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Abstract

This paper investigates graph clustering in
the planted cluster model in the presence
of small clusters. Traditional results dictate
that for an algorithm to provably correctly
recover the clusters, all clusters must be suf-
ficiently large (in particular, Ω̃(

√
n) where n

is the number of nodes of the graph). We
show that this is not really a restriction: by a
more refined analysis of the trace-norm based
matrix recovery approach proposed in Jalali
et al. (2011) and Chen et al. (2012), we prove
that small clusters, under certain mild as-
sumptions, do not hinder recovery of large
ones. Based on this result, we further devise
an iterative algorithm to recover almost all
clusters via a “peeling strategy”, i.e., recover
large clusters first, leading to a reduced prob-
lem, and repeat this procedure. These re-
sults are extended to the partial observation
setting, in which only a (chosen) part of the
graph is observed. The peeling strategy gives
rise to an active learning algorithm, in which
edges adjacent to smaller clusters are queried
more often as large clusters are learned (and
removed).

From a high level, this paper sheds novel
insights on high-dimensional statistics and
learning structured data, by presenting a
structured matrix learning problem for which
a one shot convex relaxation approach nec-
essarily fails, but a carefully constructed se-
quence of convex relaxations does the job.
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1. Introduction

This paper considers a classic problem in machine
learning and theoretical computer science, namely
graph clustering, i.e., given an undirected unweighted
graph, partition the nodes into disjoint clusters, so
that the density of edges within one cluster is higher
than those across clusters. Graph clustering arises nat-
urally in many applications across science and engi-
neering, such as community detection in social net-
work, submarket identification in E-commerce and
sponsored search and co-authorship analysis in ana-
lyzing document database. From a purely binary clas-
sification theoretical point of view, the edges of the
graph are (noisy) labels of similarity or affinity be-
tween pairs of objects, and the concept class consists
of clusterings of the objects (encoded graphically by
identifying clusters with cliques).

Many theoretical results in graph clustering (e.g.,
Condon & Karp, 2001; McSherry, 2001) consider the
planted partition model, in which the edges are gener-
ated randomly; see Section 1.1 for more details. While
numerous different methods have been proposed, their
performance guarantees all share the following man-
ner – under certain condition of the density of edges
(within clusters and across clusters), the proposed
method succeeds to recover the correct clusters exactly
if all clusters are larger than a threshold size, typically
Ω̃(
√
n). For algorithms relying on spectral analysis

the reason for this requirement is simple: The random
noise gives rise to eigenvalues of order Ω̃(

√
n) in the

graph adjacency matrix, dominating spectral informa-
tion corresponding to the clusters if they are all small.

In this paper, we aim to break this small cluster
barrier of graph clustering for a certain family of al-
gorithms based on convex relaxation. When all the
clusters are very small, identifying them seems inher-
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ently hard1, and is not the focus of this paper. Instead,
in this paper we investigate the following: Can we still
recover large clusters in the presence of small clusters?
Intuitively, this should be doable. To illustrate, con-
sider the example where the given graph G consists
two disjoint subgraphs G1 and G2, where G1 by it-
self is a graph that can be correctly clustered using
some existing method, G2 is a very small clique, and
there are only relative few edges connecting G1 and
G2. G certainly violates the minimum cluster size re-
quirement of previous results, but why should G2 spoil
our ability to recover G1?

Our main result confirms this intuition. We show that
the cluster size barrier arising in previous work (e.g.,
Chaudhuri et al., 2012; Bollobás & Scott, 2004; Chen
et al., 2012; McSherry, 2001) is not really a restric-
tion, but rather an artifact of the attempt to solve the
problem in a single shot. Using a more careful analy-
sis, we prove that the mixed trace-norm and `1 based
convex formulation, initially proposed in Jalali et al.
(2011) and Chen et al. (2012), can recover clusters of
size Ω̃(

√
n) even in the presence of smaller clusters.

The main implication of this result is that one can ap-
ply an iterative “peeling” strategy, recovering smaller
and smaller clusters. The intuition is simple – sup-
pose the number of clusters is limited, then either all
clusters are large, or the sizes of the clusters vary sig-
nificantly. The first case is already covered by exist-
ing results. The second one is equally easy: use the
aforementioned convex formulation, the larger clusters
can be correctly identified. If we remove all nodes
from these larger clusters, the remaining subgraph con-
tains significantly fewer nodes than the original graph,
which leads to a much lower threshold on the size of
the cluster for correct recovery, making it possible for
correctly clustering some remaining smaller clusters.
By repeating this procedure, indeed, we can recover
the cluster structure for almost all nodes with no lower
bound on the minimal cluster size. We summarize our
main contributions and techniques:

(1) We provide a refined analysis of the mixed trace
norm and `1 convex relaxation approach for exact re-
covery of clusters proposed in Jalali et al. (2011) and
Chen et al. (2012), focusing on the case where small
clusters exist. We show that if there is a number x in
Ω̃(
√
n) such that each cluster is either larger than x or

smaller than x/ log2 n, and at least one cluster is large,

1Indeed, even in a more lenient setup where one clique
(i.e., a perfect cluster) of size K is embedded in an Erdos-
Renyi graph of n nodes and 0.5 probability of forming an
edge, to recover this clique, the best known polynomial
method requires K = Ω(

√
n) and it has been a long stand-

ing open problem to relax this requirement.

then with high probability, the convex relaxation leads
to a unique solution correctly identifying all big clus-
ters while “ignoring” the small ones. We call such a
solusion admissible. Notice that the multiplicative gap
between the two thresholds is logarithmic w.r.t. n. In
addition, it is possible to arbitrarily increase x, thus
turning a “knob” in quest of an interval (x/ log2 n, x)
that is disjoint from the set of cluster sizes. The anal-
ysis is done by identifying a certain feasible solution
to the convex program and proving its almost sure
optimality using a careful construction of a dual cer-
tificate. This method has been performed before only
in the case where all clusters are large.

(2) We provide a converse of the result just described.
More precisely, we show that if for some value of the
knob x an optimal solution is admissible, then the so-
lution is useful (in the sense that it correctly identifies
big clusters), even if there exist clusters in the interval
(x/ log2 n, x).

(3) The last two points imply that if some interval
of the form (x/ log2 n, x) is free of cluster sizes, then
an exhaustive search of this interval will construc-
tively find big clusters. This gives rise to an itera-
tive algorithm, using a “peeling strategy”, to recover
smaller and smaller clusters that were not recoverable
in a one shot convex relaxation step. We then prove
that as long as the number of clusters is bounded by
Ω(log n/ log log n), regardless of the cluster sizes, we
can correctly recover the cluster structure for an over-
whelming fraction of nodes.

(4) We extend the result to the partial observation
case, where only a fraction of similarity labels (i.e.,
edge/no edge) is known. As expected, smaller observa-
tion rates allow identification of larger clusters. Hence,
the observation rate serves as the “knob”. This gives
rise to an active learning algorithm for graph cluster-
ing based on adaptively increasing the rate of sampling
in order to hit a corresponding interval free of cluster
sizes, and concentrating on smaller inputs as we iden-
tify big clusters and peel them off.

Beside these technical contributions, this paper pro-
vides novel insights into low-rank matrix recovery and
more generally high-dimensional statistics, where data
are typically assumed to obey certain low-dimensional
structure. Numerous methods have been developed to
exploit this a priori information so that a consistent
estimator is possible even when the dimensionality of
data is larger than the number of samples. Our re-
sult shows that one may combine these methods with
a “peeling strategy” to further push the envelope of
learning structured data – By iteratively recovering
the easier structure and then reducing the problem
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size, it is possible to learn structures that are other-
wise difficult using previous approaches.

1.1. Previous work

The literature of graph clustering is too vast for a de-
tailed survey here; we concentrate on the most related
work, and in specific those provide theoretical guaran-
tees on cluster recovery.

Planted partition model: The setup we study is
the classical planted partition model (Condon & Karp,
2001), also known as the stochastic block model (Hol-
land et al., 1983). Here, n nodes are partitioned into
subsets, referred as the “true clusters”, and a graph is
randomly generated as follows: for each pair of nodes,
depending on whether they belong to a same subset,
an edge connecting them is generated with a probabil-
ity p or q respectively. The goal is to correctly recover
the clusters given the random graph. Earlier work on
the planted partition model focused on the 2-partition
or more generally l-partition case with l = O(1), i.e.,
the minimal cluster size is Θ(n) (Condon & Karp,
2001; Carson & Impagliazzo, 2001; Bollobás & Scott,
2004). Recently, several works have proposed methods
to handle sublinear cluster sizes. These works can be
roughly classified into three approaches: randomized
algorithms (e.g., Shamir & Tsur, 2007), spectral clus-
tering (e.g., McSherry, 2001; Giesen & Mitsche, 2005;
Chaudhuri et al., 2012; Rohe et al., 2011)), and al-
gorithms based on convex optimization (Jalali et al.,
2011; Chen et al., 2012; Ames & Vavasis, 2011; Oy-
mak & Hassibi, 2011; Mathieu & Schudy, 2010). While
these work differs in the methodology, they all impose
constraints on the size of the minimum true cluster –
the best result up-to-date requires it to be Ω̃(

√
n).

Correlation Clustering This problem, originally de-
fined by Bansal et al. (2004), also considers graph clus-
tering but in an adversarial noise setting. The prob-
lem is NP-Hard to approximate to within some con-
stant factor. Prominent work includes Demaine et al.
(2006); Ailon et al. (2008); Charikar et al. (2005). A
PTAS is known in case the number of clusters is fixed
(Giotis & Guruswami, 2006).

Low rank matrix decomposition via trace norm:
Motivated from robust PCA, it has recently been
shown (Chandrasekaran et al., 2011; Candès et al.,
2011), that it is possible to recover a low-rank ma-
trix from sparse errors of arbitrary magnitude, where
the key ingredient is using trace norm (a.k.a. nuclear
norm) as a convex surrogate of the rank. A similar
result is also obtained when the low rank matrix is
corrupted by other types of noise (Xu et al., 2012).
Of particular relevance to this paper is Jalali et al.

(2011), Chen et al. (2012) and Jalali & Srebro (2012),
where the authors apply this approach to graph clus-
tering, and specifically to the planted partition model.
Indeed, Chen et al. (2012) achieve state-of-art per-
formance guarantees for the planted partition prob-
lem. However, they don’t overcome the Ω̃(

√
n) mini-

mal cluster size lower bound.

Active learning/Active clustering Another line of
work that motivates this paper is study of active learn-
ing algorithms (a settings in which labeled instances
are chosen by the learner, rather than by nature), and
in particular active learning for clustering. The most
related work is Ailon et al. (2012), who investigated
active learning for correlation clustering. The authors
obtain a (1 + ε)-approximate solution with respect to
the optimal, while (actively) querying no more than
O(npoly(log n, k, ε−1)) edges. The result imposed no
restriction on cluster sizes and hence inspired this
work, but differs in at least two major ways. First,
Ailon et al. (2012) did not consider exact recovery as
we do. Second, their guarantees fall in the ERM (Em-
pirical Risk Minimization) framework, with no run-
ning time guarantees. Our work recovers true clus-
ter exactly using a convex relaxation algorithm, and is
hence computationally efficient. The problem of active
learning has also been investigated in other cluster-
ing setups including clustering based on distance ma-
trix (Voevodski et al., 2012; Shamir & Tishby, 2011),
and hierarchical clustering (Eriksson et al., 2011; Kr-
ishnamurthy et al., 2012). These setups differ from
ours and cannot be easily compared.

2. Notation and Setup

Throughout, V denotes a ground set of elements,
which we identify with the set [n] = {1, . . . , n}. We
assume a true ground truth clustering of V given by
a pairwise disjoint covering V1, . . . , Vk, where k is the
number of clusters. We say i ∼ j if i, j ∈ Va for
some a ∈ [k], otherwise i 6∼ j. We let ni = |Vi| for
all i ∈ [k]. For any i ∈ [n], 〈i〉 is the unique index
satisfying i ∈ V〈i〉.

For a matrix X ∈ Rn×n and a subset S ⊆ [n] of size
m, the matrix X[S] ∈ Rm×m is the principal minor of
X corresponding to the set of indexes S. For a matrix
M , Γ(M) denotes the support of M , namely, the set
of index pairs (i, j) such that M(i, j) 6= 0.

The ground truth clustering matrix, denoted K∗, is
defined so that K∗(i, j) = 1 is i ∼ j, otherwise 0.
This is a block diagonal matrix, each block consisting
of 1’s only. Its rank is k. The input is a symmetric
matrix A, a noisy version of K∗. It is generated using
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the well known planted clustering model, as follows.
There are two fixed edge probabilities, p > q. We
think of A as the adjacency matrix of an undirected
random graph, where edge (i, j) is in the graph for i >
j with probability p if i ∼ j, otherwise with probability
q, independent of other choices. The error matrix is
denoted by B∗ := A−K∗. We let Ω := Γ(B∗) denote
the noise locations.

Note that our results apply to the more practical case
in which the edge probability of (i, j) is pij for each
i ∼ j and qij for i 6∼ j, as long as (min pij) =: p > q :=
(max qij).

3. Results

We remind the reader that the trace norm of a ma-
trix is the sum of its singular values, and we define the
`1 norm of a matrix M to be ‖M‖1 =

∑
ij |M(ij)|.

For a set Φ ⊆ [n]× [n], PΦ(M) denotes the matrix ob-
tained from M by setting M(i, j) = 0 for all (i, j) ∈ Φ.
Consider the following convex program, combining the
trace norm of a matrix variable K with the `1 norm of
another matrix variable B using two parameters c1, c2
that will be determined later:

(CP1) min ‖K‖∗ + c1
∥∥PΓ(A)B

∥∥
1

+ c2
∥∥PΓ(A)cB

∥∥
1

s.t. K +B = A

0 ≤ Kij ≤ 1,∀(i, j).

Theorem 1. There exist constants b1, b3, b4 > 0 such
that the following holds with probability at least 1−n−3.
For any parameter κ ≥ 1 and t ∈ [ 1

4p + 3
4q,

3
4p + 1

4q],
define

`] = b3
κ
√
p(1− q)n
p− q

log2 n `[ = b4
κ
√
p(1− q)n
p− q

. (1)

If for all i ∈ [k], either ni ≥ `] or ni ≤ `[ and if (K̂, B̂)
is an optimal solution to (CP1), with

c1 =
b1

κ
√
n log n

√
1− t
t

c2 =
b1

κ
√
n log n

√
t

1− t
, (2)

then (K̂, B̂) = (P]K∗, A− K̂), where for a matrix M ,
P]M is the matrix defined by

(P]M)(i, j) =

{
M(i, j) max{n〈i〉, n〈j〉} ≥ `]
0 otherwise

.

(Note that by the theorem’s premise, K̂ is the matrix
obtained from K∗ after zeroing out blocks correspond-
ing to clusters of size at most `[.) The proof is based
on Chen et al. (2012) and is deferred to the supplemen-
tal material due to lack of space. The main novelty in

Black represents 1, white
represents 0. σmin(K) is
the side length of the small-
est black square.

Figure 1. A partial clustering matrix K.

this work compared to previous work is the treatment
of small clusters of size at most `[, whereas in pre-
vious work only large clusters were treated, and the
existence of small clusters did not allow recovery of
the big clusters.

Definition 2. An n × n matrix K is a partial clus-
tering matrix if there exists a collection of pairwise
disjoint sets U1, . . . , Ur ⊆ [n] (the induced clusters)
such that K(i, j) = 1 if and only if i, j ∈ Us for some
s ∈ [r], otherwise 0. If K is a partial clustering matrix
then σmin(K) is defined as minri=1 |Ui|.

The definition is depicted in Figure 1. Theorem 1
tells us that by choosing κ (and hence c1, c2) prop-
erly such that no cluster size falls in the range (`[, `]),

the unique optimal solution (K̂, B̂) to convex program
(CP1) is such that K̂ is a partial clustering induced by
big ground truth clusters.

In order for this fact to be useful algorithmically, we
also need a type of converse: there exists an event with
high probability (in the random process generating the
input), such that for all values of κ, if an optimal solu-
tion to the corresponding (CP1) looks like the solution
(K̂, B̂) defined in Theorem 1, then the blocks of K̂ cor-
respond to actual clusters.

Theorem 3. There exists constants C1, C2 > 0 such
that with probability at least 1 − n−2, the following
holds. For all κ ≥ 1 and t ∈ [ 3

4q + 1
4p,

1
4q + 3

4p], if
(K,B) is an optimal solution to (CP1) with c1, c2 as
defined in Theorem 1, and additionally K is a partial
clustering induced by U1, . . . , Ur ⊆ V , and also

σmin(K) ≥ max

{
C1k log n

(p− q)2
,
C2κ

√
p(1− q)n log n

p− q

}
,

(3)
then U1, . . . , Ur are actual ground truth clusters,
namely, there exists an injection φ : [r] 7→ [k] such
that Ui = Vφ(i) for all i ∈ [r].

(Note: Our proof of Theorem 3 uses Hoeffding tail
bounds for simplicity, which are tight for p, q bounded
away from 0 and 1. Bernstein tail bounds can be used
to strengthen the result for other classes of p, q. We
elaborate on this in Section 3.1.)
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The combination of Theorems 1 and 3 implies that, as
long as there exists a relatively small interval which is
disjoint from the set of cluster sizes, and such that at
least one cluster size is larger than this interval (and
large enough), we can recover at least one (large) clus-
ter using (CP1). This is made clear in the following.

Corollary 4. Assume we have a guarantee

that there exists a number α ≥ b4

√
p(1−q)n
p−q ,

such that no cluster size falls in the interval
(α, b3b4α log2 n) and at least one cluster size is of

size at least s := max{ b3b4α log2 n, (C1k log n)/(p −
q)2, C2

√
p(1− q)n log n/(p − q)}. Then with proba-

bility at least 1 − n−2, we can recover at least one
cluster of size at least s efficiently by solving (CP1)

with κ = α/

(
b4

√
p(1−q)n
p−q

)
.

Of course we do not know what α (and hence κ)
is. We could exhaustively search for a κ ≥ 1 and
hope to recover at least one large cluster. A more
interesting question is, when is such a κ guaranteed
to exist? Let g = b3

b4
log2 n. The number g is the

(multiplicative) gap size, equaling the ratio between
`] and `[ (for any κ). If the number of clusters k is a
priori bounded by some k0, we both ensure that there
is at least one cluster of size n/k0, and by the pigeon-
hole principle, that one of the intervals in the sequence
(n/gk0, n/k0), (n/g2k0, n/gk0), . . . , (n/gk0+1k0, n/g

k0k0).
is disjoint of cluster sizes. If, in addition, the smallest
interval in the sequence is not too small and n/k0

is not too small so that Corollary 4 holds, then we
are guaranteed to recover at least one cluster using
Algorithm 1. We find this condition difficult to
work with. An elegant, useful version of the idea is
obtained if we assume p, q are some fixed constants.2

As the following lemma shows, in this regime, k0

can be assumed to be almost logarithmic in n to
ensure recovery of at least one cluster.3 In what
follows, notation such as C(p, q), C3(p, q), . . . denotes
universal positive functions depending on p, q only.

Lemma 5. There exists C3(p, q), C4(p, q), C5 > 0 such
that the following holds. Assume that n > C4(p, q),
and that we are guaranteed that k ≤ k0, where k0 =
C3(p,q) logn

log logn . Then with probability at least 1− n−2 Al-
gorithm 1 will recover at least one cluster in at most
C5k0 iterations.

The proof is deferred to the supplemental material sec-

2In fact, we need only fix (p − q), but we wish to keep
this exposition simple.

3In comparison, (Ailon et al., 2012) require k0 to be con-
stant for their guarantees, as do the Correlation Clustering
PTAS (Giotis & Guruswami, 2006).

tion. Lemma 5 ensures that by trying at most a loga-
rithmic number of values of κ, we can recover at least
one large cluster, assuming the number of clusters is
roughly logarithmic in n. The next proposition tells us
that as long as this step recovers the clusters covering
at most all but a vanishing fraction of elements, the
step can be repeated.

Proposition 6. A pair of numbers (n′, k′) is called

good if n′ ≤ n, k′ ≤ k and k′ ≤ C3(p,q) logn′

log logn . If (n′, k′)

is good, then (n′′, k′′) is good for all n′′, k′′ satisfying
n′ ≥ n′′ ≥ n′/(log n)1/C3(p,q) and k′ − 1 ≥ k′′ ≥ 1.

The proof is trivial. The proposition implies an induc-
tive process in which at least one big (with respect to
the current unrecovered size) cluster can be efficiently
removed as long as the previous step recovered at most
a (1− (log n)−1/C3(p,q))-fraction of its input. Combin-
ing, we proved the following:

Theorem 7. Assume n, k satisfy the requirements of
Lemma 5. Then with probability at least 1− 2n−1 Al-
gorithm 2 recovers clusters covering all but at most
a ((log n)−1/C3(p−q)) fraction of the input in the full
observation case, without any restriction of the min-
imal cluster size. Moreover, if we assume that k is
bounded by a constant k0, then the algorithm will re-
cover clusters covering all but a constant number of
input elements.

3.1. Partial Observations

We now consider the case where the input matrix A is
not given to us in entirety, but rather that we have ora-
cle access to A(i, j) for (i, j) of our choice. Unobserved

Algorithm 1 RecoverBigFullObs(V,A, p, q)

require: ground set V , A ∈ RV×V , probs p, q
n← |V |
t← 1

4p+ 3
4q (or anything in [ 1

4p+ 3
4q,

3
4p+ 1

4q])

`] ← n, g ← b3
b4

log2 n
// (If have prior bound k0 on num clusters,
// take `] ← n/k0)

while `] ≥ max

{
C1k logn
(p−q)2 ,

C2

√
p(1−q)n logn

p−q

}
do

solve for κ using (1), set c1, c2 as in (2)
(K̂, B̂)← optimal solution to (CP1) with c1, c2
if K̂ partial clustering matrix with σmin(K̂) ≥ `]
then

return induced clusters {U1, . . . , Ur} of K̂
end if
`] ← `]/g

end while
return ∅
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Algorithm 2 RecoverFullObs(V,A, p, q)

require: ground set V , matrix A ∈ RV×V , probs
p, q
{U1, . . . , Ur} ← RecoverBigFullObs(V,A, p, q)
V ′ ← [n] \ (U1 ∪ · · · ∪ Ur)
if r = 0 then

return ∅
else

return RecoverFullObs(V ′, A[V ′], p, q) ∪
{U1, . . . , Ur}

end if

values are formally marked with A(i, j) =?.

Consider a more particular setting in which the edge
probabilities defining A are p′ (for i ∼ j) and q′ (for i 6∼
j), and we observe A(i, j) with probability ρ, for each
i, j, independently. More precisely: For i ∼ j we have
A(i, j) = 1 with probability ρp′, 0 with probability
ρ(1 − p′) and ? with remaining probability. For i 6∼
j we have A(i, j) = 1 with probability ρq′, 0 with
probability ρ(1− q′) and ? with remaining probability.
Clearly, by pretending that the values ? in A are 0, we
emulate the full observation case with p = ρp′, q = ρq′.

Of particular interest is the case in which p′, q′ are held
fixed and ρ tends to zero as n grows. In this regime, we
have the following result, which follows directly from
Theorem 1 by setting κ = 1, p = ρp′ and q = ρq′ (note
that Theorem 1 allows p and q to be o(1)).

Corollary 8. There exist constants
b1(p′, q′), b3(p′, q′), b4(p′, q′), b5(p′, q′) > 0 such
that for any sampling rate parameter ρ the following
holds with probability at least 1− n−3. define

`] = b3(p′, q′)

√
n
√
ρ

log2 n `[ = b4(p′, q′)

√
n
√
ρ
.

If for all i ∈ [k], either ni ≥ `] or ni ≤ `[ and if (K̂, B̂)
is an optimal solution to (CP1), with

c1 =
b1(p′, q′)√
n log n

√
1− b5(p′, q′)ρ

b5(p′, q′)ρ

c2 =
b1(p′, q′)√
n log n

√
b5(p′, q′)

1− b5(p′, q′)ρ
,

then (K̂,B̂)=(P]K∗, A−K̂), with P] defined in Theorem 1.

(Note: We’ve abused notation by reusing previously
defined global constants (e.g. b1) with global func-
tions of p′, q′ (e.g. b1(p′, q′)).) Notice now that the
observation probability ρ can be used as a knob for
controlling the cluster sizes we are trying to recover,

instead of κ. We would also like to obtain a version of
Theorem 3. In particular, we would like to understand
its asymptotics as ρ tends to 0.

Theorem 9. There exist constants
C1(p′, q′), C2(p′, q′) > 0 such that for all obser-
vation rate parameters ρ ≤ 1, the following holds with
probability at least 1 − n−2. If (K,B) is an optimal
solution to (CP1) with c1, c2 as defined in Theorem 8,
and additionally K is a partial clustering induced by
U1, . . . , Ur ⊆ V , and also

σmin(K) ≥ max

{
C1(p′, q′)k log n

ρ
,
C2(p′, q′)

√
n log n

√
ρ

}
,

(4)
then U1, . . . , Ur are actual ground truth clusters,
namely, there exists an injection φ : [r] 7→ [k] such
that Ui = Vφ(i) for all i ∈ [r].

The proof is given in the supplemental material. Using
the same reasoning as before, we derive the following:

Theorem 10. Let g = b3(p′, q′)/b4(p′, q′) log2 n (with
b3(p′, q′), b4(p′, q′) defined in Corollary 8). There ex-
ists a constant C4(p′, q′) such that the following holds.
Assume the number of clusters k is bounded by some
known number k0 ≤ C4(p′, q′)(log n)/(log log n). Let

ρ0 =
b3(p′,q′)2k20 log4 n

n . Then there exists ρ in the set
{ρ0, ρ0g, . . . , ρ0g

k0} for which, if A is obtained with
observation rate ρ (zeroing ?’s), then with probability
at least 1−n−2, any optimal solution (K,B) to (CP1)
with c1, c2 from Corollary 8 satisfies (4).

(Note that the upper bound on k0 ensures that ρgk0

is a probability.) The theorem is proven using the
pigeonhole principle, noting that one of the intervals
(`[(ρ), `](ρ)) must be disjoint from the set of cluster
sizes, and there is at least one cluster of size at least
n/k0. The theorem, together with Corollary 8 and
Theorem 9 ensures the following. On one end of the
spectrum, if k0 is constant (and n is large), then with
high probability we can recover at least one large clus-
ter (of size at least n/k0) after querying no more than

O

(
nk2

0

(
b3(p′, q′)

b4(p′, q′)
log2 n

)2k0

log4 n

)
(5)

values of A(i, j). On the other end of the spectrum, if
k0 ≤ δ(log n)/(log log n) and n is large enough (expo-
nential in 1/δ), then we can recover at least one large
cluster after querying no more than n1+O(δ) values of
A(i, j). (We omit the details of the last fact from this
version.) This is summarized in the following:

Theorem 11. Assume an upper bound k0 on the num-
ber of clusters k. As long as n is larger than some func-
tion of k0, p

′, q′, Algorithm 4 will recover, with proba-
bility at least 1−n−1, at least one cluster of size at least
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n/k0, regardless of the size of other (small) clusters.
Moreover, if k0 is a constant, then clusters covering
all but a constant number of elements will be recovered
with probability at least 1− n−1, and the total number
of observation queries is (5), hence almost linear.

Unlike previous results, our recovery guarantee im-
poses no lower bounds on the size of the smallest clus-
ter. Note that the underlying algorithm is an active
learning one, as more observations fall in smaller clus-
ters which survive deeper in the recursion of Alg. 4.

Algorithm 3 RecoverBigPartialObs(V, k0)
(Assume p′, q′ known, fixed)

require: ground set V , oracle access to A ∈ RV×V ,
upper bound k0 on number of clusters
n← |V |
ρ0 ← b3(p′,q′)2k20 log4 n

n

g ← b3(p′, q′)/b4(p′, q′) log2 n
for s ∈ {0, . . . , k0} do
ρ← ρ0g

s

obtain matrix A ∈ {0, 1, ?}V×V by sampling ora-
cle at rate ρ, then zero ? values in A
// (can reuse observations from prev. iterations)
c1(p′, q′), c2(p′, q′)← as in Corollary 8
(K,B)← an optimal solution to (CP1)
if K partial clustering matrix satisfying (4) then

return induced clusters {U1, . . . , Ur}
end if

end for
return ∅

Algorithm 4 RecoverPartialObs(V, k0)
(Assume p′, q′ known, fixed)

require: ground set V , oracle access to A ∈ RV×V ,
upper bound k0 on number of clusters
{U1, . . . , Ur} ← RecoverBigPartialObs(V, k0)
V ′ ← [n] \ (U1 ∪ · · · ∪ Ur)
if r = 0 then

return ∅
else

return RecoverPartialObs(V ′, k0−r)∪{U1,. . . , Ur}
end if

4. Experiments

We experimented with simplified versions of our al-
gorithms. Here we did not make an effort to com-
pute the precise values of various constants defining
the algorithms in this work, creating a difficulty in ex-
act implementation. Instead, we assume p and q is
known in (CP1), and set c1, c2 according to (2) with

t = 1
4p+ 3

4q and b1 = 2. For Algorithm 1, we start with
κ = 1 and multiply it by 1.1 in each iteration until a
partial clustering matrix is found. In Algorithm 3, ρ
is increased by an additive factor of 0.025. Still, it is
obvious that our experiments support our theoretical
findings. A practical “user’s guide” for this method
with actual constants is subject to future work.

We use the Augmented Lagrangian Multiplier (ALM)
method described in (Chen et al., 2012) to solve
(CP1). In the sequel, whenever we say that “clusters
{Vi1 , Vi2 , . . . } were recovered”, we mean that (CP1)
resulted in an optimal solution (K̂, B̂) with K̂ being a
partial clustering matrix induced by {Vi1 , Vi2 , . . . }.

Experiment 1 (Full Observation) Consider n =
1100 nodes partitioned into 4 clusters V1, . . . , V4, of
sizes 800, 200, 80, 20, respectively. The graph is gen-
erated according to the planted partition model with
p = 0.7, q = 0.3, and we assume full observation. We
apply our algorithm and check if it successfully recov-
ers all the clusters. We repeat for 20 times and observe
90% success. Table 1 shows one of the 20 execution;
the algorithm terminates in 2 iterations and the recov-
ered clusters at each iteration are shown.

Experiment 2 (Partial Observation - Fixed
Sampling Rate) We have n = 1100 with clusters
V1, . . . , V4 of sizes 800, 200, 50, 50. The graph is gen-
erated with p′ = 0.7, q′ = 0.1, and observation rate
ρ = 0.3. Out of 20 instances, our algorithm succeeds
for 70% of the time. One such instance is shown in
Table 1. In the other instances, only V1 and V2 are re-
covered, probably because the remaining graph is too
small for exact recovery under random noise.

Experiment 3 (Partial Observation - Incre-
mental Sampling Rate) We test Algorithm 4.
We have n = 1100 with clusters V1, . . . , V4 of sizes
800, 200, 50, 50. The observed graph is generated with
p′ = 0.7, q′ = 0.3, and an observation rate ρ which
we now specify. We start with ρ = 0 and increase
it by 0.025 incrementally until we recover (and then
remove) at least one cluster, then repeat. In all 20
instances, our algorithm recovers all the clusters when
it terminates. Table 1 show one typical instance.

Experiment 3A We repeat the last experiment
with a larger graph: n = 4500 with clusters V1, . . . , V6

of sizes 3200, 800, 200, 200, 50, 50, and p′ = 0.8, q′ =
0.2. One execution is shown in Table 1. Note that we
recover the smallest clusters, whose size is below

√
n.

Experiment 4 (Mid-Size Clusters) Our current
theoretical results do not say anything about the
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Experiment 1:

Iter. κ # nodes left Clusters recovered

1 1 1100 V1, V2, V3

2 2.41 20 V4

Experiment 2:

Iter. κ # nodes left Clusters recovered

1 1 1100 V1,V2

2 1 100 V3, V4

Experiment 3:

Iter. ρ # nodes left Clusters recovered

1 0.2 1100 V1

2 0.4 300 V2

3 0.95 100 V3, V4

Experiment 3A:

Iter. ρ # nodes left Clusters recovered

1 0.15 4500 V1

2 0.175 1300 V2

3 0.2 500 V3, V4

4 0.475 100 V5, V6

Table 1. Experiment Results

mid-size clusters – those with sizes between `[ and
`]. It is interesting to study the behavior of (CP1)
in the presence of mid-size clusters. We generated
an instance with n = 750, {|V1|, |V2|, |V3|, |V4|} =
{500, 150, 70, 30}, p = 0.8, q = 0.2, and ρ = 0.12. We
then solved (CP1) with a fixed κ = 1. The low-rank
part K̂ of the solution is shown in Fig. 2. The large
cluster V1 is completely recovered in K̂, while the small
clusters V3 and V4 are entirely ignored. The mid-size
cluster V2, however, exhibits a pattern we find diffi-
cult to characterize. This shows that the gap between
`] and `[ in our theorems is a real phenomenon and
not an artifact of our proof technique. Nevertheless,
the large cluster appears clean, and might allow recov-
ery using simple procedures. If this is true in general,
it might not be necessary to search for a gap free of
cluster sizes. Perhaps for any κ, (CP1) identifies all
large clusters above `] after a possible simple mid-size
cleanup procedure. Understanding this phenomenon
and its algorithmic implications is of much interest.

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure 2. The solution to (CP1) with mid-size clusters.

5. Discussion

An immediate goal is to better understand the “mid-
size crisis”. Our current results say nothing about
clusters that fall in the interval (`[, `]). Our numerical
experiments confirm that the mid-size phenomenon is
real: they are neither completely recovered nor entirely
ignored by the optimal K̂. obvious pattern.

Our study was mainly theoretical, focusing on the
planted partition model. Our experiments focused on
confirming the theoretical findings with data generated
exactly according to the distribution we could provide
provable guarantees for. It is interesting to apply our
methods to real applications, particularly big datasets
merged from web application and social networks.

Another interesting direction is extending the “peel-
ing strategy” to other high-dimensional learning prob-
lems. One intuitive explanation of the small cluster
barrier encountered in previous work is ambiguity –
when viewing from the whole graph, a small cluster is
both a low-rank matrix and a sparse one. Only when
“zooming in” (after removing big clusters), small clus-
ters patterns emerge. There are other formulations
with a similar property. For example, in Xu et al.
(2012), the authors propose to decompose a matrix
into the sum of a low rank one and a column sparse
one to solve an outlier-resistant PCA task. Notice that
a column sparse matrix is also low rank. We hope the
“peeling strategy” may also help with that problem.
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