
Thompson Sampling for Contextual Bandits with Linear Payoffs

A. Theorem 1: Single parameter
setting

A.1. Posterior distribution computation

Pr(µ̃|ri(t))
∝ Pr(ri(t)|µ̃) Pr(µ̃)

∝ exp{− 1

2v2
((ri(t)− µ̃T bi(t))2

+(µ̃− µ̂(t))TB(t)(µ̃− µ̂(t))}

∝ exp{− 1

2v2
(ri(t)

2 + µ̃T bi(t)bi(t)
T µ̃

+µ̃TB(t)µ̃− 2µ̃T bi(t)ri(t)− 2µ̃TB(t)µ̂(t))}

∝ exp{− 1

2v2
(µ̃TB(t+ 1)µ̃− 2µ̃TB(t+ 1)µ̂(t+ 1))}

∝ exp{− 1

2v2
(µ̃− µ̂(t+ 1))TB(t+ 1)(µ̃− µ̂(t+ 1))}

∝ N (µ̂(t+ 1), v2B(t+ 1)
−1

).

Therefore, the posterior distribution of µ at time t+ 1
is N (µ̂(t+ 1), v2B(t+ 1)

−1
).

A.2. Some concentration inequalities

Formula 7.1.13 from Abramowitz & Stegun (1964)
can be used to derive the following concentration
and anti-concentration inequalities for Gaussian dis-
tributed random variables.

Lemma 5. (Abramowitz & Stegun, 1964) For a Gaus-
sian distributed random variable Z with mean m and
variance σ2, for any z ≥ 1,

1

2
√
πz
e−z

2/2 ≤ Pr(|Z −m| > zσ) ≤ 1√
πz
e−z

2/2.

Definition 9 (Super-martingale). A sequence of ran-
dom variables (Yt; t ≥ 0) is called a super-martingale
corresponding to filtration Ft, if for all t, Yt is Ft-
measurable, and for t ≥ 1,

E [Yt − Yt−1 Ft−1] ≤ 0.

Lemma 6 (Azuma-Hoeffding inequality). If a super-
martingale (Yt; t ≥ 0), corresponding to filtration Ft,
satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all
t = 1, . . . , T , then for any a ≥ 0,

Pr(YT − Y0 ≥ a) ≤ e
− a2

2
∑T
t=1 c

2
t .

The following lemma is implied by Theorem 1 in
Abbasi-Yadkori et al. (2011):

Lemma 7. (Abbasi-Yadkori et al., 2011) Let (F ′t; t ≥
0) be a filtration, (mt; t ≥ 1) be an Rd-valued stochas-
tic process such that mt is (F ′t−1)-measurable, (ηt; t ≥

1) be a real-valued martingale difference process such
that ηt is (F ′t)-measurable. For t ≥ 0, define ξt =∑t
τ=1mτητ and Mt = Id +

∑t
τ=1mτm

T
τ , where Id is

the d-dimensional identity matrix. Assume ηt is con-
ditionally R-sub-Gaussian.

Then, for any δ′ > 0, t ≥ 0, with probability at least
1− δ′,

||ξt||M−1
t
≤ R

√
d ln

(
t+ 1

δ′

)
,

where ||ξt||M−1
t

=
√
ξTt M

−1
t ξt.

A.3. Proof of Lemma 1

Bounding the probability of event Eµ(t): We
use Lemma 7 with mt = ba(t)(t), ηt = ra(t)(t) −
ba(t)(t)

Tµ, F ′t = (a(τ + 1),mτ+1, ητ : τ ≤ t). (Note
that effectively, F ′t has all the information, including
the arms played, until time t+1, except for the reward
of the arm played at time t+ 1). By the definition of
F ′t, mt is F ′t−1-measurable, and ηt is F ′t-measurable.
Also, ηt is conditionally R-sub-Gaussian due to the as-
sumption mentioned in the problem settings (refer to
Section 2.1), and is a martingale difference process:

E
[
ηt|F ′t−1

]
= E[ra(t)(t)|ba(t)(t), a(t)]− ba(t)(t)Tµ = 0.

Also, this makes

Mt = Id +

t∑
τ=1

mτm
T
τ = Id +

t∑
τ=1

ba(τ)(τ)ba(τ)(τ)T ,

ξt =

t∑
τ=1

mτητ =

t∑
τ=1

ba(τ)(τ)(ra(τ) − ba(τ)(τ)Tµ).

Note that B(t) = Mt−1, and µ̂(t)−µ = M−1t−1(ξt−1−µ).
Let for any vector y ∈ R and matrix A ∈ Rd×d, ||y||A
denote

√
yTAy. Then, for all i,

|bi(t)T µ̂(t)− bi(t)Tµ| = |bi(t)TM−1t−1(ξt−1 − µ)| ≤
||bi(t)||M−1

t−1
||ξt−1 − µ||M−1

t−1
=

||bi(t)||B(t)−1 ||ξt−1 − µ||M−1
t−1
.

The inequality holds because M−1t−1 is a positive defi-
nite matrix. Using Lemma 7, for any δ′ > 0, t ≥ 1,
with probability at least 1− δ′,

||ξt−1||M−1
t−1
≤ R

√
d ln

(
t

δ′

)
.

Therefore, ||ξt−1−µ||M−1
t−1
≤ R

√
d ln

(
t
δ′

)
+||µ||M−1

t−1
≤

R
√
d ln

(
T
δ′

)
+ 1. Substituting δ′ = δ

T 2 , we get that
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with probability 1− δ
T 2 , for all i,

|bi(t)T µ̂(t)− bi(t)Tµ|

≤ ||bi(t)||B(t)−1 ·

(
R

√
d ln

(
T

δ′

)
+ 1

)

≤ ||bi(t)||B(t)−1 ·

(
R

√
d ln(T 3) ln(

1

δ
) + 1

)
= `(T ) st,i.

This proves the bound on the probability of Eµ(t).

Bounding the probability of event Eθ(t): For all
i,

|θi(t)− bi(t)T µ̂(t)|
= |bi(t)T µ̃(t)− bi(t)T µ̂(t)|
= |bi(t)TB(t)−1/2B(t)1/2(µ̃(t)− µ̂(t))|

≤ v
√
bi(t)TB(t)−1bi(t) · ||

1

v
B(t)1/2(µ̃(t)− µ̂(t))||2

= vst,i · ||
1

v
B(t)1/2(µ̃(t)− µ̂(t))||2.

Therefore, we can prove the statement of the lemma by
proving that || 1vB(t)1/2(µ̃(t)− µ̂(t))||2 ≤

√
4d ln(Td)

with probability at least 1 − 1
T 2 , given any filtra-

tion Ft−1. Now, given any filtration, by definition
1
v

√
B(t)(µ̃(t)−µ̂(t)) is the d-dimensional standard nor-

mal variable, therefore using concentration of Gaus-
sian random variables (Lemma 5),

Pr

(
||1
v
B(t)1/2(µ̃(t)− µ̂(t))||2 >

√
4d ln(Td)

)
≤ d

1
√
π
√

4 ln(Td)
e−(2 lnTd)

≤ 1

T 2
.

A.4. Proof of Lemma 2

Given event Eµ(t), |ba∗(t)(t)T µ̂(t) − ba∗(t)(t)
Tµ| ≤

`(T )st,a∗(t). And, since Gaussian random variable
θa∗(t)(t) has mean ba∗(t)(t)

T µ̂(t) and standard devi-
ation vst,a∗(t), using anti-concentration inequality in
Lemma 5,

Pr
(
θa∗(t)(t) ≥ ba∗(t)(t)Tµ+ `(T )st,a∗(t) Ft−1

)
= Pr

(
θa∗(t)(t)−ba∗(t)(t)T µ̂(t)

vst,a∗(t)

≥ ba∗(t)(t)
Tµ+`(T )st,a∗(t)−ba∗(t)(t)T µ̂(t)

vst,a∗(t)
Ft−1

)
≥ 1

4
√
π
e−Z

2
t .

Where

|Zt| =

∣∣∣∣∣ba∗(t)(t)Tµ− ba∗(t)(t)T µ̂(t)− `(T )st,a∗(t)

vst,a∗(t)

∣∣∣∣∣
≤

2 (`(T )) st,a∗(t)

vst,a∗(t)

=
2
(
R
√
d ln(T 3) ln( 1

δ ) + 1
)

R
√

24
ε d ln( 1

δ )

≤
√
ε

2
(lnT + 1).

So

Pr
(
θa∗(t)(t) ≥ ba∗(t)(t)Tµ Ft−1

)
≥ 1

4
√
π
e−

ε
2 (lnT+1) =

1

4e
√
πT

ε
2
.

A.5. Missing details from Section 3.2

To derive the inequality
∑T
t=1 st,a(t) ≤ 5

√
dT lnT , we

use the following result, implied by the referred lemma
in Auer (2002).

Lemma 8. (Auer, 2002, Lemma 11). Let A′ =
A + xxT , where x ∈ Rd, A,A′ ∈ Rd×d, and all the
eigenvalues λj , j = 1, . . . , d of A are greater than or
equal to 1. Then, the eigenvalues λ′j , j = 1, . . . , d of
A′ can be arranged so that λj ≤ λ′j for all j, and

xTA−1x ≤ 10

d∑
j=1

λ′j − λj
λj

.

Let λj,t denote the eigenvalues of B(t). Note that
B(t + 1) = B(t) + ba(t)(t)ba(t)(t)

T , and λj,t ≥ 1,∀j.
Therefore, above implies

s2t,a(t) ≤ 10

d∑
j=1

λj,t+1 − λj,t
λj,t

.

This allows us to derive the given inequality after
some algebraic computations following along the lines
of Lemma 3 of Chu et al. (2011).

To obtain bounds for the other definition of regret in
Remark 1, we observe that because E[ri(t)|Ft−1] =
bi(t)

Tµ for all i, the expected value of regret′(t) given
Ft−1 for this definition of regret(t) is same as before.
More precisely, for Ft−1 such that Eµ(t) holds,

E [regret′(t) Ft−1]

= E [regret(t) Ft−1]

= E
[
ra∗(t)(t)− ra(t)(t) Ft−1

]
= E

[
ba∗(t)(t)

Tµ− ba(t)(t)Tµ Ft−1
]
.
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And, E [regret′(t) Ft−1] = 0 for other Ft−1. There-
fore, Lemma 4 holds as it is, and Yt defined in Def-
inition 8 is a super-martingale with respect to this
new definition of regret(t) as well. Now, if |ri(t) −
bi(t)

Tµ| ≤ R, for all i, then |regret′(t)| ≤ 2R and

|Yt − Yt−1| ≤ 6
p
g(T )2

`(T ) + 2R, and we can apply Azuma-

Hoeffding inequality exactly as in the proof of Theorem
1 to obtain regret bounds of the same order as Theo-
rem 1 for the new definition. The results extend to the
more general R-sub-Gaussian condition on ri(t), using
a simple extension of Azuma-Hoeffding inequality; we
omit the proof of that extension.

B. Theorem 3: Modified algorithm

Below is a description of the algorithm for single pa-
rameter setting which, instead of generating a single
µ̃(t) and setting θi(t) as bi(t)

T µ̃(t), as was done in
Algorithm 1, generates θi(t), i = 1, . . . , N as N inde-
pendent samples with the same marginal distributions
as bi(t)

T µ̃(t).

Algorithm 2 Modified Thompson Sampling

Set B = Id, µ̂ = 0d, f = 0d.
for all t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample
θi(t) independently from distribution
N (bi(t)

T µ̂, v2bi(t)
TB−1bi(t)).

Play arm a(t) := arg maxi θi(t) and observe re-
ward rt.
Update B = B + ba(t)(t)ba(t)(t)

T , f = f +
ba(t)(t)rt, µ̂ = B−1f .

end for

In the regret analysis of this algorithm, we will be
able to utilize the independence of the θi(t)’s to bound
the probability of playing saturated arms in terms of
the probability of playing optimal arm (see Lemma
11). In comparison, in the proof of Theorem 1, we
bounded the probability of playing saturated arms in
terms of the probability of playing unsaturated arms
which includes the optimal arm. This difference in the
analysis is the key to our improved regret bound for
this algorithm.

In the proof below, except when explicitly redefined,
notations are as before (refer to notations table in Ap-
pendix A).

Definition 10. Define `(T ) and v as before, but
redfine g(T ) =

√
4 ln(NT ) v + `(T ).

Definition 11. An arm i is called saturated at time
t if ∆i(t) > g(T )st,i, and unsaturated otherwise.
Observe that by definition, a∗(t) is an unsaturated arm
at time t.

Definition 12. Define event Eµ(t) as before, but re-
define Eθ(t) as the event that

∀i, |θi(t)− bi(t)T µ̂(t)| ≤
√

4 ln(NT ) vst,i.

Lemma 9. For all t, 0 < δ < 1, Pr(Eµ(t)) ≥ 1− δ
T 2 .

And, for all possible filtrations Ft−1, Pr(Eθ(t)|Ft−1) ≥
1− 1

T 2 .

Proof. The probability bound for Eµ(t) can be proven
using a concentration inequality given by Abbasi-
Yadkori et al. (2011), as before in the proof of Theorem
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1. The probability bound for Eθ(t) can be proven us-
ing the concentration inequality for Gaussian random
variables from Abramowitz & Stegun (1964) stated as
Lemma 5 in Appendix A.2 .

The next lemma lower bounds the probability that the
sample θa∗(t)(t) for the optimal arm at time t will ex-
ceed ba∗(t)(t)

Tµ.

Lemma 10. For any filtration Ft−1 such that Eµ(t)
is true,

Pr
(
θa∗(t)(t) > ba∗(t)(t)

Tµ Ft−1
)
≥ 1

4e
√
πT ε

.

Proof. Given event Eµ(t), |ba∗(t)(t)T µ̂(t) −
ba∗(t)(t)

Tµ| ≤ (`(T )) st,a∗(t). And, since Gaussian
random variable θa∗(t)(t) has mean ba∗(t)(t)

T µ̂(t) and
standard deviation vst,a∗(t), using anti-concentration
inequality in Lemma 5,

Pr
(
θa∗(t)(t) ≥ ba∗(t)(t)Tµ Ft−1

)
= Pr

(
θa∗(t)(t)−ba∗(t)(t)T µ̂(t)

vst,a∗(t)

≥ ba∗(t)(t)
Tµ−ba∗(t)(t)T µ̂(t)
vst,a∗(t)

Ft−1
)

≥ 1
4
√
π
e−Z

2
t .

Where

|Zt| =
∣∣∣ ba∗(t)(t)Tµ−ba∗(t)(t)T µ̂(t)vst,a∗(t)

∣∣∣
≤ `(T )st,a∗(t)

vst,a∗(t)

=

(
R
√
d ln(T 3) ln( 1

δ )+1
)

R
√

24
ε d ln(

1
δ )

≤
√

ε
2 (lnT + 1).

So

Pr
(
θa∗(t)(t) ≥ ba∗(t)(t)Tµ Ft−1

)
≥ 1

4
√
π
e−

ε
2 (lnT+1) =

1

4e
√
πT

ε
2
.

The following lemma bounds the probability of playing
a saturated arm in terms of the probability of playing
the optimal arm.

Lemma 11. Given any filtration Ft−1 such that Eµ(t)
is true,

Pr (a(t) ∈ C(t) Ft−1) ≤
1
p Pr (a(t) = a∗(t) Ft−1) + 1

pT 2 ,

where p = 1
4e
√
πT ε

.

Proof.

Pr (a(t) = a∗(t) Ft−1)

= Pr
(
θa∗(t)(t) ≥ θj(t),∀j 6= a∗(t) Ft−1

)
≥ Pr

(
∃i ∈ C(t), θa∗(t)(t) ≥ θi(t),
θi(t) ≥ θj(t),∀j 6= a∗(t) Ft−1)

≥ Pr
(
θa∗(t)(t) ≥ ba∗(t)(t)Tµ,
∃i ∈ C(t), θi(t) ≥ θj(t),∀j 6= a∗(t) Ft−1)

−Pr
(
θi(t) > ba∗(t)(t)

Tµ,∃i ∈ C(t) Ft−1
)

= Pr
(
θa∗(t)(t) ≥ ba∗(t)(t)Tµ

)
·Pr (∃i ∈ C(t), θi(t) ≥ θj(t),∀j 6= a∗(t) Ft−1)

−Pr
(
θi(t) > ba∗(t)(t)

Tµ,∃i ∈ C(t) Ft−1
)

≥ p · Pr (a(t) ∈ C(t) Ft−1)− Pr
(
Eθ(t) Ft−1

)
≥ p · Pr (a(t) ∈ C(t) Ft−1)− 1

T 2
.

The second equality follows from the independence
of θ1(t), . . . , θN (t) given Ft−1. This independence
holds because given the current distributions, which
are fixed on fixing the filtration Ft−1, the algorithms
samples θ1(t), . . . , θN (t) are independently from their
respective distributions. In the second last inequality,
for the first term we used the lower bound provided
by Lemma 10. For the second term, we used the ob-
servation that if Eθ(t) and Eµ(t) are true, then by the
definition of these events and the definition of satu-
rated arms, it holds that

∀i ∈ C(t), θi(t) ≤ bi(t)Tµ+ g(T )st,i ≤
bi(t)

Tµ+ ∆i(t) = ba∗(t)(t)
Tµ.

Therefore, given an Ft−1 such that Eµ(t) is true, θi(t)
for some saturated arm i can be larger than ba∗(t)(t)

Tµ

only if Eθ(t) is false.

Next, we establish a super-martingale process that will
form the basis of our proof of the high-probability re-
gret bound.

Definition 13. Let

Xt :=
regret′(t)

g(T )
−1

p
I(a(t) = a∗(t))st,a∗(t)−st,a(t)−

2

pT 2
,

Yt :=
∑t
w=1Xw,

where p = 1
4e
√
πT ε

.

Lemma 12. (Yt; t = 0, . . . , T ) is a super-martingale
process with respect to filtration Ft.

Proof. We need to prove that for all t ∈ [1, T ], and any
Ft−1, E[Yt − Yt−1|Ft−1] ≤ 0, i.e.
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1
g(T )E[regret′(t)|Ft−1] ≤

Pr(a(t)=a∗(t) Ft−1)
p st,a∗(t) + E

[
st,a(t) Ft−1

]
+ 2

pT 2 .

If Ft−1 is such that Eµ(t) is not true, then regret′(t) =
regret(t) ·I(Eµ(t)) = 0, and the above inequality holds
trivially. So, we consider Ft−1 such that Eµ(t) holds.

We observe that if the events Eµ(t), Eθ(t) are true,
then ∆a(t)(t) ≤ g(T )(st,a(t) + st,a∗(t)). This is because
if an arm i is played at time t, then it must be true
that θi(t) ≥ θa∗(t)(t). And, if Eθ(t) and Eµ(t) are
true, then,

bi(t)
Tµ ≥ θi(t)− g(T )st,i

≥ θa∗(t)(t)− g(T )st,i

≥ ba∗(t)(t)
Tµ− g(T )st,a∗(t) − g(T )st,i.

Therefore, given a filtration Ft−1 such that Eµ(t) is
true, either ∆a(t)(t) ≤ g(T )(st,a(t) + st,a∗(t)) or Eθ(t)
is false. Also, by the definition of unsaturated arms,
for every unsaturated arm i, ∆i(t) ≤ g(T )st,i. Using
these observations,

E [regret′(t) Ft−1]

= E
[
∆a(t)(t)I(a(t) ∈ C(t)) Ft−1

]
+E

[
∆a(t)(t)I(a(t) /∈ C(t)) Ft−1

]
≤ g(T )E

[
(st,a∗(t) + st,a(t))I(a(t) ∈ C(t)) Ft−1

]
+ Pr

(
Eθ(t) Ft−1

)
+g(T )E

[
st,a(t)I(a(t) /∈ C(t)) Ft−1

]
≤ g(T )st,a∗(t) Pr (a(t) ∈ C(t) Ft−1)

+ 1
T 2 + g(T )E

[
st,a(t) Ft−1

]
≤ g(T )st,a∗(t) · 1p Pr (a(t) = a∗(t) Ft−1) + g(T ) 2

pT 2

+g(T )E
[
st,a(t) Ft−1

]
.

The last inequality uses Lemma 11. In the first and the
last inequality, we also used that for all i, ∆i(t) ≤ 1,
and 0 ≤ st,a∗(t) ≤ ||ba∗(t)(t)|| ≤ 1.

Now, we are ready to prove Theorem 3.

B.1. Proof of Theorem 3

We observe that the absolute value of the first three
terms in the definition of Xt bounded by 1/p, and
the last term is bounded by 2/p, therefore the super-
martingale Yt has bounded difference |Yt − Yt−1| ≤ 5

p ,
for all t ≥ 1, and thus apply Azuma-Hoeffding inequal-
ity, to obtain that with probability 1− δ

2 ,

∑T
t=1

1
g(T ) regret′(t)

≤
∑T
t=1

(
1
pI(a(t) = a∗(t))st,a∗(t) + st,a(t) + 2

pT 2

)
+ 5
p

√
2T ln(2/δ)

= 1
p

∑T
t=1 st,a(t) +

∑T
t=1 st,a(t) + 2

pT + 5
p

√
2T ln( 2

δ )

= O(
√
T 1+εd lnT +

√
T 1+ε ln 1

δ ).

Here, we used that
∑T
t=1 st,a(t) ≤ 5

√
dT lnT , which

can be derived along the lines of Lemma 3 of Chu
et al. (2011) using Lemma 11 of Auer (2002). Also,
because Eµ(t) holds for all t with probability at least
1 − δ

2 (Lemma 9), regret′(t) = regret(t) for all t with

probability at least 1− δ
2 . Hence, with probability 1−δ,

R(T ) =
∑T
t=1 regret(t) =

∑T
t=1 regret′(t) =(

d
√

T 1+ε ln(N)
ε ln(T ) ln( 1

δ ).

)
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C. Theorem 2: N different parameters

Theorem 2 considers the setting where each arm i is
associated with a parameter µi ∈ Rd, where possibly
µi 6= µi′ for two different arms i and i′. In this case,
Thompson Sampling would maintain a separate esti-
mate of mean µ̂i(t), and Bi(t) for each arm i which
would be updated only at the time instances when i is
played. We appropriately modify some of the previous
definitions:

Bi(t) = Id +

t−1∑
τ=1:a(τ)=i

bi(τ)bi(τ)T ,

µ̂i(t) = Bi(t)
−1

 t−1∑
τ=1:a(τ)=i

bi(τ)ri(τ)

 ,

st,i =
√
bi(t)TBi(t)−1bi(t).

The posterior distribution for each arm i at time t
would be N (bi(t)

T µ̂i(t), v
2 bi(t)

TBi(t)
−1bi(t)). And,

the TS algorithm is now stated as follows.

Algorithm 3 Thompson Sampling for Contextual
bandits with N parameters

Set Bi = Id, µ̂i = 0d, i = 1, . . . , N , fi = 0d.
for t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample
θi(t) independently from distribution
N (bi(t)

T µ̂i, v
2 bi(t)

TB−1i bi(t)).
Play arm a(t) := arg maxi θi(t) and observe re-
ward rt.
Update Ba(t) = Ba(t) + ba(t)(t)ba(t)(t)

T , fa(t) =

fa(t) + ba(t)(t)rt, µ̂a(t) = B−1a(t)fa(t).

end for

The optimal arm a∗(t) is now the arm that maximizes
bi(t)

Tµi, and the regret at time t is defined as

regret(t) = ba∗(t)(t)
Tµa∗(t) − ba(t)(t)Tµa(t).

The regret analysis closely follows the proof of Theo-
rem 3, described in the previous section. Below, we
describe only the changes required.

The events Eµ(t) will now be defined with respect
to concentration of all µ̂i(t) around their respective
means. That is,

Eµ(t) : ∀i, bi(t)T µ̂i(t) ∈
[bi(t)

Tµi − (`(T )) st,i, bi(t)
Tµi + (`(T )) st,i].

Similarly, Eθ(t) will be the event that

∀i, θi(t) ∈ [bi(t)
T µ̂i(t)−√

4 ln(NT ) vst,i, bi(t)
T µ̂i(t) +

√
4 ln(NT ) vst,i].

It is easy to observe that the statements of Lemma
9 and the super-martingale property established by
Lemma 12 will hold as it is for these new defini-
tions. The only difference will appear in the bound
for
∑
t st,a(t) used in the proof of Theorem 3. For the

case of N different parameters, we will get a bound of
O(
√
NTd lnT ) on this quantity.

Let ni(T ) be the number of times arm i is played by
time T . Then using Lemma 8, for any two consecutive
time steps t, t′ at which arm i is played,

s2t,a(t) ≤ 10

d∑
j=1

λj,t′ − λj,t
λj,t

.

This allows us to derive the following lemma along the
lines of Lemma 3 of Chu et al. (2011).

Lemma 13. (Chu et al., 2011, Lemma 3) For i =
1, . . . , N ,

T∑
t=1:a(t)=i

st,a(t) ≤ 5
√
dni(T ) ln(ni(T )).

Using the above lemma,

T∑
t=1

st,a(t) =

N∑
i=1

T∑
t=1:a(t)=i

st,a(t)

≤
N∑
i=1

5
√
ni(T )d lnT

≤ 5
√
N

√∑
i

ni(T )
√
d lnT

= 5
√
NTd lnT .

Therefore, following the same lines as proof of Theo-

rem 3, we will get a regret bound of Õ(d
√

NT 1+ε

ε ).

D. Conclusions

We provided a theoretical analysis of Thompson Sam-
pling for the stochastic contextual bandits problem
with linear payoffs. Our results resolve some open
questions regarding the theoretical guarantees for
Thompson Sampling, and establish that even for the
contextual version of the stochastic MAB problem,
TS achieves regret bounds close to the state-of-the-art
methods. We used a novel martingale-based analy-
sis technique which is arguably simpler than the tech-
niques in the past work on TS (Agrawal & Goyal, 2012;
Kaufmann et al., 2012), and is amenable to extensions.
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In the algorithm in this paper, Gaussian priors were
used, so that µ̃(t) was generated from a Gaussian dis-
tribution. However, the analysis techniques in this
paper are extendable to an algorithm that uses a
prior distribution other than the Gaussian distribu-
tion. The only distribution specific properties we have
used in the analysis are the concentration and anti-
concentration inequalities for Gaussian distributed
random variables (Lemma 5), which were used to prove
Lemma 1 and Lemma 2 respectively. If any other dis-
tribution provides similar tail inequalities, to allow us
proving these lemmas, these can be used as a black
box in the analysis, and the regret bounds can be re-
produced for that distribution.

Several questions remain open. A tighter analysis that
can remove the dependence on ε is desirable. We be-
lieve that our techniques would adapt to provide such
bounds for the expected regret. Other avenues to ex-
plore are contextual bandits with generalized linear
models considered in Filippi et al. (2010), the setting
with delayed and batched feedback, and the agnostic
case of contextual bandits with linear payoffs. The ag-
nostic case refers to the setting which does not make
the realizability assumption that there exists a vector
µi for each i for which E[ri(t)|bi(t)] = bi(t)

Tµi. To our
knowledge, no existing algorithm has been shown to
have non-trivial regret bounds for the agnostic case.


