that the labels are generated according to the probabilistic model (1) and Assumption 3 holds.
Then for any 0 < δ < 1/e and T ≥ 3, with probability at least 1− 4δ log(T ) we have the following bound

T∑

t=1

ZtDΦ(Wtxt,W
∗xt) ≤ 2

T∑

t=1

Zt(ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt)) +
56Rω

γℓ
log

1

δ
.

The next lemma concerns the surrogate loss regret of the update rule (9). In terms of the online learning
literature, the update rule is what is often called the follow the leader strategy. While the proof technique
for bounding the regret of this strategy under our assumptions is quite standard (Kalai & Vempala, 2005), we
include a proof for completeness.

Lemma 7.
T∑

t=1

Zt(ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt))) ≤
4(1 + γ) d

γℓγ
log

(
R2γℓT

γ
+ 1

)

We now prove Lemma 2 using the above results. We provide the proofs of Lemma 6 and 7 following that.

Proof of Lemma 2 The proof proceeds by relating the squared deviation ‖W ∗xt −Wtxt‖22 to the Bregman
divergence of the function Φ under Assumptions 1 and 2. For a convex function f , the Bregman divergence,
denoted by Df (u, v) is the difference between the function f and its first-order Taylor approximation. More
formally,

Df (u, v) = f(u)− f(v)− 〈∇f(v), u− v〉 .

It is easily seen that Assumptions 1 and 2 correspond to quadratic lower and upper bounds respectively on the
Bregman divergence of Φ. That is,

γℓ
2
‖u− v‖22 ≤ DΦ(u, v) ≤

γu
2
‖u− v‖22, for all u, v ∈ S. (27)

In our current context, we use Assumption 1 to conclude

T∑

t=1

Zt‖W ∗xt −Wtxt‖22 ≤ 2

γℓ

T∑

t=1

ZtDΦ(Wtxt,W
∗xt)
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The above inequality allows us to invoke Lemmas 6 and 7 in turn which completes the proof.

Proof of Lemma 6 Consider the random variable

νt = Zt [DΦ(Wtxt,W
∗xt)− (ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt)))] .

In order for our proof, it will be convenient to work with the simplified form of the random variable obtained by
using the definition (4) of the loss function.

νt = Zt [DΦ(Wtxt,W
∗xt)− (ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt)))]

= Zt
[
DΦ(Wtxt,W

∗xt)− (Φ(Wtxt)− yTt Wtxt − Φ(W ∗xt)− yTt W
∗xt)

]

= Zt
[
Φ(Wtxt)− Φ(W ∗xt)− 〈∇Φ(W ∗xt),Wtxt −W ∗xt〉 − (Φ(Wtxt)− yTt Wtxt − Φ(W ∗xt)− yTt W

∗xt)
]

= Zt 〈yt −∇Φ(W ∗xt),Wtxt −W ∗xt〉 . (28)

Here the second equality uses the definition of the Bregman divergence. Now recalling our earlier definition of
the σ-fields Ft, it is clear that νt is measurable with respect to Ft+1. Furthermore, its conditional expectation
conditioned on Ft is zero, since Wt, Zt and xt are measurable with respect to Ft and E[yt | Ft] = ∇Φ(W ∗xt).
Hence the sequence νt is a martingale difference sequence with respect to the filtration Ft. In order to prove
the lemma, we just need to show that this sequence concentrates around its expectation. We do so by appealing
to a form of Freedman’s inequality (Freedman, 1975) presented in Kakade & Tewari (2009). In order to use the
result, we need bounds on the value and the conditional variance of the random variable νt. We start with the
bound on the value. Based on Equation 28, we have

|νt| ≤ | 〈yt −∇Φ(W ∗xt),Wtxt −W ∗xt〉 |
≤ ‖yt −∇Φ(W ∗xt)‖1‖Wtxt −W ∗xt‖∞
≤ 2(2Rω).

Here the last inequality follows since yt is a canonical basis vector, ∇Φ(W ∗xt) is a probability distribution over
R
K and xTt W

i
t as well as x

T
t W

∗
i are bounded by Rω for i = 1, 2, . . . ,K by Assumption 3. Hence we have obtained

the upper bound

|νt| ≤ 4Rω. (29)

Reasoning similarly for the conditional variance, we observe that

E[ν2t | Ft] ≤ ZtE
[
〈yt −∇Φ(W ∗xt),Wtxt −W ∗xt〉2 | Ft

]

≤ 4Zt‖Wtxt −W ∗xt‖2∞
≤ 4Zt‖Wtxt −W ∗xt‖22
≤ 8

γℓ
ZtDΦ(Wtxt,W

∗xt).

Now we appeal to Lemma 3 of Kakade & Tewari (2009), which yields for any δ < 1/e and T ≥ 3, with probability
at least 1− 4δ log(T )
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T∑

t=1

νt ≤ max



2

√√√√
T∑

t=1

8

γℓ
ZtDΦ(Wtxt,W

∗xt), 12Rω
√
log(1/δ)




√
log(1/δ)

≤ 4

√√√√ 2

γℓ

T∑

t=1

ZtDΦ(Wtxt,W
∗xt) log

1

δ
+ 12Rω log

1

δ

≤ 1

2

T∑

t=1

ZtDΦ(Wtxt,W
∗xt) +

(
12Rω +

16

γℓ

)
log

1

δ
,

where the last inequality follows by Cauchy-Shwartz inequality. Recalling the definition of νt and our assump-
tions that Rω ≥ 1 as well as γℓ ≤ 1 completes the proof.

Proof of Lemma 7 We follow the proof technique, which is an inductive argument introduced
by Kalai & Vempala (2005). The proof reasons via an auxiliary sequence of fictitious iterates:

W̃t+1 = arg min
W∈W

{
t+1∑

s=1

Zsℓ(Wxs, ys) + γ‖W‖2F

}
. (30)

The main idea is that W̃t is an iterate sequence which cannot be played by the algorithm, since it relies on the
unknown data point (xt, yt). However, it turns out that our iterates Wt are not too different from W̃t, and the
sequence W̃t has a low regret since it can see the data point (xt, yt) at which the regret is measured. The second
claim can be found, for example, in Lemma 2.1 of Shalev-Shwartz (2012). That is, we are guaranteed that

T∑

t=1

Zt(ℓ(W̃t; (xt, yt))− ℓ(W ∗; (xt, yt))) ≤ 0.

Hence we focus on showing the closeness of the two sequences. Taking the optimality conditions for Wt and W̃t,
we see that

〈
t−1∑

s=1

Zs(∇Φ(Wtxs)
Txs − yTs xs) + γWt, W̃t −Wt

〉
≥ 0

〈
t∑

s=1

Zs(∇Φ(W̃txs)
Txs − yTs xs) + γW̃t,Wt − W̃t

〉
≥ 0.

Adding the two inequalities, and rearranging we obtain

t−1∑

s=1

Zs

〈
∇Φ(Wtxs)−∇Φ(W̃txs), W̃txs −Wtxs

〉
+ Zt

〈
∇Φ(W̃txt)− yt,Wtxt − W̃txt

〉
− γ‖Wt − W̃t‖2F ≥ 0.

By Assumption 2, the above inequality further yields

Zt

〈
∇Φ(W̃txt)− yt,Wtxt − W̃txt

〉
≥ γℓ Zs

t−1∑

s=1

‖W̃txs −Wtxs‖22 + γ‖Wt − W̃t‖2F

= γℓ ‖Wt − W̃t‖M2
t
,
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where the last line uses the definition (7) ofMt. On the other hand, since ∇Φ(W̃txt) is a probability distribution
over RK and yt is a canonical basis vector, we can also conclude

〈
∇Φ(W̃txt)− yt,Wtxt − W̃txt

〉
≤ ‖∇Φ(W̃txt)− yt‖1‖Wtxt − W̃txt‖∞
≤ 2‖Wtxt − W̃txt‖2
≤ 2‖Wt − W̃t‖Mt

‖xt‖M−1
t

.

Combining the above two displays finally yields the desired inequality

‖Wt − W̃t‖Mt
≤ 2Zt

γℓ
‖xt‖M−1

t

.

We are almost done now. All we need is to bound the difference between the regret of Wt and W̃t by using the
above inequality. This will be done by exploiting the Lipschitz property of our loss function. We observe that
we have

T∑

t=1

Zt(ℓ(Wt; (xt, yt))− ℓ(W̃t; (xt, yt))) =

T∑

t=1

Zt(Φ(Wtxt)− yTt Wtxt − Φ(W̃txt)− yTt W̃txt)

≤
T∑

t=1

Zt

〈
∇Φ(Wtxt)

Txt − yTt xt,Wt − W̃t

〉

=

T∑

t=1

Zt

〈
∇Φ(Wtxt)− yt,Wtxt − W̃txt

〉

≤
T∑

t=1

Zt 2‖Wtxt − W̃txt‖2

≤
T∑

t=1

4Zt
γℓ

‖xt‖2M−1
t

.

Appealing to Lemma 5 completes the proof.


